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Quark vs. Parton Model Views of Hadrons

Are they incompatible?

How can we tell?

Quark model Parton picture

Consider QCD bound states at lowest order in A

PH arXiv: 0909.3045

Work in progress with Stan Brodsky
Paul Hoyer Zakopane 12 June 2010



Mesons

The Quark Model gets the dof's right

From the 2008 PDG Review of Particle Physics.
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Baryons

G
@

The QM describes hadrons
qualitatively as non-relativistic
states of “constituent” quarks
bound by a linear plus Coulomb
potential:

V(r)=cr—Cp— 2

T
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From the 2008 PDG Review of Particle Physics.

JP (D,Lﬁ) S Octet members Singlets
1/2F (56,05) 1/2 N(939) A(1116) X(1193) =(1318)
1/27 (56,03) 1/2 N(1440) A(1600) (1660) =(?)
1/2= (70,17) 1/2 N(1535) A(1670) £(1620) =(?)  A(1405
3/2~ (70,17) 1/2 N(1520) A(1690) X(1670) =(1820) A(1520)
1/2= (70,17) 3/2 N(1650) A(1800) X(1750) =(?)
3/27 (70,17) 3/2 N(1700) A(?)  X(?)  Z(?)
5/27 (70,17) 3/2 N(1675) A(1830) X(1775) =(?)
1/2t (70,0) 1/2 N(1710) A(1810) X(1880) =(?)  A(?)
3/2% (56,25) 1/2 N(1720) A(1890) X(?)  =Z(?)
5/2t (56,25) 1/2 N(1680) A(1820) X(1915) =(2030)
7/27 (70,37) 1/2 N(2190) A(?)  X(?)  Z(?)  A(2100)
9/2= (70,33) 3/2 N(2250) A(?)  X(?)  Z(?)
9/2% (56,47) 1/2 N(2220) A(2350) X(?)  =(?)
Decuplet members
3/2% (56,0) 3/2 A(1232) X(1385) Z(1530) £2(1672)
3/2t (56,05) 3/2 A(1600) X(?) =(7)  Q(7)
1/2= (70,17) 1/2 A(1620) 2(7)  =(7)  2(?)
3/27 (70,17) 1/2 A(1700) 2(?)  =(7)  2(7)
5/2% (56,23) 3/2 A(1905) X(?)  =(?) 027
7/2% (56,235) 3/2 A(1950) X(2030) =(?)  2(?)
11/2% (56,4F) 3/2 A(2420) X(?7)  =(7)  02(7)




Hadrons are ultra-relativistic

8.00 P.Desgrolard, M.Giffon, E.Martynov, E.Predazzi, hep-ph/0006244
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DIS reveals the relativistic internal motion

... as well as the
prominence of
gluons and sea
quarks.

Could gluons
and sea quarks
be generated
perturbatively,
via evolution?

Paul Hoyer Zakopane 12 June 2010
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Sea Quarks come before gluons!

A M Cooper-Sarkar:

“..at Q ~ 1 GeV the sea input is 6

indeed steep, but the gluon mput
1s valence-like, with a tendency to 4
be negative at low x!

(Essentially the gluon evolution must be fast

in order that upward evolution can produce

the extreme steepness of high Q? data,

however this also implies that downward
evolution 1s fast and this results in the 0
valence-like gluon at low Q?).”

Since the proton mass 1s %)
dynamical, quarks are relativistic
and antiquarks must be present.

Paul Hoyer Zakopane 12 June 2010

A M Cooper-Sarkar arXiv:0901.4001

Q’=1 GeV?

— ZEUS NLO QCD fit
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http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Cooper%2DSarkar%2C%20A%20M%22
http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Cooper%2DSarkar%2C%20A%20M%22

But how to treat relativistic bound states? (I)

o Condensate
In the Bag Model, the relativistic quarks are

confined by a spherical boundary condition.

. O
Perturbative vacuum
\ .

— The bag boundary condition is arbitrarily
imposed

— Unclear how to describe hadrons

with pcm = 0 (Lorentz covariance) Bag model

One can impose a boundary condition in a different way, which 1s consistent
with the equations of motion and maintains boost invariance.

Paul Hoyer Zakopane 12 June 2010



But how to treat relativistic bound states? (II)

Frequently, relativistic bound state equations are simply postulated,
and their properties studied phenomenologically.

