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Asymptotic Safety in the Standard Model?

Asymptotic Safety Scenario was introduced to apply it to gravity.

The setting of the AS scenario is more general and might be interesting in other
areas, too.

In the Standard Model of particle physics the Higgs sector is plagued by two
problems:

Hierachy problem & Triviality

Both problems might be solved within the AS scenario.
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1-loop correction to the four-Higgs-boson coupling λφ4 is represented by the
diagram
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Triviality

From a perturbative computation of this loop we obtain the relation between the
bare and the renormalized coupling λ

Landau-pole indicates breakdown of perturbative QFT → new theory (e.g.
SUSY,...)?

Not yet! Perturbation theory relies on an expansion around zero coupling.

Near the Landau pole perturbation theory will loose its validity since λ grows large

We need a non-perturbative tool to study triviality!
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Use effective average action Γk , which contains all fluctuations of the quantum
fields with momenta larger than a scale k.

Expansion in terms of running couplings gi,k and all possible field operators Oi.

Γk[χ] =
X

i

gi,kOi, e.g. Oi =
˘

χ2, χ4, (∂χ)2
¯

.

Dependence of the effective action on the scale k (or more conveniently
t = Log(k/Λ)) is by definition given by the β-functions of the running couplings:

∂tΓk[χ] =
X

i

βi,kOi .
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Hierarchy problem in the Asymptotic Safety scenario

Critical exponents ΘI : Tell me how fast the effective average action changes at a
FP.

We find a hierarchy problem if there exist large critical exponents ΘI > 0.

For example in φ4-Theory we find at the GFP a Θ = 2.

RG computation will show how large the ΘI are at a NGFP.

If all of them are small ≪ 1 then then the hierarchy problem is solved.
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Flow equation

We will need a non-perturbative method to compute the flow (β-functions) in
theory space.

Use exact renormalization group equations (ERGE) derived from Path-Integral
representation (Wetterich ’93)

∂tΓk[Φ] =
1

2
STr{[Γ(2)

k
[Φ] + Rk]−1(∂tRk)}, ∂t = k

d

dk
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where we define ρ = φa†φa.
invariant under chiral U(NL)L ⊗ U(1)R transformations.

For the phase with spontaneously broken
symmetry (SSB), we expand the effec-
tive potential around its minimum: κk :=
ρ̃min > 0,

uk =
λ2,k

2!
(ρ̃− κk)2 +

λ3,k

3!
(ρ̃− κk)3 + ...

κ, λnmax , λ2 > 0.
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∂th
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UV fixed-point regime and mass hierarchy

We find a NGFP for NL > 3.

Example for a leading-order truncation expanded up to λ6

6!
ρ6 in the effective

potential and NL = 10:

κ∗ = 0.0152, λ∗ = 12.13, h∗2 = 57.41 ,

For the critical exponents we obtain

Θ1 = 1.056, Θ2 = −0.175, Θ3 = −2.350

There is only one relevant directions, corresponding to one physical parameter to
be fixed.

All other parameters are predictions from the theory.

The real part of the relevant direction is 1.056 and not anymore 2, so the
hierarchy problem is slightly weakened.
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(Toy-)Higgs mass and (Toy-) Top mass from asymptotic safety

The flow can be fixed by one parameter, e.g. the IR value of κ.

In a realistic model this would correspond to the vev (which can be determined
from the Z/W-boson masses)

v = lim
k→0

√
2κk

The IR values of the other two parameters are predicted by the theory and are
related to the Higgs and the Top mass.

mHiggs =
p

λ2v, mtop =
√
h2v.

Choosing v = 246GeV and NL = 10 as an example, we find

mHiggs = 0.81v, mtop = 5.56v.
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The present theory only represents a proof of principle.

We have massless Goldstone and fermion fluctuations, which are not present in
the standard model.

Next step: In a more realistic model (closer to the standard model), we have to
account for gauge bosons and get rid of massless modes.

Publication is in preparation, previous work can be found at: arXiv:0901.2459

Also gravitational effects can be included: O. Zanusso & R. Percacci and
collaborators.
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