The early thermalization and HBT puzzles at RHIC

Wojciech Florkowski^{1,2} b. 1961

¹ J. Kochanowski University, Kielce, Poland
² Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

50 Cracow School of Theoretical Physics Zakopane, June 9 - 19, 2010

RHIC at BNL

RHIC at BNL Relativistic Heavy Ion Collider at Brookhaven National Laboratory

Google Maps: http://maps.google.com/?11=40.874649,-72.870598&spn=0.047118,0.079823&z=14

RHIC at BNL

Four experiments

RHIC at BNL Four experiments

STAR

BRAHMS

PHOBOS

PHENIX

W. Florkowski (IFJ PAN / UJK)

RHIC puzzles

June 16, 2010 3 / 54

Outline

- 1. Successes and problems of perfect-fluid hydrodynamics at RHIC
 - very good description of one-particle soft hadronic observables: transverse-momentum spectra, elliptic flow
 - problems with two-particle observables (the so called HBT puzzle)
 - unphysical (?) very early start of hydrodynamics (later ET puzzle)
- 2. Resolving HBT puzzle (almost done)
 - equation of state
 - initial profiles
 - initial transverse flow
- 3. Resolving ET problem (not done yet)
 - very strongly interacting matter \rightarrow AdS/CFT
 - Color Glass Condensate & String Models
 - this talk: Interpolation between initial weakly interacting system and later strongly interacting fluid — initial free-streaming or initial transverse-hydrodynamics followed by the perfect-fluid hydrodynamics, Landau matching conditions

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

4. Concept of transverse hydrodynamics

- motivation
- general formalism
- description of the RHIC data
- 5. HBT vs. v₂ puzzle (?)
 - consequences of realistic EOS
 - quark-coalescence picture
 - inclusion of shear and bulk viscosity
- 6 Consequences for the early Universe
 - no dramatic phenomena at the phase transition
 - precise time development at times 5–100 μs
- 7 Conclusions

글 🕨 🖌 글

1. Soft hadronic production at RHIC — successes and problems

1.1 Experimental transverse-momentum spectra

effective inverse slopes: $T_{eff} = T + \frac{1}{2}mv_{hvd}^2$,

different slopes \rightarrow evidence for flow

W. Florkowski (IFJ PAN / UJK)

1. Successes and problems 1.2 Elliptic flow

1.2 Experimental elliptic flow

$$v_2^{exp}$$
 agrees with perfect-hydro predictions!
 $\frac{dN}{dyd^2p_{\perp}} = \frac{dN}{2\pi dyp_{\perp} dp_{\perp}} (1 + 2v_2 \cos(2\phi_p))$

http://www.phenix.bnl.gov/WWW/software/luxor/ani/ ellipticFlow/ellipticSmall1-1.mpg Animation by Jeffery Mitchell (Brookhaven National Laboratory)

PHENIX, Phys.Rev.Lett.91,182301(2003)

1. Successes and problems 1.3 HBT radii

1.3 HBT radii - definitions

correlation function \equiv two-particle distribution function, $C(p_1, p_2) \rightarrow C(k, q)$

three projections of the correlation functions

W. Florkowski (IFJ PAN / UJK)

1. Successes and problems 1

1.3 HBT radii

1.3 HBT radii – physical interpretation

- "Fourier transform"
- HBT radii
 - R_{side} spatial transverse extension, $R_{side}^2 = \langle \tilde{y}^2 \rangle$
 - R_{out} spatial transverse extension + emission time, $R_{out}^2 = \langle (\tilde{x} - v_{\perp} \tilde{t})^2 \rangle$
 - R_{long} longitudinal extension (homogeneity length), $R_{long}^2 = \langle (\tilde{z} - v_{\parallel}\tilde{t})^2 \rangle$
- HBT radii decrease with *k*_T, a signal of flow again!