This may be 1nstructive, but the lack of theoretical understanding
limits further progress.

Covariant-looking equations may not actually have boost invariance:

Quantum noncovariance of the linear potential in 1 + 1 dimensions

Phys.Rev. D29 (1984) 1279
Xavier Artru y ( )

Laboratoire de Physique Théorique et Hautes Energies,”
Universite Paris-Sud, Batiment 211, 91405 Orsay, France
(Received 19 July 1983)

The two-body bound states governed by the Hamiltonian (p,2+m,2) 2+ (py2+my2) 2+ k|x, — x4| in
1 +1 dimensions do not have Lorentz-invariant masses (l:',,',-z—f"z)l/2 even to first order in P2, if one
used the standard commutation relations [x;,p, ] = #. This is shown explicitly for m, = my = 0 and general-
ized by continuity to m, + m, = 0. The same is true for any other potential ¥V (lx, — xp!).
Paul Hoyer Zakopane 12 June 2010



But how to treat relativistic bound states? (III)

Relativistic corrections to the Schrodinger equation for atoms
are calculated reliably and with high accuracy.

Hyperfine splitting in positronium atoms

Experimental Theory
average (Kniehl et al., 2000)

Mills et al., 1983
L

Ritter|et al., 1984

e et

A. Ishida et al.
arXiv:1004.5555
lllllllllllllllllllllllllllllllllllllllllllllllll

203.385 203.387 203.389 203.391 203.393 203.395
HFS [GHZ]

As we shall see, this is consistent with an expansion in h
Paul Hoyer Zakopane 12 June 2010
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http://www-library.desy.de/spires/find/hep/wwwauthors?key=8636940
http://www-library.desy.de/spires/find/hep/wwwauthors?key=8636940

h as an expansion parameter for bound states

h is a fundamental constant related to quantum effects. Each order in an 7
expansion must obey all symmetries of the theory.

The / expansion 1s relevant for both relativistic and nonrelativistic,
scattering and bound state dynamics.

Born terms are defined as being of lowest order in A .

Is there a Born term for relativistic bound states?

At Born level, Quantum Field Theory reduces to Relativistic Quantum
Mechanics.

Paul Hoyer Zakopane 12 June 2010
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Bound states from the perturbative expansion
Bound state poles appear through a O Z: . z’ é . E )
divergence of the perturbative series —— «
U

The Schrodinger and Dirac equations »—é—» > —
describe bound states through interactions : % % : % % % -
with an external, classical potential.

The ladder (loop) sum turns
into a sum of tree diagrams
as one mass tends to infinity.

= The hexpansion is not trivially related to the number of loops.

Need to identify the contribution of lowest order in & which causes the
ladder sum to diverge at the bound state energies.

Paul Hoyer Zakopane 12 June 2010
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h in the Harmonic Oscillator

h — 0 does not always imply classical physics. For the harmonic oscillator

7 = / (da] exp h / dt(Lmi —%mw2x2)]

~  [idiexp |i [t Lmi — imw?a?)
fusion|: |

The h can be completely absorbed in - = / \/%

Bound states with E, = hw(n + ) havesmall © o< Vin  ash — 0
(with fixed n).

The classical path T; (tz) — Xf (t f) 1S obtained when the
boundary positions x; rare held fixed as i — 0, hence 1 o< 1 / h

ensuring a classical limit.

Paul Hoyer Zakopane 12 June 2010
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h expansion in QED
Lopp = (i@ — eA—m)p — ;F, FM
Dimensions: Requiring [S] = [[d*xL] = [h] = F - L c=¢€y=1

[?7D — E1/2 L1 also from: {wT(t, x),Y(t,y)} = h53(a’: —y)

[AH] = pl/2 1-1/2

[m — 1 wave number! 17, = m/ﬁ

Qopipe @ @1
[6'] B E+1/2 L+1/2 . 4mh 4 137
e=-ce/h

(e is the classical charge)

We shall define the i — 0 limit by keeping the
quantities €, 17 of the “classical” action fixed

Paul Hoyer Zakopane 12 June 2010
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Rescaling the fields with A

7 = / Dy DyYDA] exp [h / d%ﬁ] / 'DYDYDA] exp [ / d%ﬁ]
The rescalings ?7; — w/\/ﬁ, AF = A'u/\/%

introduce an /i dependence in the interaction term:

— (i) — eV hh — i) — 1(9,4, — 8,4,,)

e2h
47

~

h now appears only in the coupling: @ =

— O (h)

and the perturbative (loop) expansion is equivalent to the i expansion.

