

Symmetry Reduction and Exact Solutions in Twisted Noncommutative Gravity

Alexander Schenkel

Institute for Theoretical Physics and Astrophysics, University of Würzburg

49. Cracow School of Theoretical Physics 2009

Non-perturbative Gravity and Quantum Chromodynamics

Zakopane, Poland, May 31- June 10, 2009

Why Noncommutative Geometry?

Basics of Noncommutative Geometry

NC Symmetry Reduction

Dynamics of Symmetry Reduced Sectors

Field Fluctuations on NC Backgrounds

WHY???

Why Noncommutative Geometry?

WHY???

Einstein gravity

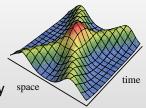
- based on smooth manifolds
 - i. e. spacetime made out of points
- points not physical (black holes!)
- ... wrong category for short distance gravity

Quantum gravity

- motivation: "get rid of points"
- ► approaches: Strings, Loop Quantum Gravity, CDT, ...
- hardest problem: making contact with the "real world"

"Almost quantum" gravities

- intermediate step incorporating most important quantum effects
- ▶ ideas: infrared expansion, noncommutative geometry, ...
- ③ NC Geometry without points and spacetime uncertainties built in



Basics of Noncommutative Geometry

UNIVERSITÄT WÜRZBURG

- <u>wanted</u>: coordinate operators $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\Theta^{\mu\nu}(\hat{x})$
- \Rightarrow spacetime uncertainty relations $\Delta x^{\mu} \Delta x^{\nu} \neq 0$
 - equivalently: use \star -products $f(x) \star g(x) \neq g(x) \star f(x)$
 - examples:
 - Moyal-Weyl product:

$$\mathsf{f}\star\mathsf{g}=\mathsf{f}e^{\frac{\mathsf{i}\lambda}{2}\overleftarrow{\partial}_{\mu}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}}\mathsf{g}$$

Reshetikhin-Jambor-Sykora (RJS) product:

$$f\star g = f e^{\frac{i\lambda}{2} \overleftarrow{X_{\alpha}} \Theta^{\alpha\beta} \overrightarrow{X_{\beta}}} g \ , \ \ [X_{\alpha}, X_{\beta}] = 0$$

NB: RJS and Moyal-Weyl products are obtained from twists

$$\mathfrak{F}=\text{exp}\Big(-\frac{i\lambda}{2}\Theta^{\alpha\beta}X_{\alpha}\otimes X_{\beta}\Big)\in U\Xi\otimes U\Xi$$

[Wess group, Madore, ...]

- ► classical spaces ↔ classical symmetries (Lie groups/algebras)
 - $\triangleright~$ euclidean space \longleftrightarrow euclidean group $\text{SO}(3)\ltimes \mathbb{R}^3$
 - $\,\triangleright\,$ Minkowski space \nleftrightarrow Poincaré group $SO(3,1)\ltimes \mathbb{R}^4$
- ► NC spaces ↔ "quantum symmetries" (quantum groups/Hopf algebras)
 - \triangleright q-euclidean space $\leftrightarrow \rightarrow$ q-euclidean Hopf algebra
 - Moyal-plane ↔ θ-Poincaré Hopf algebra
- general feature:

noncommutative spacetime \Leftrightarrow noncocommutative Hopf algebra commutative spacetime \Leftrightarrow Lie algebra \rightarrow cocommutative HA

Basic idea of (twisted) NC gravity:

Einstein gravity $\leftrightarrow \Rightarrow$ diffeomorphism Lie algebra Ξ

NC Einstein gravity ↔ deformed diffeomorphism Hopf algebra

 $(\Xi, [\ , \]) \stackrel{\text{construct}}{\longrightarrow} (U\Xi, \cdot, \Delta, S, \varepsilon) \stackrel{\mathcal{F}}{\longrightarrow} (U\Xi, \cdot, \Delta_{\mathfrak{F}}, S_{\mathfrak{F}}, \varepsilon)$

[Wess group]

VFRSITÄ

- ✓ construction of cov. derivatives and curvature on NC manifolds basic idea: deform everything using the twist ⇒ deformed covariant theory
- \Rightarrow NC Einstein equations:

$$\operatorname{Ric}_{ab} - \frac{1}{2}g_{ab} \star \mathfrak{R} = 8\pi G \operatorname{T}_{ab}$$

