Relation between Ford's α-model and a model of
 Random tree growth by vertex splitting

S.Ö. Stefánsson, University of Iceland

8 June 2009

Zakopane, Poland

Outline

- Definition of the model
- Relation to the vertex splitting model
- Markovian self similarity
- Weak convergence of the finite volume measure
- Conclusions

Definition of the model

- A one parameter model of randomly growing rooted, planar, binary trees.
- Introduced by Daniel J. Ford in arXiv:math/0511246v1 [math.PR].
- Used to model phylogenetic trees

Definition of the model

- A one parameter model of randomly growing rooted, planar, binary trees.
- Introduced by Daniel J. Ford in arXiv:math/0511246v1 [math.PR].
- Used to model phylogenetic trees

Definition of the model

- A one parameter model of randomly growing rooted, planar, binary trees.
- Introduced by Daniel J. Ford in arXiv:math/0511246v1 [math.PR].
- Used to model phylogenetic trees

Definition of the model

- A one parameter model of randomly growing rooted, planar, binary trees.
- Introduced by Daniel J. Ford in arXiv:math/0511246v1 [math.PR].
- Used to model phylogenetic trees

Definition of the model

- A one parameter model of randomly growing rooted, planar, binary trees.
- Introduced by Daniel J. Ford in arXiv:math/0511246v1 [math.PR].
- Used to model phylogenetic trees

Definition of the model - Growth rules

Begin with a single rooted leaf. Attach (randomly) a new edge to

- an internal edge with weight α
- a leaf with weight $1-\alpha$
where $0 \leq \alpha \leq 1$.

Weight = 1

Definition of the model - Growth rules

Begin with a single rooted leaf. Attach (randomly) a new edge to

- an internal edge with weight α
- a leaf with weight $1-\alpha$
where $0 \leq \alpha \leq 1$.

Weight $=1-\alpha$

Definition of the model - Growth rules

Begin with a single rooted leaf. Attach (randomly) a new edge to

- an internal edge with weight α
- a leaf with weight $1-\alpha$
where $0 \leq \alpha \leq 1$.

Weight $=(1-\alpha) \cdot(1-\alpha)$

Definition of the model - Growth rules

Begin with a single rooted leaf. Attach (randomly) a new edge to

- an internal edge with weight α
- a leaf with weight $1-\alpha$
where $0 \leq \alpha \leq 1$.

Weight $=(1-\alpha) \cdot(1-\alpha) \cdot \alpha$

Definition of the model - Growth rules

Begin with a single rooted leaf. Attach (randomly) a new edge to

- an internal edge with weight α
- a leaf with weight $1-\alpha$
where $0 \leq \alpha \leq 1$.

Weight $=(1-\alpha) \cdot(1-\alpha) \cdot \alpha \cdot(1-\alpha)$

Definition of the model - Growth rules

Begin with a single rooted leaf. Attach (randomly) a new edge to

- an internal edge with weight α
- a leaf with weight $1-\alpha$
where $0 \leq \alpha \leq 1$.

Weight $=(1-\alpha) \cdot(1-\alpha) \cdot \alpha \cdot(1-\alpha) \cdot(1-\alpha)$

Definition of the model - Growth rules

Begin with a single rooted leaf. Attach (randomly) a new edge to

- an internal edge with weight α
- a leaf with weight $1-\alpha$
where $0 \leq \alpha \leq 1$.

Weight $=(1-\alpha) \cdot(1-\alpha) \cdot \alpha \cdot(1-\alpha) \cdot(1-\alpha) \cdot \alpha$

Relation to the vertex splitting model

The α-model is a limiting case of a tree growth model introduced by David et al. in arXiv:0811.3183v3 [cond-mat.stat-mech]. [Remember Thordur Jonsson's talk!]

Attaching to a leaf

Attaching to an internal edge

$d_{H}=1 / \alpha$

Relation to the vertex splitting model

The α-model is a limiting case of a tree growth model introduced by David et al. in arXiv:0811.3183v3 [cond-mat.stat-mech]. [Remember Thordur Jonsson's talk!]

Attaching to a leaf

Attaching to an internal edge

$$
\begin{aligned}
& w_{2,1}=1-3 \alpha / 2 \\
& w_{2,3}=\alpha / 2 \\
& w_{3,1} \rightarrow \infty
\end{aligned}
$$

$$
d_{H}=1 / \alpha
$$

Relation to the vertex splitting model

- Interesting relation since the α-model is simple.
- Gives insight into the more complicated vertex splitting model.
- What allows one to do calculations in the α-model is a property called Markovian self-similarity which is in general not present in the vertex splitting model.