Paul Hoyer Zakopane 12 June 2010
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A comment on:

eck endi
OLUME 93, NUMBER 20 PHYSICAL REVIEW LETTERS 12 Ng\’EM%éEgQOO:l

Classical Physics and Quantum Loops

Barry R. Holstein'-* and John E Donoghue'

. lDepartment of Physics-LGRT, University of Massachusetts, Amherst, MA 01003, USA
“Theory Group, Thomas Jefferson National Accelerator Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, USA
(Received 13 July 2004; published 11 November 2004)

The standard picture of the loop expansion associates a factor of i with each loop, suggesting that the
tree diagrams are to be associated with classical physics, while loop effects are quantum mechanical in
nature. We discuss counterexamples wherein classical effects arise from loop diagrams and display the
relationship between the classical terms and the long range effects of massless particles.

This paper appears to use a different definition of the limit /i — 0

where m and e are held fixed, hence ™ = m/h — o0, € =e/h — oc

Then also v = ¢ / Amh — oc hence the h and loop expansions are not
equivalent.

Paul Hoyer Zakopane 12 June 2010
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Much ado about nothing?

So h only appears via the fine structure constant o and the /i expansion is
equivalent to the standard perturbative expansion. What else 1s new?

Well, consider bound states: What is the Born term for bound states?

Ladder diagrams can contribute at lowest order in & (and o)) when
the loop momentum vanishes with /1 .

Paul Hoyer Zakopane 12 June 2010
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Extracting the O(A") contribution in ladders (I)

e
In CM elastic scattering the exchanged ¢° =0 AL g = (0,q9)
and the Born term A1 is o< ¢/ . ’
e
| pitk
L
The k" oc é°h|k| part of the loop integral Ar: K gk
in A2 o< A’ 7 7
P2
~2
O (6 h) O (52 h)

l !

dkY
/ [p‘f+k0—\/(p1+k)2+m2+is} [pg—ko—\/(pg—k)2+m2+’i€}

1 1

O (e°h) O (e°h)

Ay ~ E%HR

Paul Hoyer Zakopane 12 June 2010
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Extracting the O(#") contribution in ladders (II)

>,

n

Crossed ladder diagrams do not contribute I

in the relevant k" oc ¢°/i|k| region: ?* é% ; §§§ .

The loop contributions which are oc A°
reduce to scattering from a classical potential

),

?ﬁi — 0 (no contribution o< A° )

4(

= The wave function satisfies a BSE with o=
a single photon kernel when k" oc ¢7| k|

Furthermore: |k| o ¢°hm  dominates (in the CM). Thus we have the
2

standard scaling |k| oc am, k" oc a®m of the non-relativistic

Schrédinger equation. No relativistic bound states at lowest order in /2 !

Paul Hoyer Zakopane 12 June 2010
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Recap (I)

We considered the hbar expansion in QED. The coupling e in the lagrangian
has a different dimension than the classical chargee: ¢ = ¢ / h

Keeping e fixed and rescaling the fields we found that hbar can be made to
appear only in the coupling ov = &2} .
Then lowest order 1n hbar 1s equivalent to lowest order 1n a.

Bound states derived from ladder diagrams at lowest order in o are non-
relativistic and described by the Schrodinger equation.

In particular, the Dirac Coulomb equation 1s not of lowest order in hbar,
It has some, but not all (Lamb shift,...) higher order corrections.

Indeed, the Dirac energy levels are unphysical (complex) for Z o> 1 :

4 —1/2
7?0
Eng=m |1+ (J+

iU+ -2

Paul Hoyer Zakopane 12 June 2010
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Recap (IT)

The hbar expansion has apparently led us into an impasse:

It appears not to yield the relativistic dynamics that 1s required to describe
hadrons from first principles, yet it 1s in the spirit of the Quark Model.

Then again, a strong principle is needed to organize the confusing status
of relativistic bound states.