Phys.Rev.C71,044906(2005)

1. Successes and problems 1.4

1.4 Experiment vs. theory

1.4 Experiment vs. theory / start of RHIC activity

T.Hirano, K.Morita, S.Muroya, and C.Nonaka, Phys. Rev. C65, 061902 (2002)

イロト イポト イヨト イヨ

1. Successes and problems 1.5 Standard Model/Scheme

1.5 "Standard Model/Scheme" of heavy-ion collisions main ingredients of the 2+1 models:

- initial conditions, short thermalization time, $\tau_i \leq 1$ fm
 - Glauber model, e.g., initial entropy/energy density is proportional to the linear combination of the wounded-nucleon density and binary-collision density,

$$\sigma_{\rm i}(\mathbf{x}_{\perp}) \text{ or } \varepsilon_{\rm i}(\mathbf{x}_{\perp}) \propto \rho_{\rm sr}(\mathbf{x}_{\perp}) = \frac{1-\kappa}{2} \,\overline{w}(\mathbf{x}_{\perp}) + \kappa \,\overline{n}(\mathbf{x}_{\perp})$$

- Color Glass Condensate
- initial transverse flow, usually set equal to zero (?)

HYDRODYNAMIC STAGE

- v₂ data suggest that matter behaves like a perfect fluid main tool: perfect-fluid hydrodynamics (Shuryak + Teaney, Heinz + Kolb + Huovinen + Ruuskanen + Voloshin, Kolb + Rapp, Hirano + Nara, Bass + Nonaka, ...)
- hadronization included in the equation of state
- freeze-out, Cooper-Frye formula
 - freeze-out hypersurface, thermal description of hadron production
 - transition hypersurface, change to a hadronic cascade

1. Successes and problems 1.6 Hydrodynamics

1.6 Perfect-fluid hydrodynamics

• energy-momentum conservation law

 $\partial_{\mu}T^{\mu
u}=0$

energy-momentum of the perfect fluid

$$T^{\mu
u} = (\epsilon + P) u^{\mu} u^{
u} - P g^{\mu
u}$$

 ϵ - energy density, **P** - pressure, u^{μ} - fluid four-velocity

• mid-rapidity ($|y| \le 1$) for RHIC $\mu_B \approx 0$, temperature is the only independent parameter

• 2+1 codes

boost-invariance, equations solved at z = 0, solutions for $z \neq 0$ obtained by Lorentz boosts

• 3+1 codes – general codes in 3 spatial dimensions

- 34

1. Successes and problems 1.7 RHIC puzzles

1.7 RHIC puzzles in soft hadronic sector

both the HBT and ET puzzles are related to the applications of hydrodynamics

HBT: discrapancy between the data and <u>hydrodynamic</u> calculations

- simple parameterizations a la Blast-Wave model very often did a very good job in describing all soft hadronic observables
- dramatic failure of kinetic models

ET: very early starting point for hydrodynamics

- τ_i identified with complete local thermalization time τ_{therm}
- Shuryak, Teaney: $\tau_i = 1$ fm, hadronic cascade
- Heinz, Kolb: τ_i = 0.6 fm
- Cracow: $\tau_i = 0.25 \text{ fm}$
- Pratt: $\tau_i = 0.2 \text{ fm}$
- $-\,$ partonic cascade models by inclusion of 2 \rightarrow 3 and back 3 \rightarrow 2 processes make

 $au_{\textit{therm}} \sim$ 1 fm.

2. Resolving the HBT puzzle

W. Florkowski (IFJ PAN / UJK)

RHIC puzzles

June 16, 2010 15 / 54

2

< E

Image: A matrix

- W. Broniowski, M. Chojnacki, WF, A. Kisiel, PRL 101 (2008) 022301
- S. Pratt, PRL **102** (2009) 232301 (considerations without v_2) with several improvements done in the hydrodynamic models, the HBT puzzle is practically eliminated (discrapancy at the level of 10%)
 - realistic equation of state (++)
 - early start of hydrodynamics (++)
 - modified initial conditions (+-)
 - shear viscosity included (-+)
 - fluctuations of the initial eccentricity (+-)
 - two-particle method for the correlation functions important (++)
 - Coulomb corrections not important (++)
 - fast freeze-out (+-)

