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WHY???

Why Noncommutative Geometry?

A. Schenkel (Würzburg) NC Gravity: Symmetries and Solutions Zakopane ’09 3 / 17



WHY???

Einstein gravity

I based on smooth manifolds
i. e. spacetime made out of points

� points not physical (black holes!)
∴ wrong category for short distance gravity space

time

Quantum gravity
I motivation: “get rid of points”

I approaches: Strings, Loop Quantum Gravity, CDT, . . .

I hardest problem: making contact with the “real world”

“Almost quantum” gravities
I intermediate step incorporating most important quantum effects

I ideas: infrared expansion, noncommutative geometry, . . .

, NC Geometry without points and spacetime uncertainties built in
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Basics

Basics of Noncommutative Geometry
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Basics Star Products

I wanted: coordinate operators [x̂µ, x̂ν] = iΘµν(x̂)

⇒ spacetime uncertainty relations ∆xµ∆xν , 0

I equivalently: use ?-products f(x) ? g(x) , g(x) ? f(x)

I examples:
. Moyal-Weyl product:

f ? g = fe
iλ
2

←
∂µΘµν

→
∂νg

. Reshetikhin-Jambor-Sykora (RJS) product:

f ? g = fe
iλ
2

←
XαΘαβ

→
Xβg , [Xα, Xβ] = 0

I NB: RJS and Moyal-Weyl products are obtained from twists

F = exp
(
−

iλ
2

ΘαβXα ⊗ Xβ

)
∈ UΞ⊗UΞ
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Basics NC Symmetries and Gravity

[Wess group, Madore, . . . ]
I classical spaces! classical symmetries (Lie groups/algebras)

. euclidean space! euclidean group SO(3) n R3

. Minkowski space! Poincaré group SO(3, 1) n R4

I NC spaces! “quantum symmetries” (quantum groups/Hopf algebras)
. q-euclidean space! q-euclidean Hopf algebra
. Moyal-plane! θ-Poincaré Hopf algebra

I general feature:
noncommutative spacetime! noncocommutative Hopf algebra
commutative spacetime! Lie algebra → cocommutative HA

I Basic idea of (twisted) NC gravity:
Einstein gravity! diffeomorphism Lie algebra Ξ

NC Einstein gravity! deformed diffeomorphism Hopf algebra

(Ξ, [ , ])
construct−→ (UΞ, ·, ∆, S, ε)

F−→ (UΞ, ·, ∆F, SF, ε)

A. Schenkel (Würzburg) NC Gravity: Symmetries and Solutions Zakopane ’09 7 / 17



Basics NC Riemannian Geometry

[Wess group]
� construction of cov. derivatives and curvature on NC manifolds

basic idea: deform everything using the twist ⇒ deformed covariant theory

⇒ NC Einstein equations:

Ricab −
1
2
gab ?R = 8πG Tab

I NB:
. nonlocal and nonlinear equations of motion → i.g. complicated
. ambiguities in defining Einstein equations /

I wanted: solutions of NC Einstein equations
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NC Symmetry Reduction

NC Symmetry Reduction:

a first step towards solutions
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NC Symmetry Reduction Method

Classical symmetry reduction:

I isometries ≡̂ symmetry Lie algebra g

I represent g in terms of vector fields Ξ

I demand Lg(τ) = {0} for all symmetric tensor fields

NC symmetry reduction: [Th. Ohl, AS: JHEP 0901:084,2009]

I isometries ≡̂ symmetry Lie algebra g

I represent g in terms of vector fields Ξ

I demand Lg(τ) = {0} for all symmetric tensor fields

+ consistency condition: Lg(τ ? τ′) = {0}, if Lg(τ) = Lg(τ
′) = {0} !

I NB:
. CC from nontrivial coproduct ∆F in Hopf algebra
. restrictions among twist F and symmetry Lie algebra g
. for RJS twists [Xα, g] ⊆ g , ∀α → classification! ,

� FRW models, Schwarzschild black holes (& black branes, AdS, . . . )
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NC Symmetry Reduction Some of our NC FRW Models

1. favorite model:
[
t̂, x̂i

]
= iλX̂(t)xi

. isotropic but nonhomogeneous model (interesting for CMB)

. X(t) can be used to tune away NC effects for large t

. NC can drive gravity (see below!)
/ lies in the model class we understand less

2. next-to-favorite model:
[
êxp iφ, t̂

]
= λêxp iφ

. discrete time spectrum σ(t̂) = λ(Z+ δ)