The way out is to impose novel boundary conditions, different from those
used in deriving the standard perturbative rules.

This will also allow us to introduce the scale Aqocp required for hadrons.

One opportunity presents itself:

Allowing a homogeneous solution of the equations of motion, which gives a
linear potential that survives in the A — 0 limit.

It gives a relativistic and potentially relevant description of hadrons.
Paul Hoyer Zakopane 12 June 2010
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EOM for a non-relativistic bound state

We usually describe atoms (Hydrogen, Positronium) by solving the
Schrodinger eq. for a particle with reduced mass u in a Coulomb potential,

V(r)=—o/r. Although V(r) appears as a fixed, external potential,
r = |x1 — x| 1s actually the distance between the two constituents.

An equivalent view: For each constituent configuration (xi, x») the gauge
field A°(x,x1, x2) is determined by the field equation (Gauss’ law)

/]
t
—ViIAY(x; @y, x0) = el6*(x — x1) — 0°(z — x2) -
giving e A%(x)
A (x; 21, ) - ! !
: _ _ °X
T Ty e — 2| | — oo 2

Note that this field depends on the configuration, 1.e., on the positions (x1, x2)
of the constituents. The lagrangian has no time derivative 9y A" , hence
AY is instantaneous (does not depend on time in Coulomb gauge).

Paul Hoyer Zakopane 12 June 2010
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Potential from the A° field

The Coulomb potential V() of a given Fock state 1s obtained from the
potential energies of the two constituents and the energy of the field:

V(r)=eA(z = z1; 21, T2) — A’ (x = T2; 21, T2) + 3 /d?’azFWFW

e? 1

_47'(' ]:131 — a:2]

1 3 v 62 1
where /d Eu T = 4t |1 — T2

was evaluated using A%(x,;x1, x2).
[rrelevant infinities of the form 1/|x; —x1| were discarded in V(7).

This view of the interaction energy 1s equivalent to the standard
“central potential” one, but adds some 1nsight.

In particular, 1t allows us to consider a homogenous solution to Gauss’ law.

Paul Hoyer Zakopane 12 June 2010
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Gauss' law with a non-vanishing boundary condition

Consider adding a homogeneous solution to Gauss’ law:

—V2iAY(x; 21, o) = el6*(x —x1) — 0% (x — x2)

A 1 1
Az, 20) = A28 - + - < )

A \ | — 21| | — 29
where A and /£ are x-independent, but may depend on xi, x2

The action for the (x1, x2) configuration becomes

1/ S F,, M 1A4/d3 +len2d . ) < 1
—— x F,, = = x+ —c (] —x2) —
4 H 2 3 ' g 47 |CI)1—Q32|

The first (divergent) term must not depend on (x1, x2), hence A = A(x1, x2)

Stationarity of the second term requires = 2(331, 332) H 1 — T2

Paul Hoyer Zakopane 12 June 2010
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The linear potential

With A and /£ thus determined the A° field gives the potential

2 e?
V(%l,mg) — §6A2‘CE1 — ZBQ’ —

471"581 — 33‘2‘

The linear term involves the non-perturbative scale eA? set by the non-
vanishing boundary condition on F,, F*v for | x | — oo for each configuration.

Stationarity of the action ensured rotational invariance. Also boost
covariance 1s fulfilled, in a non-trivial way as we shall see later.

Each Fock state (x1, x2) has a constant electric field extending to | x | = oo.

A distant observer sees the coherent field summed over Fock states which
vanishes for neutral states.

The coefficient of the linear potential may be taken to be independent of 7,
allowing relativistic bound states at lowest order in A .

Paul Hoyer Zakopane 12 June 2010



Using retarded propagators at /"

Tree diagrams are independent of the ie prescription.

The bound state energies £ of a fermion in an instantaneous potential

p°0 p’.p

26

G(p’,p) = _)_é_)_ g % % g % —pb:RjEZ)+..

may be evaluated using retarded propagators (since p° = — E))

+ M
Sr(p®,p) =i P . .
R P) = S T i 0+ By i)

which only propagate forward in time,

SR(t7 p) — (9<t)

o5 LB —py+me)e” ™ + (B +p ey —me)e!™]
p

thus allowing a hamiltonian description.
Paul Hoyer Zakopane 12 June 2010
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Wave function dependence on i€

The time-ordered diagrams, and hence also the equal-time wave functions of
bound states, depend on the ie prescription,

Ei>0
pY p’ pY P’y b p°
ki k> — ki k> +
Covariant (p°, p) Feynman (¢, p) k2 ki
Text
g’ Z 8 The Dirac “single particle” states
I ’ B with E > 0 and E < 0 are obtained
N with retarded propagators.
= ki k>

The E < 0 states correspond to

Retarded (2, p) 1nte¥med1a.te states with extra
particle pairs using the causal

(Feynman) prescription.

