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Simple observation:

◮ QED vacuum in presence of a constant external electric field
is an accelerated state

◮ must lead to Unruh-like phenomenon and vacuum structure
→ specifically, we expect an effective temperature parameter

characterizing accelerated state

Outline:
• Review of Constant External Fields:

Euler-Heisenberg Effective Action
• Temperature representation of EH
• Acceleration/Unruh-Hawking Radiation
• Searching for Consistent Physics
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Particle States in the External Field

Constant homogeneous electric field:

⋄ constant acceleration: a =
eE
m

⋄ classically hyperbolic trajectory

Klein-Gordon equation has exact
solution for a linear potential Aext = tEx̂ :

[(∂ + ieAext)
2 + m2]φ = 0

Ex
¾

e−

Parabolic cylinder functions: Single particle states identified by
asymptotic behavior φ(x) ∼ e±ip·x as t → ±∞
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Accelerated QED Vacuum

Vacuum properties contained in generating functional

Z [Aext] = 〈vac; Aext|vac; Aext〉 = det(G[Aext])
−1 = exp

(

Tr ln G[Aext]
−1

)

Explicitly assume coherence retained:
no decay of field and no detector ⇒ use Feynman propagator

GF (x ′, x) = Θ(t ′ − t)G+(x ′, x) + Θ(t − t ′)G−(x ′, x)

Effective potential Veff = i ln Z [Aext],
for existence of electric fields in (charged-scalar) vacuum:

Veff = iTr ln G−1
F =

1
16π2

∫

∞

0

ds
s3+δ

(

eEs
sin eEs

− 1
)

e−m2s,

[Euler, Heisenberg, Weisskopf, Schwinger]
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Temperature Representation

Using identity
x

sin x
= 1 +

x2

6
+

∑

k=1

(−1)k

k2π2

2x4

x2 − k2π2

gives a “statistical” form of the effective potential

Veff = −
m3

8π2

∫

∞

0

f (ω/m)dω

eω/T +1
, TEH =

eE
πm

=
a
π

Spectral function: f (x) = x ln(x2−1+iǫ) − ln
(

x+1−iǫ
x−1+iǫ

)

− 2x

Alternating sign of pole source of fermi statistics:

∑

k=1

(−1)ke−kx =
−1

ex + 1
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For fermions, GF (x ′, x) = 〈: ψ̄(x ′)ψ(x) :〉

Veff =
−1
8π2

∫

∞

0

ds
s3+δ

(

eEs
sin eEs

coseEs − 1
)

e−m2s

cos factor removes alternating sign:

x cos x
sin x

= 1 −
x2

3
+

∑

k=1

1
k2π2

2x4

x2 − k2π2

→ bosonic statistics with Same Spectral function!

Veff = −
m3

4π2

∫

∞

0

f (ω/m)dω

eω/T−1
, TEH =

eE
πm

=
a
π

[Mueller/Greiner/Rafelski 77]
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Compare to Unruh Radiation

Detector under Constant acceleration a, [Hawking 75,Unruh 76]
hyperbolic motion: x = a−1 cosh(aτ), t = a−1 sinh(aτ)

Variety of quantization models
and physics pictures...

In scalar vacuum,
→ thermal distribution of bosons

n(ω) =
1

2π

1
eω/T−1

, THU =
a

2π

Analogous result found in
fermion vacuum:

eω/T +1 in denominator

[see e.g. Crispini 08]
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What We’ve Seen So Far
Acceleration Radiation Constant Electric Field

detector accelerated against electron states under
flat space vacuum constant acceleration a = eE/m

detector response function sum negative energy states
→ thermal excitation spectrum → effective potential

THU =
a

2π
TEH =

a
π

statistics match statistics inversion
(boson 7→ boson) (boson 7→ fermion)

(fermion 7→ fermion) (fermion 7→ boson)

