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Definition of the model

I A one parameter model of randomly growing rooted, planar,
binary trees.

I Introduced by Daniel J. Ford in
arXiv:math/0511246v1 [math.PR].

I Used to model phylogenetic trees
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Definition of the model - Growth rules
Begin with a single rooted leaf. Attach (randomly) a new edge to

I an internal edge with weight �

I a leaf with weight 1� �

where 0 � � � 1.

Root

Weight = 1()
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Relation to the vertex splitting model
The �–model is a limiting case of a tree growth model introduced
by David et al. in arXiv:0811.3183v3 [cond-mat.stat-mech].
[Remember Thordur Jonsson’s talk!]
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Relation to the vertex splitting model

I Interesting relation since the �–model is simple.

I Gives insight into the more complicated vertex splitting model.

I What allows one to do calculations in the �–model is a
property called Markovian self-similarity which is in general
not present in the vertex splitting model.
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Markovian self similarity

I Call the set of rooted, binary, planar trees on n leaves Tn.

I The �–model growth rules induce a probability distribution
p�;n on Tn. We write formally

P�;n =
X
�2Tn

p�;n(� )�: (1)

and call P�;n a random tree on n leaves with prob. dist. p�;n.

I Introduce an operation � on trees, which joins them by the
root �! compatible with the sum and scalar product in (1).

∗ =
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Markovian self similarity

Proposition (Ford) The random tree P�;n satisfies the recursion

P�;n =
X

n1+n2=n

q�(n1; n2)P�;n1 � P�;n2 (2)

with

q�(n1; n2) =
n!

��(n)

 
�

2

��(n1)

n1!

��(n2)

n2!
+ (1� 2�)

1

n(n� 1)

��(n1)

(n1 � 1)!

��(n2)

(n2 � 1)!

!

and

��(n) = (n�1��)(n�2��) � � � (2��)(1��); and ��(1) = 1:

Definition A random tree for which there exists a function q such
that (2) holds is called Markovian self similar.
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Weak convergence of the finite volume measure
Let T be the set of all rooted planar binary trees.

Define a metric on T : d(�; � 0) = inf

�
1

R+ 1

���� BR(� ) = BR(�
0)

�
s

BR(� ) a subtree of � spanned by vert.
of graph dist. � R from root.
s
s

B 3

Proposition For 0 < � � 1 the probability measure p�;n conv.
weakly (in the topology generated by d) as n �!1 to a measure
p� which is concentrated on trees with exactly one path to infinity
to which finite trees are attached, i.i.d. by

�(� ) = �
��(j� j)

j� j!
p�;j� j(� ); j� j = ] leaves in � :
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Special cases

� = 1 : a comb with single leaf teeth �! ds = dH = 1.

� = 1=2 : generic tree �! ds = 4=3; dH = 2.
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Outline of proof of convergence:

The metric space (T; d) is compact so it is sufficient to prove for
all R � 1 the convergence of the probability

p�;n(f� 2 T j BR(� ) = �0g) =: p
(R)
�;n(�0)

as n �!1 for any tree �0 of height R
[Remember Bergfinnur Durhuus’ talk!].

Markovian self similarity allows us to prove this by induction on R.

I It clearly holds for R = 1.

I Assume it holds for some R.

I Take a tree �0 of height R+ 1. It can be written as
�0 = �1 � �2 where �1 and �2 have height � R.
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Outline of proof of convergence:
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p
(R+1)
�;n (�0) =

X
n1+n2=n

q�(n1; n2)p
(R)
�;n1(�1)p

(R)
�;n2(�2)

q�(n1; n2) =
n!

��(n)

 
�
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��(n2)

n2!
+ (1� 2�)

1

n(n� 1)
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!

All except finite (but arbitrarily large) mass goes to either �1 or �2
�! convergence follows from ind. hyp.
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Conclusions

I We have proven convergence of the finite volume measure
generated by the growth rules of the �–model for 0 < � � 1

and characterized the limiting measure.

I Possibility of a better understanding of the vertex splitting
model.

I Work in progress: What are the dimensions ds and dH of the
infinite �–trees? Is it true that dH = 1=�? At least for � = 1

and � = 1=2.

I Conjecture: ds =
2

1 + �
.

I � = 0?
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