Bound state energies are independent of /e only at lowest order in ;!
Paul Hoyer Zakopane 12 June 2010
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Operator description of retarded propagation

prm
(P° = V/p? +m? +ie)(p” + /p* + m?tic)

The retarded propagator: Sr(p) =1
can be expressed as:  Sgr(z —vy) = r{0| T[¢(x)Y(y)] |0) R

—1 : :
where H d DA ’O 1s the “retarded vacuum”, for which

DI0n = [ 3 [ulpNe " by + vlp Ve d | o) =
A

Hence in the Interaction Picture:

Hy(8)[0)g = e / B A(x) ¥ (¢, 2)(t, )]0) p—

No particle production in the retarded vacuum. Describes physics at

lowest order in hbar.
Paul Hoyer Zakopane 12 June 2010
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Dirac equation from Hamiltonian formulation

The bound state: |E,t = 0) = /dgcc@ﬁ(t =0,x)p(x)|0)r

where ¢(x) 1s the Dirac wave function.

Oy (t, z)|E, )

R
o(x) exp(—iEt) 1orastationary

Fock amplitude: ¢ (t, Zl?)

state
From
(02 o ™0 0) 1 (Ol 2) i . 1) = Bo(0.2)

follows the Dirac equation: (—iV - v + ey’ A%(x) + m)p(x) = E7 ¢(x)

Remember: There are Fock states with virtual pairs in the standard vacuum | 0 )
Paul Hoyer Zakopane 12 June 2010



Determination of A° for an e’u* bound state

Define an | e~ u+ ) state in terms of a 4 x 4 wave function ¥,

Bt =0) = [ dysdy; 0l = 0.5,)x(1 900t = 0.9,) 0}
All matrix elements of the QED operator equation of motion must vanish:
OuF™ (z) —e Y bi(z)y"tbi(x) =0  (operator EOM)

R{O[Y 5(0, 2)tea (0, 1) (EOM) |E,0) =0 (matrix element = 0) =>

—ViIAY(x; @y, x0) = el6*(x — x1) — 0°(x — x2)

Relativistically moving charges generate A’ = 0 at (/(e).
Neglecting (/(¢?) only A survives and the potential is purely linear:

2
2
V(iBl,CBQ) — —eA |£131 — 332‘
Paul Hoyer Zakopane 12 June 2010 3
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Bound state equation for a linear potential

Keeping only the linear, (( 4°) AP field in Hy,

and requiring stationarity: *X1

bap(t; T, @2) =R (0thys(t, T2) VLot 1) | E, 1) *A%(x)
— e_iEtgbaﬁ(t = 0; 1, 332)

OX2

N

1mposes:

dwea (07 ml)
dt

.i.
,dgbag(();wl,wg) .dlpMﬁ(OamQ) —
; -~ = (0 (0,20 E,0) 4 it](0,2)

O[0! 5(0, 2)Yea(0,21)[H7 (0) + EAl|E,0) = E ¢as(0;21,x2)

|E,0

1 . . . .
where 4 = — 3 eA?|z; — x5| is the energy stored in the field, which gives

4 N
V(=iVi-y+me)x(zi @) — (@229 (iV2 -y +my)

= [E—V(x1,z2)|x (21, 22)
\_ _J

Paul Hoyer Zakopane 12 June 2010




32

Remarks

We have derived an O (hO) “Born level” bound state equation for QED (an
analogous equation applies to QCD, see next slides).

The linear potential results from a non-trivial boundary condition on A°.

The bound state 1s described by a natural extension of the  Breit (1929)

Dirac equation to two particles, which was already studied  Suura et al (1977)
phenomenologically. Krolikowski et al

The explicit derivation allows to explore in detail the properties of the
bound states and the inclusion of higher order corrections.