2.1 phase diagrams

• phase diagram for water

phase diagram for QCD

2. Resolving the HBT puzzle 2.1 QCD equation of state

2.1 modeling the QCD at zero baryon chemical potential

hadron gas model for low temparatures

input files from SHARE: Statistical hadronization with resonances G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, Comput. Phys. Commun. 167, 229 (2005)

lattice QCD simulations for large temperatures

based on: Y. Aoki, Z. Fodor, S. Katz, K. Szabo, JHEP 0601, 089 (2006)

simple parameterization of pressure: T. Biro, J. Zimanyi, Phys.Lett.B650, 193 (2007)

 cross-over phase transition, M. Chojnacki, Acta Phys. Pol. 38 (2007) 3249

thermodynamic variables change suddenly at T_c but smoothly,

the sound velocity does not drop to zero

2.2 Initial conditions Nuclear matter profiles play an important role

- most of the approaches use the Glauber model or Color Glass Condensate,
- W. Broniowski et al., PRL 101 (2008) 022301, Gaussian profiles (Gaussian approximation to Glauber)

$$rac{dN}{dxdy}\sim \exp\left(-rac{x^2}{2a^2}-rac{y^2}{2b^2}
ight)$$

the widths *a* and *b* determined from GLISSANDO, W. Broniowski et al., Comput. Phys. Commun. **180** (2009) 69

2.3 THERMINATOR

THERMINATOR THERMal heavy-loN generATOR

Adam Kisiel, Tomasz Tałuć, Wojciech Broniowski, Wojciech Florkowski

A.Kisiel, T.Taluc, W.Broniowski, W.Florkowski, Comput.Phys.Commun.174:669-687, 2006. http://www.ifj.edu.pl/dept/no4/nz41/therminator/therminator.html

- Cooper-Frye formula used with the freeze-out hypersurface ($T_f = const$)
- Monte-Carlo code used for particles generation and decays
- THERMINATOR 2, M. Chojnacki, in preparation

3 > 4 3

A D M A A A M M

2.4 Results for the spectra and v_2

2.4 Results for femtoscopy

A. Kisiel, WF, and W. Broniowski, Phys. Rev. C73, 064902 (2006)

- two-particle method used to calculate the correlation functions (procedure mimics closely the experimental situation),
- the wave function calculated in the pair rest frame (PRF) includes Coulomb (option)
- correlation function fitted in the Bertsch-Pratt coordinates (*k_T*, *q*_{out}, *q*_{side}, *q*_{long}) with Bowler-Sinyukov correction (option)

$$\mathcal{C}(ec{q},ec{k}) = (1\!-\!\lambda)\!+\!\lambda\mathcal{K}_{ ext{coul}}(ec{q}_{ ext{inv}})\left[1+ ext{exp}\left(-egin{smallmatrix} -egin{smallmatrix} 2q_{ ext{out}}^2 -egin{smallmat$$

• HBT radii $(R_{out}, R_{side}, R_{long})$ obtained from the fit and compared with data

2.4 Comparison with the data

2.4 HBT results

2. Resolving the HBT puzzle 2.4 Comparison with the data 2.4 Oscillations of the HBT radii, Kisiel et al, PRC 79 (2009) 014902

3. Early-thermalization puzzle

W. Florkowski (IFJ PAN / UJK)

RHIC puzzles

June 16, 2010 25 / 54

2

Image: A matrix

2.1 Fluctuating string tension

 apparent thermalization in string models Bialas Phys. Lett. B466 (1999) 301 Gaussian fluctuations of the string tension can account for "thermal" character of transverse-mass distributions

$$\begin{split} \frac{dn_{\kappa}}{d^{2}p_{\perp}} &\sim e^{-\pi m_{\perp}^{2}/\kappa^{2}}, \quad P(\kappa) = \sqrt{\frac{2}{\pi \langle \kappa^{2} \rangle}} \exp\left(-\frac{\kappa^{2}}{2 \langle \kappa^{2} \rangle}\right) \\ &\int_{0}^{\infty} d\kappa P(\kappa) \frac{dn_{\kappa}}{d^{2}p_{\perp}} &\sim \exp\left(-m_{\perp}\sqrt{\frac{2\pi}{\langle \kappa^{2} \rangle}}\right) \\ &T = \sqrt{\frac{\langle \kappa^{2} \rangle}{2\pi}}, \qquad \qquad y \approx \eta, P_{L} \approx 0 \end{split}$$

 similar effects from the fluctuations of color fields in heavy-ion reactions, color-flux-tube models,
 WF, Acta Phys. Polon. B35 (2004) 799

3 N K 3 N

2.1 Color glass condensate & Glasma

Larry McLerran et al.