→ singularity avoidance in cosmology!?!
, we understand background dynamics (see below!)
. nonisotropic model: maybe problems with CMB

3. less favored models: e. g.
[
x̂i, x̂j

]
= iλij1̂

/ NC scale growing with time
, backgrounds and (Q)FT (see below!)
→ nice playground for mathematical aspects (e. g. interacting fields)
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NC Symmetry Reduction Some of our NC Black Hole Models

1. isotropic model: [
t̂, r̂

]
= iλf̂(r)

2. discrete time model: [
êxp iφ, t̂

]
= λêxp iφ

3. discrete radius model:

[exp iφ ?, r] = −2 sinh
(λ

2
f(r)∂r

)
r · exp iφ

I BH models solve NC Einstein equations using undeformed metric!
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Background Dynamics

Dynamics of Symmetry Reduced Sectors:

general properties and explicit solutions
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Background Dynamics

Proposition (Th. Ohl, AS: to appear)

Let F = exp
(
− iλ

2 ΘαβXα ⊗ Xβ

)
be a g-compatible RJS twist. Then the

symmetry reduced Riemannian geometry is undeformed if one Xα ∈ g,
for all pairs of vector fields connected by Θαβ.

I most FRW and black hole models are exactly solvable ,
I NB: this does not mean our models are trivial!
I ∃ examples with NC corrections to backgrounds
I e. g.

[
t̂, x̂i

]
= iλx̂i ⇒ NC Friedmann equations:

3
Ȧ(t − iλ)

A(t − iλ)

Ȧ(t + iλ)

A(t + iλ)
+

3
2

Ṅ(t)

N(t)

(
Ȧ(t − iλ)

A(t − iλ)
−

Ȧ(t + iλ)

A(t + iλ)

)
+

3
2

(
Ä(t + iλ)

A(t + iλ)
−

Ä(t − iλ)

A(t − iλ)

)
= ρ(t)

−
A(t)Ȧ(t)Ȧ(t − 2iλ)

A(t − 2iλ)N(t − iλ)2 +
A(t)Ȧ(t)Ṅ(t − iλ)

2N(t − iλ)3 +
3A(t)2Ȧ(t − 2iλ)Ṅ(t − iλ)

2A(t − 2iλ)N(t − iλ)3

−
A(t)Ä(t)

2N(t − iλ)2 −
3A(t)2Ä(t − 2iλ)

2A(t − 2iλ)N(t − iλ)2 = p(t)

I i. g. extremely complicated /,
. . . but de Sitter space + cosmological constant solves it ,
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Field Fluctuations

Field Fluctuations on NC Backgrounds:

a first step towards physics
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Field Fluctuations

I fixed Riemannian manifold (M, g) with isometries g
I Definition: Killing twist F ∈ Ug⊗Ug ⊆ UΞ⊗UΞ

2� actions: S?
Φ = − 1

2 (dΦ, dΦ)? − m2

2 (Φ, Φ)? −
N∑

k=3
λk(1, Φ?k)?

2� phasespace with deformed Peierls brackets (for free scalars)
2� Fock Space Quantization of deformed Peierls algebras

2� first ideas and calculations for interacting scalar fields
I Non-Killing twists: (as required for cosmology)

2� wave equations: �?Φ + F[Φ] = 0
e. g. Free scalar field on NC de Sitter space:

Φ̈(x) + 3HΦ̇(x) − e−2Ht∆Φ̃(x) + M2Φ(x) = 0 , where

1. Φ̃(x) = exp
(
iλ(∂t − Hr∂r)

)
Φ(x) for

[
t̂, x̂i

]
= iλx̂i

2. Φ̃(x) = exp
(
iλH∂φ

)
Φ(x) for

[
t̂, êxp iφ

]
= λêxp iφ

2� (at least perturbative) solutions for free fields
� actions, deformed Peierls algebras, quantization, physics, . . .
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Conclusions and Outlook

I NCG is interesting step between classical and quantum gravity

I we found approach to NC symmetry reduction

→ cosmological, black hole (& black brane, AdS, . . . ) solutions

I distinct NC effects depending on model, e. g.
. discrete time spectra in cosmology
. discrete radius spectra for black holes
. lattice structure of position eigenvalues for black branes

I ∃ “realistic” models worth for cosmological studies

I free QFT on curved Killing RJS backgrounds

. . . still many open questions and undone calculations remain:
. cosmological powerspectra and CMB predictions
. (Q)FT on curved non-Killing RJS backgrounds
. ¿¿ Deformed AdS spaces for particle physics ?? (with C. Uhlemann)
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