The bound states have some unusual and welcome features:

e The bound state energies are covariant under boosts (this holds only for
a linear potential)

e Abundant virtual pair production resembles features of the parton model
Paul Hoyer Zakopane 12 June 2010
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ud meson states in in QCD

Locp = —3FWFL + 30760 — gATh g — my)yy

FIY = ML= 0" AL — g Al AL

Bt =0)= [ @dus v = 0,905 P 1,500 (= 000

Under time-independent gauge transformations ¥ (¢, ) — U(x)y(t, )
the wave function transforms as

X(Y1,92) — U(y)x(y1,¥2) U (ys)

_ 5AB

In a gauge where XAB (Y1, Y2) X(Y1,Ys)

only the diagonal color fields AY with a = 3,8 can be nonzero.

Since f,38 = 0 the commutator terms do not contribute at O(g).

Paul Hoyer Zakopane 12 June 2010
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Fock states with quarks of color C give the EOM for Ag

~ViA(x) = g T, [0°(x — @1) — 8 (2 — @2)]

A TEC 1 1
Ag(w;w17w27c):A2€a'w+g . ( ) (a’:378)

“ A7 iz — x| |z — o

1 5w 1.4 [ 5 L o co; 2
—4%:/d LUFMVFC'? — Z [§Aa/dw+§gAaTa ga($1—$2)—|—0(g)

a=3,8
AL = A4 : /
= o must be independent of x1, x2,and £, || 1 — @2
a=3,8

Determining As/As from stationarity it turns out that
the potential 1s independent of the quark color C,

V(:Bl,iltg) = ‘:131 —CUQ|

3v/3
and the bound state equation for the color singlet wave function

has the same form as in QED.
Paul Hoyer Zakopane 12 June 2010
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uds baryon states in in QCD

£t =0) /H d?’y] ua1 (t=0 ylW (t =0 y2)¢sa3 (t=0,93)XaB& " (Y1, Y2, ¥3)[0)R

In a gauge where

o120 . 1090
XABC 3(3317332,333) = eABCX O ° 3(1‘1,1‘2,3@3)

the relevant gauge fields are, for quark colors ABC = 123

A 1 1 1
Az {w;}, ABC =123) = A205 z+ L — =
A 1 1 1 1
Ad(x; {x;}, ABC =123) = AZ/ls-x+ J ( + — 2 >
(@ (@i} ) s A7 24/3 \ | — 1| | — a9 |z — 3|
and the interference term of O(g) in the action 1s

A? A2
5123—96353 ( 1—332) N 8£8 (w1+w2—2a33)

int |6\/§

and 1s stationary for

Paul Hoyer Zakopane 12 June 2010



U | &1 — a9, ls | &1 + x5 — 223

Ay _ |l
A3 1 + xo — 223

For different colors ABC = 213, etc., the result 1s given by x1 <= x2 , efc.

When expressed in terms of the universal strength A4 = § : A4
the potential obtained for stationary action 1s a

the same for all color choices ABC, a=3,8

V2gA?

V(z1, 2, T3) = 33 \/(331 —x2)? + (T2 — x3)? + (T3 — x1)?
and the bound state equation for the color singlet wave function 1s

VP (=iV-y;+my)] x = (E—V)x

3
]:

Paul Hoyer Zakopane 12 June 2010
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Interesting properties of the meson solutions

e Lorentz covariance: F = \/ k2, + M?2 x transforms in a novel way
This only holds for a purely linear potential.

e Rotational invariance: J =8 + L commutes with the Hamiltonian.
Allows separation of angular dependence in CM.

e Linear Regge trajectories: o = 1/82A2
e High relative momentum components with oscillating phase (“Klein

paradox”). Related to Z-diagrams, 1.€., to multi-particle Fock states:
= Sea quarks?

Paul Hoyer Zakopane 12 June 2010
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Frame dependence (t1 = t2 in all frames!)
The wave function of a bound state with CM momentum k& has
x(x1, x2) = exp [zk (@1 + :vg)/Q} ¢(x1 — o)

The equation for ¢(x) becomes (for mi1 =m2 =m,; x =x1—X2):

—iV - [, ¢] + 5k - {a, ¢} + m [1°, 9] = (E = V)¢

where the solutions ¢(x) and £ depend on the CM momentum k.