• Kovchegov Nucl. Phys. A830, 395-402, 2009 at early proper times $\tau \ll 1/Q_s$ the classical gluon fields lead to the following energy-momentum tensor (Lappi,Fukushima)

$$T^{\mu\nu}\Big|_{\tau\ll 1/Q_s} = \begin{pmatrix} \epsilon(\tau) & 0 & 0 & 0 \\ 0 & \epsilon(\tau) & 0 & 0 \\ 0 & 0 & \epsilon(\tau) & 0 \\ 0 & 0 & 0 & -\epsilon(\tau) \end{pmatrix}$$

at later proper times $\tau \gg 1/Q_s$ both the analytical perturbative approaches (Kovchegov) and the full numerical simulations (Krasnitz) lead to

$$T^{\mu\nu}\Big|_{\tau\gg 1/Q_{\rm s}} = \begin{pmatrix} \epsilon(\tau) & 0 & 0 & 0\\ 0 & \epsilon(\tau)/2 & 0 & 0\\ 0 & 0 & \epsilon(\tau)/2 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

similar effects from viscosity!

$$T^{\mu\nu} = \begin{pmatrix} \varepsilon_3 & 0 & 0 & 0 \\ 0 & P_3 + \frac{2}{3}\frac{\eta}{\tau} & 0 & 0 \\ 0 & 0 & P_3 + \frac{2}{3}\frac{\eta}{\tau} & 0 \\ 0 & 0 & 0 & P_3 - \frac{4}{3}\frac{\eta}{\tau} \end{pmatrix}$$

W. Florkowski (IFJ PAN / UJK)

June 16, 2010 28 / 54

æ

3. ET puzzle 2.2 Free-streaming

2.2 Free-streaming, W. Broniowski et al., PRC 80 (2009) 034902

- thermalization requires some time ($\tau \approx 0.25 1.0$ fm)
- two scenarios

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- model for early stage dynamics
 - free streaming of particles, no interactions
 - sudden thermalization Landau's matching conditions, $T_{fr, str.}^{\mu\nu}u_{\nu} = T_{perf, hvd.}^{\mu\nu}u_{\nu}$
- our results indicate that the two scenarios are equivalent

The early thermalization and HBT puzzles at RHIC PART II

- free-streaming = free motion, Boltzmann equation without the collision term, at large times the correlation $y = \eta$ builds in (due to pure relativistic kinematics!), $P_L = 0$, another example of the assymetric energy-momentum tensor, Yura Sinyukov et al.
- our opinion: delayed but sudden thermalization is equivalent to the gradual thermalization
- kinetic models: partonic, based on QCD (before hydro stage) & hadronic, UrQMD (after hydro stage)
- no dip in $c_s(T) \rightarrow$ no shock waves (simple) numrical algorithms for solving hydro work, we do it with Mathematica, later ROOT

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

4. Transverse hydrodynamics

2

Image: A matrix

4.1 Transverse-hydro concept

- at early stages only the transverse degrees of freedom are thermalized and described by hydrodynamics
- an earlier formulation of this idea: Heinz and S.M.H. Wong Phys. Rev. C66 (2002) 014907 Heinz and S.M.H. Wong Nucl. Phys. A715 (2003) 649