Relation to the vertex splitting model

- Interesting relation since the α-model is simple.
- Gives insight into the more complicated vertex splitting model.
- What allows one to do calculations in the α-model is a property called Markovian self-similarity which is in general not present in the vertex splitting model.

Relation to the vertex splitting model

- Interesting relation since the α-model is simple.
- Gives insight into the more complicated vertex splitting model.
- What allows one to do calculations in the α-model is a property called Markovian self-similarity which is in general not present in the vertex splitting model.

Markovian self similarity

- Call the set of rooted, binary, planar trees on n leaves T_{n}.
- The α-model growth rules induce a probability distribution $p_{\alpha, n}$ on T_{n}. We write formally

$$
P_{\alpha, n}=\sum_{\tau \in T_{n}} p_{\alpha, n}(\tau) \tau
$$

and call $P_{\alpha, n}$ a random tree on n leaves with prob. dist. $p_{\alpha, n}$.

- Introduce an operation $*$ on trees, which joins them by the root \longrightarrow compatible with the sum and scalar product in (1).

Markovian self similarity

- Call the set of rooted, binary, planar trees on n leaves T_{n}.
- The α-model growth rules induce a probability distribution $p_{\alpha, n}$ on T_{n}. We write formally

$$
\begin{equation*}
P_{\alpha, n}=\sum_{\tau \in T_{n}} p_{\alpha, n}(\tau) \tau \tag{1}
\end{equation*}
$$

and call $P_{\alpha, n}$ a random tree on n leaves with prob. dist. $p_{\alpha, n}$.

- Introduce an operation $*$ on trees, which joins them by the root \longrightarrow compatible with the sum and scalar product in (1).

Markovian self similarity

- Call the set of rooted, binary, planar trees on n leaves T_{n}.
- The α-model growth rules induce a probability distribution $p_{\alpha, n}$ on T_{n}. We write formally

$$
\begin{equation*}
P_{\alpha, n}=\sum_{\tau \in T_{n}} p_{\alpha, n}(\tau) \tau \tag{1}
\end{equation*}
$$

and call $P_{\alpha, n}$ a random tree on n leaves with prob. dist. $p_{\alpha, n}$.

- Introduce an operation $*$ on trees, which joins them by the root \longrightarrow compatible with the sum and scalar product in (1).

Markovian self similarity

Proposition (Ford) The random tree $P_{\alpha, n}$ satisfies the recursion

$$
\begin{equation*}
P_{\alpha, n}=\sum_{n_{1}+n_{2}=n} q_{\alpha}\left(n_{1}, n_{2}\right) P_{\alpha, n_{1}} * P_{\alpha, n_{2}} \tag{2}
\end{equation*}
$$

with

$$
q_{\alpha}\left(n_{1}, n_{2}\right)=\frac{n!}{\Gamma_{\alpha}(n)}\left(\frac{\alpha}{2} \frac{\Gamma_{\alpha}\left(n_{1}\right)}{n_{1}!} \frac{\Gamma_{\alpha}\left(n_{2}\right)}{n_{2}!}+(1-2 \alpha) \frac{1}{n(n-1)} \frac{\Gamma_{\alpha}\left(n_{1}\right)}{\left(n_{1}-1\right)!} \frac{\Gamma_{\alpha}\left(n_{2}\right)}{\left(n_{2}-1\right)!}\right)
$$

and
$\Gamma_{\alpha}(n)=(n-1-\alpha)(n-2-\alpha) \cdots(2-\alpha)(1-\alpha), \quad$ and $\quad \Gamma_{\alpha}(1)=1$.

Markovian self similarity

Proposition (Ford) The random tree $P_{\alpha, n}$ satisfies the recursion

$$
\begin{equation*}
P_{\alpha, n}=\sum_{n_{1}+n_{2}=n} q_{\alpha}\left(n_{1}, n_{2}\right) P_{\alpha, n_{1}} * P_{\alpha, n_{2}} \tag{2}
\end{equation*}
$$

with

$$
q_{\alpha}\left(n_{1}, n_{2}\right)=\frac{n!}{\Gamma_{\alpha}(n)}\left(\frac{\alpha}{2} \frac{\Gamma_{\alpha}\left(n_{1}\right)}{n_{1}!} \frac{\Gamma_{\alpha}\left(n_{2}\right)}{n_{2}!}+(1-2 \alpha) \frac{1}{n(n-1)} \frac{\Gamma_{\alpha}\left(n_{1}\right)}{\left(n_{1}-1\right)!} \frac{\Gamma_{\alpha}\left(n_{2}\right)}{\left(n_{2}-1\right)!}\right)
$$

and
$\Gamma_{\alpha}(n)=(n-1-\alpha)(n-2-\alpha) \cdots(2-\alpha)(1-\alpha), \quad$ and $\quad \Gamma_{\alpha}(1)=1$.