NB:

- $\,\triangleright\,$ nonlocal and nonlinear equations of motion \rightarrow i.g. complicated
- ▷ ambiguities in defining Einstein equations ☺
- wanted: solutions of NC Einstein equations

NC Symmetry Reduction:

a first step towards solutions

WUVERSITE NC Symmetry Reduction Method

Classical symmetry reduction:

- ► isometries $\hat{=}$ symmetry Lie algebra g
- represent g in terms of vector fields Ξ
- $\blacktriangleright\,$ demand $\mathcal{L}_{\mathfrak{g}}(\tau) = \{0\}$ for all symmetric tensor fields
- NC symmetry reduction: [Th. Ohl, AS: JHEP 0901:084,2009]
 - ► isometries $\hat{=}$ symmetry Lie algebra g
 - ▶ represent g in terms of vector fields Ξ
 - ▶ demand $\mathcal{L}_g(\tau) = \{0\}$ for all symmetric tensor fields
 - + consistency condition: $\mathcal{L}_{g}(\tau \star \tau') = \{0\}$, if $\mathcal{L}_{g}(\tau) = \mathcal{L}_{g}(\tau') = \{0\}$
 - ► NB:
 - $\,\triangleright\,$ CC from nontrivial coproduct $\Delta_{\mathcal{F}}$ in Hopf algebra
 - $\triangleright~$ restrictions among twist ${\mathfrak F}$ and symmetry Lie algebra ${\mathfrak g}$
 - $\triangleright \ \ \text{for RJS twists} \ [X_\alpha, \mathfrak{g}] \subseteq \mathfrak{g} \ , \ \forall_\alpha \ \to \ \ \text{classification!} \ \ \textcircled{\label{eq:gamma}}$
 - $\checkmark\,$ FRW models, Schwarzschild black holes (& black branes, AdS, \dots)

WUVERSTITE NC Symmetry Reduction Some of our NC FRW Models

- 1. <u>favorite model</u>: $[\hat{t}, \hat{x}^i] = i\lambda \widehat{X(t)x^i}$
 - isotropic but nonhomogeneous model (interesting for CMB)
 - $\,\triangleright\, X(t)$ can be used to tune away NC effects for large t
 - NC can drive gravity (see below!)
 - Iies in the model class we understand less
- 2. <u>next-to-favorite model</u>: $\left[\widehat{expi\phi}, \widehat{t}\right] = \lambda \widehat{expi\phi}$
 - $\triangleright \text{ discrete time spectrum } \sigma(\mathbf{\hat{t}}) = \lambda(\mathbb{Z} + \delta)$
 - → singularity avoidance in cosmology!?!
 - we understand background dynamics (see below!)
 - on nonisotropic model: maybe problems with CMB
- 3. <u>less favored models:</u> e.g. $[\hat{x}^{i}, \hat{x}^{j}] = i\lambda^{ij}\hat{1}$
 - ONC scale growing with time
 - backgrounds and (Q)FT (see below!)
 - ightarrow nice playground for mathematical aspects (e.g. interacting fields)

WUVERSTRENC Symmetry Reduction Some of our NC Black Hole Models

1. isotropic model:

$$\left[\mathbf{\hat{t}},\mathbf{\hat{r}}\right]=i\lambda\widehat{f(r)}$$

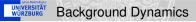
2. discrete time model:

$$\left[\widehat{exp\,i}\varphi, \hat{t}\right] = \lambda \widehat{exp\,i}\varphi$$

3. discrete radius model:

$$[\exp i\phi ; r] = -2\sinh(\frac{\lambda}{2}f(r)\partial_r)r \cdot \exp i\phi$$

BH models solve NC Einstein equations using undeformed metric!



Dynamics of Symmetry Reduced Sectors:

general properties and explicit solutions

Proposition (Th. Ohl, AS: to appear)

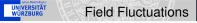
Let $\mathfrak{F} = \exp(-\frac{i\lambda}{2}\Theta^{\alpha\beta}X_{\alpha}\otimes X_{\beta})$ be a g-compatible RJS twist. Then the symmetry reduced Riemannian geometry is undeformed if one $X_{\alpha} \in \mathfrak{g}$, for all pairs of vector fields connected by $\Theta^{\alpha\beta}$.