• the new implementation **Bialas**, Chojnacki and Florkowski Phys. Lett. **B661** (2008) 325 correct description of the p_{\perp} spectra and v_2 partons identified with pions $\langle p_{\perp} \rangle$ is conserved in transverse hydro $\langle p_{\perp} \rangle \approx 2\lambda_{slope} \approx T \sqrt{(1 + v)/(1 - v)}$

 most recent developments: Chojnacki and Florkowski, Acta Phys. Pol. B39 (2008)
 Ryblewski and Florkowski, Phys. Rev. C77 (2008) 064906

- < ⊒ →

- A 🖻 🕨

4.1 Transverse clusters

4. Transverse hydrodynamics

- superposition of non-interacting transverse clusters
- each cluster is formed by particles moving with the same value of rapidity
- single cluster \Rightarrow 2D hydrodynamics
- $n_0(\eta)$ density of clusters in rapidity

$$y = \frac{1}{2} \ln \frac{E + p_{\parallel}}{E - p_{\parallel}}$$
 $\eta = \frac{1}{2} \ln \frac{t + z}{t - z}$

• standard parameterization of the four-momentum and spacetime coordinate

$$\begin{aligned} p^{\mu} &= \left(E, \vec{p}_{\perp}, p_{\parallel} \right) &= \left(m_{\perp} \cosh y, \vec{p}_{\perp}, m_{\perp} \sinh y \right) \\ x^{\mu} &= \left(t, \vec{x}_{\perp}, z \right) &= \left(\tau \cosh \eta, \vec{x}_{\perp}, \tau \sinh \eta \right) \\ \tau &= \sqrt{t^2 - z^2} \qquad m_{\perp} &= \sqrt{m^2 + p_x^2 + p_y^2} \end{aligned}$$

4.1 2D thermodynamics

non-interacting bosons

$$\Omega_2(T_2, V_2, \mu) = \nu_g T_2 V_2 \int \frac{d^2 p_\perp}{(2\pi)^2} \ln\left(1 - e^{(\mu - m_\perp)/T_2}\right)$$

• gluon dominated systems $\rightarrow \nu_g = 16$

• number of particles not conserved $\rightarrow \mu = 0$

$$n_2 = \frac{\nu_g \pi T_2^2}{12} \qquad \varepsilon_2 = \frac{\nu_g \zeta(3) T_2^3}{\pi} \qquad P_2 = \frac{\varepsilon_2}{2} \qquad \varepsilon_2 + P_2 = T\sigma_2$$

4.1 Energy-momentum tensor

• energy-momentum tensor $T_2^{\mu\nu}$, entropy current S_2^{μ} , particle current N_2^{μ}

$$T_{2}^{\mu\nu} = \frac{n_{0}}{\tau} \left[(\varepsilon_{2} + P_{2}) U^{\mu} U^{\nu} - P_{2} (g^{\mu\nu} + V^{\mu} V^{\nu}) \right]$$
$$N_{2}^{\mu} = \frac{n_{0}}{\tau} n_{2} U^{\mu} \quad S_{2}^{\mu} = \frac{n_{0}}{\tau} s_{2} U^{\mu}$$

• four vectors U^{μ} and V^{μ} are defined by

$$U^{\mu} = (u_0 \cosh \eta, u_x, u_y, u_0 \sinh \eta)$$

$$V^{\mu} = (\sinh \eta, 0, 0, \cosh \eta)$$

rest-frame of the fluid element (similar to CGC, glasma)

$$T_2^{\mu\nu} = \frac{n_0}{\tau} \begin{pmatrix} \varepsilon_2 & 0 & 0 & 0 \\ 0 & P_2 & 0 & 0 \\ 0 & 0 & P_2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

4. Transverse hydrodynamics 4.1 Transverse hydrodynamics

4.1 Transverse-hydrodynamics equations

energy-momentum conservation law

$$\partial_{\mu}T_{2}^{\mu\nu}=0$$

entropy conservation

$$\partial_{\mu}S_{2}^{\mu}=0$$

three-dimensional densities of the transversally thermalized system

$$\varepsilon_3^{\mathrm{tr}} = \frac{n_0}{\tau} \varepsilon_2, \quad \sigma_3^{\mathrm{tr}} = \frac{n_0}{\tau} \sigma_2, \quad \dots$$

hydrodynamic equations

$$\begin{array}{lll} U^{\mu}\partial_{\mu}\left(T_{2}U^{\nu}\right) & = & \partial^{\nu}T_{2} + V^{\nu}V^{\mu}\partial_{\mu}T_{2} \\ & \partial_{\mu}\left(\sigma_{3}^{\mathrm{tr}}U^{\mu}\right) & = & 0 \end{array}$$