E = \/ Kk’ + M? holds only for a purely linear potential V(|x]) !

PH (1986)
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Boost covariance of the wave function

How should relativistic, equal-time wave functions transform under Lorentz
boosts? The above bound state equation gives, for £ = (0,0,k):

VO or(s) = e/ 27  pp_o(s)e /2

for oi(s) = dr(x1=0, x2=0, x3(s)) (and its transverse derivative) on the z-axis
and with the “invariant distance” s defined by

ds

_ 1 k
dzs 2 = Viz3)] and tanh ((s) = T v

s(x3) = %xg [E — %V(xg)}

Note: For VV << FE this reduces to standard Lorentz contraction,
but in general the boost depends on the canonical energy p¥ — eA4".
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Rotational covariance in the CM

Geften and Suura (1977)
For k = 0 and m = m> the bound state equation becomes

—iV - [e, (x)] +m [1°, ¢(z)] = (M — V)p()

Use a direct product of Pauli matrices {p:}, {Oi}: o = p1x 0, Y'=p3x 1.
to express the 4 x 4 wave function ¢(x) in terms of four 2 x 2 ¥, :

N o [ Xat X3 X1 X2
Ox) = 2i pi x ¥ <X1+i><2 X4—X3>

The angular momentum operator J:
Jo(z) =5 [1 X 0,¢(x)] + Lo(x)
where L = —x X V

satisties [J iy j] = 1€,k Jk and commutes with the Hamiltonian.
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Separation of variables in the CM

There are four independent eigenfunctions of J2? and J~:

X = Yim(0,0) Fi(r)

Xim = 0 VY (0,0) Fy(r)
X = o xYm(0,0) Fs(r)
Xim = 0 LY (0,0) Fy(r)

Considering parity and charge conjugation, the 2 x 2 wave functions , may
be expressed as linear combinations of (some of) the above structures. This
way one can identify states on the 7, A1, and p trajectories, and obtain the

corresponding radial equations for the Fi(7).
The radial functions are potentially singular at x =0 and at M = V.

The regular solutions have a discrete mass (M) spectrum.
Paul Hoyer Zakopane 12 June 2010
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Wave function properties (in CM, k = 0)

Separating the angular dependence, the wave function may be described by a

set of radial functions F(7). For the pion trajectory, with P = (-1)"*! , C=(-1)’:
21m

Fi(r) = Fy(r) Geffen and Suura, PR D16 (1977) 3305

CE—-V

2 V!

Ey(r) + (T + = V) Fi(r) + [}l(E_ V)2 — J(J+1)

2

2
—m2| Fy(r) = 0
. m= | Fa(r)

e [E = JV(r)1s asingular “turning point”
e Requirement that F1(7) 1s locally normalizable at £ = V' quantizes £

o Fh(r— ) o expl iV r?]: “Klein Paradox” corresponds to virtual pair
production 1n a strong field. The wave function in the retarded vacuum
implicitly describes virtual pairs of constant density per unit separation.

e High relative momenta between quarks can contribute to end-points of
distribution amplitudes and high energy Regge exchange.
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Comparison with the Quark Model

84
The quark model uses a potential V(’F) =g A2r — O o _°
r

where the Coulomb term (one gluon exchange) 1s perturbative.

In the present approach the linear (non-perturbative) term emerges as a
homogenous solution of the equations of motion.

Perturbative gluon exchange is of order g? , hence is subdominant to the
order linear term. Terms of order g” were dropped in the bound state

equation.

This 1s the why boost covariance at equal time 1s expected to, and in fact
does, hold only for a purely linear potential.
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Summary of Talk

e [s there a systematic approximation of QCD which gives the quark model?
e Consider an hbar expansion for bound states: Born term at O (1)
e Determine A" from equation of motion (for each constituent configuration)

e Allow homogeneous solution: linear potential A° =1 x

e Fix direction of / by stationarity of action (for each Fock state)

e Ignore (/(¢?) (Coulomb exchange) — hence use purely linear potential

e Find meson and baryon states with interesting phenomenology
e Observe non-trivial Lorentz covariance for a linear potential

e Sea quarks generated implicitly, through use of retarded vacuum (no new
degrees of freedom).
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