- \blacktriangleright most FRW and black hole models are exactly solvable \bigcirc
- NB: this does not mean our models are trivial!
- ► ∃ examples with NC corrections to backgrounds
- ► e.g. $[\hat{t}, \hat{x}^i] = i\lambda \hat{x}^i \Rightarrow NC$ Friedmann equations:

$$3\frac{\dot{A}(t-i\lambda)}{A(t-i\lambda)}\frac{\dot{A}(t+i\lambda)}{A(t+i\lambda)} \ + \ \frac{3}{2}\frac{\dot{N}(t)}{N(t)} \Big(\frac{\dot{A}(t-i\lambda)}{A(t-i\lambda)} \ - \ \frac{\dot{A}(t+i\lambda)}{A(t+i\lambda)}\Big) \ + \ \frac{3}{2} \Big(\frac{\ddot{A}(t+i\lambda)}{A(t+i\lambda)} \ - \ \frac{\ddot{A}(t-i\lambda)}{A(t-i\lambda)}\Big) \ = \ \rho(t)$$

$$\begin{split} -\frac{A(t)\dot{A}(t)\dot{A}(t-2i\lambda)}{A(t-2i\lambda)N(t-i\lambda)^2}+\frac{A(t)\dot{A}(t)\dot{N}(t-i\lambda)}{2N(t-i\lambda)^3}+\frac{3A(t)^2\dot{A}(t-2i\lambda)\dot{N}(t-i\lambda)}{2A(t-2i\lambda)N(t-i\lambda)^3}\\ -\frac{A(t)\ddot{A}(t)}{2N(t-i\lambda)^2}-\frac{3A(t)^2\ddot{A}(t-2i\lambda)}{2A(t-2i\lambda)N(t-i\lambda)^2}=p(t) \end{split}$$

- ▶ i.g. extremely complicated ☺,
 - ... but de Sitter space + cosmological constant solves it 😳



Field Fluctuations on NC Backgrounds:

a first step towards physics

Field Fluctuations

UNIVERSITÄT

- ▶ fixed Riemannian manifold (\mathcal{M}, g) with isometries g
- Definition: Killing twist $\mathfrak{F} \in \mathfrak{Ug} \otimes \mathfrak{Ug} \subseteq \mathfrak{U\Xi} \otimes \mathfrak{U\Xi}$

- Dependence with deformed Peierls brackets (for free scalars)
- Z Fock Space Quantization of deformed Peierls algebras
- \blacksquare first ideas and calculations for interacting scalar fields
- Non-Killing twists: (as required for cosmology)

 $\square^* \Phi + F[\Phi] = 0$

e.g. Free scalar field on NC de Sitter space:

 $\label{eq:phi} \ddot{\Phi}(x) + 3H\dot{\Phi}(x) - e^{-2Ht}\Delta \pmb{\tilde{\Phi}}(x) + M^2 \Phi(x) = \textbf{0} \;, \quad \text{where}$

 $1. \ \ \tilde{\Phi}(x) = \text{exp}\big(i\lambda(\vartheta_{\rm t} - Hr\vartheta_{\rm r})\big)\Phi(x) \quad \text{for} \ \big[\hat{t}, \hat{x}^{\rm i}\big] = i\lambda\hat{x}^{\rm i}$

2. $\mathbf{\tilde{\Phi}}(\mathbf{x}) = \exp(i\lambda H \partial_{\Phi}) \Phi(\mathbf{x})$ for $\left[\mathbf{\hat{t}}, \widehat{\exp i \phi} \right] = \lambda \widehat{\exp i \phi}$

 \square (at least perturbative) solutions for free fields

actions, deformed Peierls algebras, quantization, physics, ...

- NCG is interesting step between classical and quantum gravity
- we found approach to NC symmetry reduction
- \rightarrow cosmological, black hole (& black brane, AdS, ...) solutions
- distinct NC effects depending on model, e.g.
 - discrete time spectra in cosmology
 - discrete radius spectra for black holes
 - lattice structure of position eigenvalues for black branes
- ► ∃ "realistic" models worth for cosmological studies
- free QFT on curved Killing RJS backgrounds
- ... still many open questions and undone calculations remain:
 - cosmological powerspectra and CMB predictions
 - ▷ (Q)FT on curved non-Killing RJS backgrounds
 - ▷ ¿¿ Deformed AdS spaces for particle physics ?? (with C. Uhlemann)