4.1 Initial transverse profiles

- $\tau = 0 \rightarrow$ two nuclei pass through each other
- $\tau = \tau_i \rightarrow \text{transverse thermalization}$

initial flow

 $v_i(\vec{x}_\perp) = 0$

initial profiles, NOT GAUSSIANS NOW! (mixed model)

$$\sigma_{2i}(\vec{x}_{\perp}) = \sigma_{2}(\tau_{i}, \vec{x}_{\perp}) \propto \rho_{\rm sr}(\vec{x}_{\perp}) = \frac{1-\kappa}{2} \overline{w} \left(\vec{x}_{\perp} \right) + \kappa \overline{n} \left(\vec{x}_{\perp} \right)$$

$$arepsilon_{2\mathrm{i}}(ec{x}_{\perp}) = arepsilon_2(au_{\mathrm{i}},ec{x}_{\perp}) \,\propto\,
ho_{\mathrm{sr}}(ec{x}_{\perp}) = rac{1-\kappa}{2}\,\overline{w}\left(ec{x}_{\perp}
ight) + \kappa\,\overline{n}\left(ec{x}_{\perp}
ight)$$

initial temperature profile (2D bosons)

$$\varepsilon_{2}\left(\tau_{i},\vec{x}_{\perp}\right) = \frac{\nu_{g}\zeta(3)T_{2}^{3}(\tau_{i},\vec{x}_{\perp})}{\pi} \qquad \sigma_{2}\left(\tau_{i},\vec{x}_{\perp}\right) = \frac{3}{2}\frac{\nu_{g}\zeta(3)T_{2}^{2}(\tau_{i},\vec{x}_{\perp})}{\pi}$$
$$T_{2\,i} = T_{2}(\tau_{i},0)$$

イロン イ理 とくほ とくほ とう

4.2 Landau matching conditions

microscopic view: full isotropisation is expected eventually, gradual process approximated by a delayed step-like transition at τ_{tr} = const.

Landau matching conditions

$$T_2^{\mu
u}U_
u = T_3^{\mu
u}U_
u$$
 $T_3^{\mu
u} = (arepsilon_3 + P_3)U^\mu U^
u - P_3 g^{\mu
u}$

• equivalent condition supplemented by the requirement of the entropy growth

$$\varepsilon_3^{\mathrm{tr}} = \frac{n_0}{\tau_{\mathrm{tr}}} \varepsilon_2 = \varepsilon_3,$$

$$\sigma_3^{\rm tr} = \frac{n_0}{\tau_{\rm tr}} \sigma_2 \le \sigma_3,$$

 microscopic approaches:
 P. Bozek, Acta Phys. Polon., B39 (2008) 1375 - dissipative hydro, *η* very large in the early stage
 B. Zhang, L.-W. Chen, C. M. Ko, arXiv:0805.0587 - transport theory

4.2 Landau matching conditions

- transverse-hydrodynamics equations are scale invariant temperature may be multiplied by an arbitrary factor without the change of the flow profile
- the following transformation does not change the 3D energy density and flow, but changes the 3D entropy density in the transverse stage

$$n_0 \rightarrow \lambda n_0, \quad T_2 \rightarrow \lambda^{-1/3} T_2$$

$$\varepsilon_3^{
m tr} o \varepsilon_3 \qquad \sigma_3^{
m tr} o \lambda^{1/3} \sigma_3^{
m tr} \ \leqslant \ \sigma_3 \qquad v o v$$

• $\lambda \searrow$ as we shall see, the fit to the data favors fewer and hotter clusters (small n_0)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