Definition A random tree for which there exists a function q such that (2) holds is called Markovian self similar.

Weak convergence of the finite volume measure
Let T be the set of all rooted planar binary trees.
Define a metric on $T: d\left(\tau, \tau^{\prime}\right)=\inf \left\{\left.\frac{1}{R+1} \right\rvert\, B_{R}(\tau)=B_{R}\left(\tau^{\prime}\right)\right\}$
$B_{R}(\tau)$ a subtree of τ spanned by vert. of graph dist. $\leq R$ from root.

Proposition For $0<\alpha \leq 1$ the probability measure $p_{\alpha, n}$ conv. weakly (in the topology generated by d) as $n \longrightarrow \infty$ to a measure p_{α} which is concentrated on trees with exactly one path to infinity to which finite trees are attached, i.i.d. by
$|\tau|=\sharp$ leaves in τ.

Weak convergence of the finite volume measure

Let T be the set of all rooted planar binary trees.
Define a metric on $T: d\left(\tau, \tau^{\prime}\right)=\inf \left\{\left.\frac{1}{R+1} \right\rvert\, B_{R}(\tau)=B_{R}\left(\tau^{\prime}\right)\right\}$
$B_{R}(\tau)$ a subtree of τ spanned by vert. of graph dist. $\leq R$ from root.

Proposition For $0<\alpha \leq 1$ the probability measure $p_{\alpha, n}$ conv. weakly (in the topology generated by d) as $n \longrightarrow \infty$ to a measure p_{α} which is concentrated on trees with exactly one path to infinity to which finite trees are attached, i.i.d. by

$$
\mu(\tau)=\alpha \frac{\Gamma_{\alpha}(|\tau|)}{|\tau|!} p_{\alpha,|\tau|}(\tau), \quad|\tau|=\sharp \text { leaves in } \tau
$$

Special cases

$\alpha=1: \quad$ a comb with single leaf teeth $\longrightarrow d_{s}=d_{H}=1$.

$\alpha=1 / 2:$ generic tree $\longrightarrow d_{s}=4 / 3, \quad d_{H}=2$.

Special cases

$\alpha=1: \quad$ a comb with single leaf teeth $\longrightarrow d_{s}=d_{H}=1$.

$\alpha=1 / 2: \quad$ generic tree $\longrightarrow d_{s}=4 / 3, \quad d_{H}=2$.

Outline of proof of convergence:

The metric space (T, d) is compact so it is sufficient to prove for all $R \geq 1$ the convergence of the probability

$$
p_{\alpha, n}\left(\left\{\tau \in T \mid B_{R}(\tau)=\tau_{0}\right\}\right)=: p_{\alpha, n}^{(R)}\left(\tau_{0}\right)
$$

as $n \longrightarrow \infty$ for any tree τ_{0} of height R [Remember Bergfinnur Durhuus' talk!].

Markovian self similarity allows us to prove this by induction on R.

- It clearly holds for $R=1$.
- Assume it holds for some R.
- Take a tree τ_{0} of height $R+1$. It can be written as $\tau_{0}=\tau_{1} * \tau_{2}$ where τ_{1} and τ_{2} have height $\leq R$.

Outline of proof of convergence:

The metric space (T, d) is compact so it is sufficient to prove for all $R \geq 1$ the convergence of the probability

$$
p_{\alpha, n}\left(\left\{\tau \in T \mid B_{R}(\tau)=\tau_{0}\right\}\right)=: p_{\alpha, n}^{(R)}\left(\tau_{0}\right)
$$

as $n \longrightarrow \infty$ for any tree τ_{0} of height R [Remember Bergfinnur Durhuus' talk!].

Markovian self similarity allows us to prove this by induction on R.

- It clearly holds for $R=1$.
- Assume it holds for some R.
- Take a tree τ_{0} of height $R+1$. It can be written as $\tau_{0}=\tau_{1} * \tau_{2}$ where τ_{1} and τ_{2} have height $\leq R$.

Outline of proof of convergence:

The metric space (T, d) is compact so it is sufficient to prove for all $R \geq 1$ the convergence of the probability

$$
p_{\alpha, n}\left(\left\{\tau \in T \mid B_{R}(\tau)=\tau_{0}\right\}\right)=: p_{\alpha, n}^{(R)}\left(\tau_{0}\right)
$$

as $n \longrightarrow \infty$ for any tree τ_{0} of height R [Remember Bergfinnur Durhuus' talk!].

