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In the Standard Model of particle physics the Higgs sector is plagued by two
problems:

Hierachy problem & Triviality
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Both problems might be solved within the AS scenario.



Triviality

@ The Higgs field is parametrized in terms of a bosonic field ¢ with a Lagrangian
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Triviality

@ The Higgs field is parametrized in terms of a bosonic field ¢ with a Lagrangian
£=ou2+ ™ g4 Ao
T 2 8"

@ 1-loop correction to the four-Higgs-boson coupling A¢? is represented by the
diagram
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Triviality

@ From a perturbative computation of this loop we obtain the relation between the
bare and the renormalized coupling A

A

perturbation theory /

non-perturbative Method?

AL

o Landau-pole indicates breakdown of perturbative QFT — new theory (e.g.
SUSY,...)?

@ Not yet! Perturbation theory relies on an expansion around zero coupling.
9 Near the Landau pole perturbation theory will loose its validity since A grows large

@ We need a non-perturbative tool to study triviality!
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Effective quantum field theory

o Use effective average action I', which contains all fluctuations of the quantum
fields with momenta larger than a scale k.

@ Expansion in terms of running couplings g; 1 and all possible field operators O;.

Tk[x] = Zgi,koi7 eg O0; = {x%x", (0x)?} .

@ Dependence of the effective action on the scale k (or more conveniently
t = Log(k/A)) is by definition given by the S-functions of the running couplings:

aTkx] =D Bik0Oi.



General notion of Asymptotic Safety

Effective average action: I'y[x
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Effective average action: I'y[x Zgl 1k O;, Scale dependence: 9:T'x[x Zﬁl 1O;.
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critical surface
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Hierarchy problem in the Asymptotic Safety scenario

@ Critical exponents ©1: Tell me how fast the effective average action changes at a
FP.

<

We find a hierarchy problem if there exist large critical exponents ©; > 0.
& For example in ¢*-Theory we find at the GFP a © = 2.
9 RG computation will show how large the ©; are at a NGFP.

9 If all of them are small < 1 then then the hierarchy problem is solved.
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Flow equation

@ We will need a non-perturbative method to compute the flow (S8-functions) in
theory space.

& Use exact renormalization group equations (ERGE) derived from Path-Integral
representation (Wetterich '93)

1 d
T 1[®] = 5STr{[rgf) [®] + Bl @i RR)} O =k
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e = [ (i@ o0 + Grdor) + (0.01) (0" 6")
+UR (6" 67) + hdbro® 65, — Pt o un |

o where we define p = ¢%T¢2.
@ invariant under chiral U(Ny, )L, ® U(1)R transformations.

For the phase with spontaneously broken
symmetry (SSB), we expand the effec- ”
tive potential around its minimum: Kk :=

Pmin > 0,

A2k, - A3k~ :
ug = T(P—Hk)Q'i'?(P—Hk)d‘f’--- X ke

Ky Anmax> A2 > 0.
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Fized-point analysis

¢ The leading order truncation is parametrized by three couplings: h?, ), k.

ath2 = ﬁh(hzv)‘7 K) =0,
oA = ﬁA(h27A7 K/) =0.

= we obtain a conditional fixed-point

Ok = B (¥, \* k) = 0.

The Bk-function receives three contributions

Br=—2k+ Npx | ) - e -

\ /
b _ _ Y gL _ % :
o YR
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UV fixed-point regime and mass hierarchy

¢ We find a NGFP for N, > 3.

o Example for a leading-order truncation expanded up to é—fpﬁ in the effective
potential and Np, = 10:

k* =0.0152, A" =12.13, h*? = 57.41,
For the critical exponents we obtain

01 =1.056, ©2=-0.175, ©3 = —2.350

9 There is only one relevant directions, corresponding to one physical parameter to
be fixed.

@ All other parameters are predictions from the theory.

@ The real part of the relevant direction is 1.056 and not anymore 2, so the
hierarchy problem is slightly weakened.
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(Toy-)Higgs mass and (Toy-) Top mass from asymptotic safety

9 The flow can be fixed by one parameter, e.g. the IR value of k.

@ In a realistic model this would correspond to the vev (which can be determined
from the Z/W-boson masses)

v = lim V2kk
k—0

@ The IR values of the other two parameters are predicted by the theory and are
related to the Higgs and the Top mass.

MHiggs = V/ A20, Miop = V h2v.

@ Choosing v = 246GeV and Ny, = 10 as an example, we find

MHiggs = 0.81v,  Myop = 5.560.
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o We have massless Goldstone and fermion fluctuations, which are not present in
the standard model.

@ Next step: In a more realistic model (closer to the standard model), we have to
account for gauge bosons and get rid of massless modes.

9 Publication is in preparation, previous work can be found at: arXiv:0901.2459

9 Also gravitational effects can be included: O. Zanusso & R. Percacci and
collaborators.
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