4.2 Landau matching conditions

- transverse-hydrodynamics equations are scale invariant temperature may be multiplied by an arbitrary factor without the change of the flow profile
- the following transformation does not change the 3D energy density and flow, but changes the 3D entropy density in the transverse stage

$$n_0 \rightarrow \lambda n_0, \quad T_2 \rightarrow \lambda^{-1/3} T_2$$

$$\varepsilon_3^{\mathrm{tr}} o \varepsilon_3 \qquad \sigma_3^{\mathrm{tr}} o \lambda^{1/3} \sigma_3^{\mathrm{tr}} \ \not\leqslant \ \sigma_3 \qquad v o v$$

• $\lambda \searrow$ as we shall see, the fit to the data favors fewer and hotter clusters (small n_0)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model parameters				
$n_{ m o}$?	overall normalization		
T_{2i}	?	initial central temperature of 2D system		
T_{3f}	?	freeze-out temperature		
$ au_i$?	initial proper time		
$ au_{tr}$?	the 2D \rightarrow 3D transition time		
κ	?	admixture of the binary-collision density		
μ_B	?	baryon chemical potential		
μ_S	?	strangeness chemical potential		
μ_{I_2}	?	isospin chemical potential		

æ

< 3

Model parameters					
$n_{ m o}$?	overall normalization			
T_{2i}	?	initial central temperature of 2D system			
T_{3f}	?	freeze-out temperature			
$ au_i$?	initial proper time			
$ au_{tr}$?	the 2D \rightarrow 3D transition time			
κ	?	admixture of the binary-collision density			
μ_B	28.5 MeV	baryon chemical potential			
μ_S	6.9 MeV	strangeness chemical potential			
μ_{I_3}	0.9 MeV	isospin chemical potential			

chemical potentials μ_B , μ_S , μ_{I_3} ,

M.Michalec et al. Acta Phys. Pol. B33 (2002) 761

- $\bullet \ \ll T_{3f}$
- their effect on the evolution of matter is neglected
- appear **only** in the thermal distribution functions used to generate particles on the freeze-out hypersurface

Model parameters					
$n_{ m o}$?	overall normalization			
T_{2i}	?	initial central temperature of 2D system			
T_{3f}	145 MeV	freeze-out temperature			
$ au_i$?	initial proper time			
$ au_{tr}$?	the 2D \rightarrow 3D transition time			
κ	?	admixture of the binary-collision density			
μ_B	28.5 MeV	baryon chemical potential			
μ_S	6.9 MeV	strangeness chemical potential			
μ_{I_3}	0.9 MeV	isospin chemical potential			

freeze-out temperature

- control the slope of the spectra

Model parameters					
$n_{ m o}$?	overall normalization			
T_{2i}	?	initial central temperature of 2D system			
T_{3f}	145 MeV	freeze-out temperature			
$ au_i$	0.25 fm	initial proper time			
$ au_{tr}$	1 fm	the 2D \rightarrow 3D transition time			
κ	?	admixture of the binary-collision density			
μ_B	28.5 MeV	baryon chemical potential			
μ_S	6.9 MeV	strangeness chemical potential			
μ_{I_3}	0.9 MeV	isospin chemical potential			

transverse evolution time interval

• $\tau_{tr} - \tau_i \ge 0.75 \text{ fm} \Rightarrow \text{radial flow too strong}$

크

Model parameters					
$n_{ m o}$?	overall normalization			
T_{2i}	?	initial central temperature of 2D system			
T_{3f}	145 MeV	freeze-out temperature			
$ au_i$	0.25 fm	initial proper time			
$ au_{tr}$	1 fm	the 2D \rightarrow 3D transition time			
κ	?	admixture of the binary-collision density			
μ_B	28.5 MeV	baryon chemical potential			
μ_S	6.9 MeV	strangeness chemical potential			
μ_{I_3}	0.9 MeV	isospin chemical potential			

fitting procedure performed for n_0 , T_{2i} , κ

- we find n_0 , T_{2i} , κ
- rescale n_0 , T_{2i} to satisfy L.M.C.