Markovian self similarity allows us to prove this by induction on R.

- It clearly holds for $R=1$.
- Assume it holds for some R.
- Take a tree τ_{0} of height $R+1$. It can be written as $\tau_{0}=\tau_{1} * \tau_{2}$ where τ_{1} and τ_{2} have height $\leq R$.

Outline of proof of convergence:

The metric space (T, d) is compact so it is sufficient to prove for all $R \geq 1$ the convergence of the probability

$$
p_{\alpha, n}\left(\left\{\tau \in T \mid B_{R}(\tau)=\tau_{0}\right\}\right)=: p_{\alpha, n}^{(R)}\left(\tau_{0}\right)
$$

as $n \longrightarrow \infty$ for any tree τ_{0} of height R [Remember Bergfinnur Durhuus' talk!].

Markovian self similarity allows us to prove this by induction on R.

- It clearly holds for $R=1$.
- Assume it holds for some R.

Outline of proof of convergence:

The metric space (T, d) is compact so it is sufficient to prove for all $R \geq 1$ the convergence of the probability

$$
p_{\alpha, n}\left(\left\{\tau \in T \mid B_{R}(\tau)=\tau_{0}\right\}\right)=: p_{\alpha, n}^{(R)}\left(\tau_{0}\right)
$$

as $n \longrightarrow \infty$ for any tree τ_{0} of height R
[Remember Bergfinnur Durhuus' talk!].
Markovian self similarity allows us to prove this by induction on R.

- It clearly holds for $R=1$.
- Assume it holds for some R.
- Take a tree τ_{0} of height $R+1$. It can be written as $\tau_{0}=\tau_{1} * \tau_{2}$ where τ_{1} and τ_{2} have height $\leq R$.

Outline of proof of convergence:

$$
\begin{aligned}
& q_{\alpha}\left(n_{1}, n_{2}\right)=\frac{n!}{\Gamma_{\alpha}(n)}\left(\frac{\alpha}{2} \frac{\Gamma_{\alpha}\left(n_{1}\right)}{n_{1}!} \frac{\Gamma_{\alpha}\left(n_{2}\right)}{n_{2}!}+(1-2 \alpha) \frac{1}{n(n-1)} \frac{\Gamma_{\alpha}\left(n_{1}\right)}{\left(n_{1}-1\right)!} \frac{\Gamma_{\alpha}\left(n_{2}\right)}{\left(n_{2}-1\right)!}\right)
\end{aligned}
$$

All except finite (but arbitrarily large) mass goes to either τ_{1} or τ_{2}
\longrightarrow convergence follows from ind. hyp.

Outline of proof of convergence:

$$
\begin{aligned}
& p_{\alpha, \infty}^{(R+1)}\left(\tau_{0}\right)=p_{\alpha, \infty}^{(R)}\left(\tau_{1}\right) \sum_{n_{2}} q_{\alpha}\left(\infty, n_{2}\right) p_{\alpha, n_{2}}^{(R)}\left(\tau_{2}\right)+\left(\tau_{1} \leftrightarrow \tau_{2}\right) \\
& q_{\alpha}\left(\infty, n_{2}\right)=\frac{n!}{\Gamma_{\alpha}(n)}\left(\frac{\alpha}{2} \frac{\Gamma_{\alpha}\left(n_{1}\right)}{n_{1}!} \frac{\Gamma_{\alpha}\left(n_{2}\right)}{n_{2}!}+(1-2 \alpha) \frac{1}{n(n-1)} \frac{\Gamma_{\alpha}\left(n_{1}\right)}{\left(n_{1}-1\right)!} \frac{\Gamma_{\alpha}\left(n_{2}\right)}{\left(n_{2}-1\right)!}\right)
\end{aligned}
$$

All except finite (but arbitrarily large) mass goes to either τ_{1} or τ_{2}
\longrightarrow convergence follows from ind. hyp.

Conclusions

- We have proven convergence of the finite volume measure generated by the growth rules of the α-model for $0<\alpha \leq 1$ and characterized the limiting measure.
- Possibility of a better understanding of the vertex splitting model.
- Work in progress: What are the dimensions d_{s} and d_{H} of the infinite α-trees? Is it true that $d_{H}=1 / \alpha$? At least for $\alpha=1$ and $\alpha=1 / 2$.
- Conjecture: $d_{s}=\frac{2}{1+\alpha}$.
- $\alpha=0$?

