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1. INTRODUCTION

Basic symmetries of Einstein special relativity:

a) Poincaré symmetries (Poincaré group)

X}, = Ajixy + ay ©n=0,1,23

b) Poincaré algebra (P, M)
Mass and spin Casimirs:

1
P, Pt = —m? W, WH = mzs(s + 1) s =0, >’ 1

Abelian addition law of fourmomenta
142 1 2
Pu< )ZP“<)_|_PM<>

— Poincaré algebra is a Hopf algebra
with Abelian (primitive) coproduct

(A(G) =g ®1+1Qg).



General relativity:

Dynamical (pseudo)-Riemannian structure of curved space-
time manifold (matter can introduce torsion).

General covariance under local transformations:

Einstein action:

S = #fd‘lw JVdetg R R = Rguv]

/! T
Planck scalar
mass curvature

Three fundamental constants:
Cc . h . K = % ~ 929, 10_59 ~ 1.2. 1019G§2V
Lo ! !

geometric dynamical (gravitational coupling)




Problem: standard quantization of Einstein gravity
as field theory leads to nonrenormalizable infinities -
quantum gravity does not exists!

Ways out:

1) Supersymmetrization and D>4 extensions

If added additional space coordinates (Kaluza-Klein idea)
one gets

D=11 supergravity ( first ‘Theory Of) ( Hakag)

Everything! 1982

2) Embedding gravity in string theory (= M-theory)

Green,
D=10 superstring (sec;igertI;leier Of) ( Schwarz)
n yLHIg: 1984

SUSY + D>4 + extended
object!



3) Modification of space-time structure

The renormalization problem related with short distance
behavior — quantum space-time can solve the problem?

The notion of classical space-time at Planck
distances is not compatible with quantization
of gravity:

- measuring the position & with accuracy Ax means
adding in measurement procedure to the volume (Ax)3
the energy E ~ ﬁ

- due to Einstein equations adding energy E to small
volume creates black holes with radius R ~ Ay %
Fuzzy space-time structure: Ax > R



One can derive that allways in presence of gravity Az > Ap
Planck length Aj

The minimal value of Az ~ Ap (in QM Az arbitrary!)
G
Ap=—=1/— ~ 1.6 -103%cm

The property that Ax > Ap can be described algebraically
by analogy with QM (x-Planck mass)
()

[C/B\“, {B\I/] — Eeuu Huu — _Hl/u

— (Dopplicher, Fredenhagen, Roberts 1995):

canonical deformation

_ p(0) _
O = Oy (constant) of space-time



2. FROM NONCOMMUTATIVE SPACE-TIME
TO QUANTUM RELATIVISTIC SYMMETRIES

General deformation of space-time

T T T
DFR  Lie-algebra quadratic

0, represents in algebraic form the quantum gravity
effects - in future 6,, will be determined dynamically:

HI,LI/ — H,UJ/ (Quu)



1) Canonical deformation of space-time

S T (0
B @] = —5 O (@)
Translations ‘%fu, = &, + a, classical
o~ T (0 N
[zc:L, T = zeﬁw) = |lay,av] = [y, ay] =0

Lorentz invariance - also classical but broken by constant

tensor 9}3,)

Quantum group approach: one can modify by twisting
the coalgebra structure of classical Lorentz algebra in a
way that the relation (a) as describing the representation
space of twisted Poincaré algebra is covariant

— (Wess, Chaichian et al., 2004)
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2) Lie-algebraic deformation

Ty | = ?HL,,)Pmp

o /w\'u +a, = [aﬂﬂal/] — ,:2 ;u/pap
z T
[Ty, ay] =

Translations b\w - noncommutative!
Hopf-algebraic formula for adding Z,

(1)

For particular choices of 6, one can extend noncommu-
tative translations to full quantum Poincaré group (a,, A,")

— Classification: Podles, Woronowicz 1996



The most known example of Lie-algebraic deformation:
r-deformation

— (J.L., Nowicki, Ruegg, Tolstoy 1991)

One can identify noncommutative translations with
r-Minkowski coordinates: x,, < a

T

[53\09@7:] — ;wz [{B\zafﬁj] =0 2,3=1,2,3

The k-deformed Poincaré group (S. Zakrzewski 1994)

AR =mw  [Bu AR #0 [Af,A]] =0

r-Poincaré —> r-Poincaré
group duality algebra

10



Quantum Poincaré algebras:
a) Canonical deformation (0, (O))
- algebraic sector: classical Poincaré algebra

- coalgebraic sector: nonclassical, deformed by twist

Ag(9) = F, " Ao(9) Fy g = (Py, M)

A~ ~ . ()
Ap(9) =9gR1+1®g ngexp{z—nzPH/\ Py}

Irreducible representations of Poincaré algebra are not
modified, only the composition of the representations on
tensor products is not classical

Very mild deformation!