크

Model parameters					
$n_{ m o}$	n ₀ (b)	overall normalization			
T_{2i}	530 MeV	initial central temperature of 2D system			
T_{3f}	145 MeV	freeze-out temperature			
$ au_i$	0.25 fm	initial proper time			
$ au_{tr}$	1 fm	the 2D \rightarrow 3D transition time			
κ	0.25	admixture of the binary-collision density			
μ_B	28.5 MeV	baryon chemical potential			
μ_S	6.9 MeV	strangeness chemical potential			
μ_{I_3}	0.9 MeV	isospin chemical potential			

fitting procedure performed for n_0 , T_{2i} , κ

- we find n_0 , T_{2i} , κ
- rescale n₀, T_{2i} to satisfy L.M.C.

 2

4.3 Centrality dependence of n_0

4. Transverse hydrodynamics 4.3 Description of the RHIC data

4.3 2D \rightarrow 3D transition (c=20-30%)

W. Florkowski (IFJ PAN / UJK)

2

4. Transverse hydrodynamics 4.3 Description of the RHIC data

4.3 2D \rightarrow 3D transition (c=20-30%)

W. Florkowski (IFJ PAN / UJK)

RHIC puzzles

$\pi^+ p_\perp$ -spectra

$K^+ p_\perp$ -spectra

proton p_{\perp} -spectra

W. Florkowski (IFJ PAN / UJK)

π HBT (c=0-5%)

W. Florkowski (IFJ PAN / UJK)

π HBT (c=5-10%)

W. Florkowski (IFJ PAN / UJK)

π HBT (c=10-20%)

W. Florkowski (IFJ PAN / UJK)

π HBT (c=20-30%)

W. Florkowski (IFJ PAN / UJK)

RHIC puzzles

π HBT (c=30-50%)

W. Florkowski (IFJ PAN / UJK)

π HBT (c=50-80%)

W. Florkowski (IFJ PAN / UJK)

v₂ (c=20-30%)

protons v_2 is too large by about 50%

possible reasons:

- lack of the hadronic interactions in the final state
- neglecting the viscous effects (inclusion of the bulk viscosity,

イロト イ団ト イヨト イヨト

P.Bożek Phys.Rev.C81:034909,2010)

5. HBT vs V₂ puzzle?

W. Florkowski (IFJ PAN / UJK)

RHIC puzzles

June 16, 2010 46 / 54

æ

5. HBT vs vs puzzle? 5.1 Proton v_2 for realistic EOS is too large!

Gaussian initial conditions

Huovinen and Petreczky, Nucl. Phys. A837 (2010) 26

5.2 v_2 scaling

PHENIX, PRL98 (2007) 162301

< E

W. Florkowski (IFJ PAN / UJK)

5. HBT vs v> puzzle? 5.3 Viscosity 5.3 Inclusion of the shear and bulk (!) viscosity

6. QCD phase transition in the early Universe

$$\frac{d\varepsilon_R}{dt} = -3\sqrt{\frac{8\pi G\varepsilon_R}{3}}(\varepsilon_R + P_R)$$
$$\left[c_s^{-2}\sigma + 3\sigma_{\rm ew}\right]\frac{dT_R}{dt} = -3\sqrt{\frac{8\pi G(\varepsilon + \varepsilon_{\rm ew})}{3}}(\varepsilon + \varepsilon_{\rm ew} + P + P_{\rm ew})$$

W. Florkowski (IFJ PAN / UJK)

æ

イロト イヨト イヨト イヨト

6. QCD phase transition in the early Universe

6.1 Solutions of the Friedman equation

6.1 Energy density evolution

W. Florkowski (IFJ PAN / UJK)

RHIC puzzles

7. Conclusions

W. Florkowski (IFJ PAN / UJK)

RHIC puzzles

June 16, 2010 53 / 54

æ

∃ > < ∃</p>

- the inclusion of the realistic EOS and the bulk viscosity is the most attractive solution of the HBT-*v*₂ puzzle
- the shear and shear viscosities are small perfect fluid behavior confirmed
- the finite-state rescattering negligible
- the modified early dynamics helps to circumvent the early thermalization problems