• factor 2 disagreement: TEH = 2THU

• statistics inconsistency

Why the apparent disagreement in physical picture?
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Closer Look at Heisenberg & Euler 1936

In Fermi sea picture:

Gap width: ∆ = 2m

Slope of Potential
Scale of Wavefunction

=
eE
m

= a

Dimensionless parameter for tunneling is
∆

a
=

2m2

eE
=

2
TEH

m
π
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Closer Look at Heisenberg & Euler 1936

In Fermi sea picture:

Gap width: ∆ = 2m

Slope of Potential
Scale of Wavefunction

=
eE
m

= a

Dimensionless parameter for tunneling is
∆

a
=

2m2

eE
=

2
TEH

m
π

EH note field scale m2/e,
why do they not find 2m2/e
after calculation?

They use charge symmetry,
but not symmetric states
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Statistical Physics with Symmetries
[Rafelski/Danos 1980, Redlich/Turko 1980, Turko 1981]

Considering Veff = iTr ln G−1
F ∼

∑

k

ln |φk 〉〈φk |, EH-S calculate

V =
∑

n<0

〈φn|H|φn〉 = −
∑

n>0

〈φn|H|φn〉 =
1
2

∑

n<0

〈φn|H|φn〉−
1
2

∑

n>0

〈φn|H|φn〉

But these sums are independent!@
@I ©©©*

For real particles, the partition
function must consist only of
symmetric states

Especially applies where particle
production is possible: must have
particle-anti-particle symmetry

Z =
∑

states k

e−βHk 7→
∑

Q=0 states

e−βHk

Z =
∑

n particles

λnZ n 7→
∑

n pairs

λ2nZ 2n

or captured by e−m/T 7→e−2m/T
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Requiring Charge Symmetry
Project the trace onto the subspace of charge symmetric states:

Veff = iTr ln G−1
F ∼

∑

k

ln |φk 〉〈φk | → P(Q=0)

∑

k

ln |φk 〉〈φk |

** If EHS calculation is already correct, projection is trivial **

Calculation shows that P amounts to modifying poles, but working

loosely now, recall poles were summed as
∑

k=1

e−k/T =
1

e1/T −1

Without projection,
pole structure is:

1
x2 − k2 , k = 1, 2, ...

+1 +1 +1 +1 +1 +1

1 2 3 4 5 6
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Requiring Charge Symmetry
Project the trace onto the subspace of charge symmetric states:

Veff = iTr ln G−1
F ∼

∑

k

ln |φk 〉〈φk | → P(Q=0)

∑

k

ln |φk 〉〈φk |

** If EHS calculation is already correct, projection is trivial **

Calculation shows that P amounts to modifying poles, but working

loosely now, recall poles were summed as
∑

k=1

e−k/T =
1

e1/T −1

But if k 7→ 2k ,
then T 7→ T/2
...and sum becomes

(e2/T − 1)−1

+1 +1 +1

+1 +1 +1

1 2 3 4 5 6
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Consequences of Changed Potential

◮ Does NOT change β-function ◭

which depends only on scaling of δ-function at origin
(controlled by s → 0 behavior in proper time regularization)

◮ Does affect non-perturbative phenomena ◭

Such as:

Pair production rate: Γ =
(eE)2

4π3 e−
2πm
eE =

(mT )2

π
e−m/T, T =

eE
2πm

and total vacuum persistance: w =
(mT )2

π

∑

k=1

1
k2 e−km/T
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Summary

• The QED vacuum in external fields is an accelerated state.

• The Euler-Heisenberg effective action for the external field
has a “statistical” representation in which the electron
acceleration a = eE/m appears as the temperature
TEH = a/π of an ensemble of the “wrong” particles.

• The Euler-Heisenberg and Unruh temperatures differ:

TEH = 2THU

• TEH may be made consistent with THU by modification of
the pole structure of the action, specifically as may arise
from enforcing charge symmetry on the quasi-particle
fluctuations in the external field.
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