11



r-deformation:

- algebraic sector (P, = (Py, P;), My, = (M;, N;))

classical
[Muy, Mpq-] — i(nl{/TMVp — e e .) <: LOI‘entZ
algebra
[M;, Pj] = i€, P [M;, Pol =i P
. K _2h 1 =2 )
[N;, Pj] = 10, [5(1 —e k) +5-p°| — ¢ P P;

[N;, Py] = i P;

”Bicrossproduct basis” (Majid, Ruegg 1994)
Deformed mass Casimir — deformed KG operator:

P, P — 2n(sinh 5)2 =2 in standard
g 2K P basis

12



r-deformation of coalgebraic sector:

AM)) = M; ®1+1Q M;
Py

A(Nz) = IV; ®€__—|—1®N GkaM R Py,
P,

AP) =P,Qe » +1® P;

AP) =PhR1+1R F

Modified addition of three-momenta and boosts, e.g.

(2)
p(+d _ pM =" | p®) (@

Consequence of (a) — modification of bosonic and fermionic
statistics

(Daszkiewicz, J.L., Woronowicz 2007)

13



r-deformed field oscillators <+ momentum - dependent statis-
tics — required by nonAbelian addition law of momenta.
Inconsistency of standard bosonic commutativity:

a(p)a(q) = a(q)a(p) — pe” « +q# Je = + P
r-modification of multiplication:
a(p) - a(q) = a(pe 2x) - a(ge2x) = a(p) o a(q)

a(p)oa(q) =a(@)oa(@) - P+d=q+p ! (4
We obtain k-deformed oscillator algebra:

(@™ (P); a(@)] = 208°(F — ') — [a™(P), a()]o = 22 (P)5°(F — P”)
Q. (p) - energy calculated from k-deformed mass shell

Exchanging 1 < 2 particle leads to the modification of
momentum dependence:

a(P) - a(q) = a(de % )a(Per) ~ (4)

14



3. DEFORMED KINEMATICS

a) Canonical deformations (0,, = 01(2/))

- Kinematics for single relativistic particles not modified,
in particular classical energy-momentum relation

1
E = (p* + m?)?
- Two approaches to symmetries
i)  Classical Poincaré symmetries valid but broken by
(0)
constant tensor 0,y
O(3,1) — 0O0(2) ® O(1,1)

ii) Quantum Poincaré symmetries with modified co-
product — boosts for one-particle states adds in non-
trivial way.

These two approaches are further used as well in de-
formed gravity theory (Calmet, Aschieri, Wess).

15



b) k-deformation

- Because the mass Casimir is deformed, there is modi-
fied energy-momentum relation, which depends on the
chosen basis of the k-deformed Poincaré algebra:

E? E \2 tandard
=2 a2 =2 . _ 2 stanaar
D 2= mg — P (2:4, c sinh —214,(:) my ( basis )

1
(P?+mg)? 1 1
=P+ mg)2 + 0()

FE = 2k c arcsinh
2K C

Asymptotic behaviour:
E = 1In |p] in |D] — oo limit

Study of various consequences of deformed energy-momentum
relation: Doubly Special Relativity (DSR) (Amelino-Camelia,
Kowalski-Glikman...)

16



Change of ”mass-shell condition” leads to three important
consequences:

i) The notion of light-cone is modified - simpler to under-
stand in momentum space, in space-time not clear

ii) The velocity of massless particles (photons) approaches c
only if |p] — oo - in given basis one gets universal ”ve-
locity curve” v(|p])

iii) Astrophysical effect: k-deformed kinematics of absorp-
tion processes leads to modification of GKZ threshold

However experimentally there are not observed violations
of Einstein kinematics. Theoretical corrections are of order
~ %, at present beyond observable limits. (Domokos 1994)

17



4. DEFORMED (NONCOMMUTATIVE)
FIELD THEORY

Standard local R Commutative
field theory * — product nonlocal
(commutative) field theory

2 inverse
A Fouri
N “«5 ourier
—
T Tp | k<00 transform

. . Commutative deformed
Noncommutative Fourier

local field theory ~tramsform CcOrY i momentum
space

i)
Assumption: [p,py| =0

18



Star product: homomorphic mapping of noncommutative
fields into classical fields

w(x) - x(T) ——  p(x) x x(x)
realization
of NC fields algebra

a) Canonical deformation = Moyal star product

Product of noncommutative plane waves

ipy eiqum“’ e%p“g(o) v

ipux”  _iq,xH
e Pp . e du ;u/q

ée

induces the definition of Moyal star product

() *ex(w)iSO(w)eXp{ 5409 5 Y ix(x)

19



Canonical deformation - very mild:

e no modification of mass-shell condition - the same free
field equations

e no modification of Abelian addition law for three-momenta

e the phase factor exp % p 0 g enters into momentum space
vertices in Feynmann diagrams (Filk 1995)

e definition of O-deformed bosonic and fermionic statistics
(Abe; Balachandran 2006)

_’ 1'9(0) AV _
a(p) 0 a(q) = e2”wP 9 - a(p) - a(q)

Every known field theory (e.g. gauge theories - QED,
QCD; gravity) has been canonically deformed

20



b) k-deformation = BCH star product (Birkhoff, Campbell,

Hausdorf)
Product of noncommutative plane waves:

o /\N ) /\N ) “ ) “ N ()p
et Puxt jtquxl _ ippah jiqu e2azpp 0.0 q

More complicated deformation:

- Free field equations modified (modified Casimirs
of Poincaré algebra)

- The numerical phase factor in momentum space
vertices (Feynmann diagrams) becomes differential
operator in momentum space

(1)p )
21’“9 4" 5pp

- The conservation of fourmomenta modified

- The bosonic and fermionic statistics modified
(Daszkiewicz, J.L., Woronowicz 2007)

21



Question: can one formulate perturbative k-deformed field
theory?

For that purpose needed k-deformed c-number free prop-
agator. Indeed if we introduce k-deformed *-product for
quantized fields ¢

Ok (Z) () = Pu(x) * du(y) <
one can show that (Daszkiewicz, J.L., Woronowicz 2008)
[$r(2), $r(B)]x = iAx(z — a') =
- s gt

Interesting equivalence of noncommutative and braided fields
(for canonical deformation - Oeckl (2001))

O () * dk(y) = dr(T) 0 Pr(y)

noncommutative braided

Valid also for quantized field ¢ (Z).

r-deformed
oscillators ¢ ()

292



If we introduce braided vertices

A ¢ (E) — Ap(x) 0 ¢(x) 0 ¢(x) o P(x)
one obtains at every vertex classical conservation law of
fourmomenta. One can define consistently the braided
products ”0” of n oscillators for any n and by using k-

deformed Wick theorem one can calculate the Feynmann
diagrams.

Conjecture (J.L., Woronowicz; in preparation)
k-deformed quantum A¢? theory formulated as braided
field theory has the same perturbative expansion as ”stan-
dard” A¢? theory, only with k-deformed propagators

((p? —m?) — (C5(P) — m?)).

For canonical deformation analogous result:
Fiore, Wess (2007)
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5. MODIFICATION OF EINSTEIN GRAVITY

(Chamseddine 2001, Wess et al. 2004, Aschieri et al. 2006)
Mostly canonical deformation, but also obtained for Lie-
algebraic deformation (Banerjee 2008)

After introducing x-multiplication one gets

e Differential calculus — x-deformed differential calculus

e Diffeomorphisms — x-deformed diffeomorphisms

d¢ = &H Oy [0¢, 0n] = O undeformed
e Deformed composition of diffeomorphisms
Ad; =06, ®1+1+ 6, . Agbe =05 @)
A deformation A

standard modified
Leibnitz rule Leibnitz rule

24



Gravity framework:

1
. . __a 6 _ “(_a
metric: Juv = €),€va — g, = z(eu *x €epag + U S V)

Deformed Einstein action:
1
0 __ 4 0
SE=53 /d z(det x e )x R
where one can expand

RO =R+ 6°°R) + 90“59’7512( st

Important result:

only second order corrections
nonvanishing!

R =

Conjecture: it is also valid for k-deformation!

25



The modified Einstein action in commutative space-time:

e nonlocal

e invariant under deformed diffeomorphisms parametrized
by four functions §,, as in standard gravity

e one can stay with standard Leibnitz rule, but in such
a way the invariance is only with respect to subclass of
general coordinate transformations (Calmet 2006)

deformed
unimodular gravity

5“:011,1/81/¢ —

e there were described x-deformations of many Einstein
solutions (Schwarzschild solutions, Rindler spaces etc.)

26



6. FINAL REMARKS

Noncommutative geometry in quantum gravity appears to
be necessary for short distances (~ Ap)

/ discrete cell structure
quantization (lattice, foam)
of size Ap

continuous
space-time

In astrophysics there are Planck windows in which Planck
length effects can be observable (e.g. GZK threshold). In
cosmology:

e Big Bang singularity is modified

e description of inflation period in the evolution of Uni-
verse modified

Interesting - compare ”noncommutative corrections” with
”string corrections” (Alvarez-Gaume et al. 2006)
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