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Oscillon

Nonperturbative, long living, spatially localized classical solution in (nonintegrable) field
theories exhibiting almost periodic oscillations in time.
Breather-like metastable state.

Oscillons appear in many (classical) field theories including

massive nonlinear scalar FT in (1-6)+1 dim

abelian and non-abelian Higgs model

bosonic sector of SM

But massive scalar field seems to essential.

Oscillons can be formed from generic initial conditions like collisions of topological
defects, thermal fluctuations or gaussian initial data.
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Example: oscillon in φ4

Let us consider a very famous φ4 1+1 dimensional model:

φtt − φtt + 2φ(φ2 − 1) = 0

and gaussian initial data

φ(x , t = 0) = 1 + ae−bx2
, φ̇(x , t = 0) = 0

If a � 1 we can (?) linearize around a vacuum φ = 1 + u obtaining Klein-Gordon
equation

ü − u′′ + 4u = 0.

It can be shown that

u(x = 0, t) =
a

√
4πb

Z
dk e−

k2
4b cos

p
k2 + 4t .

in the limit t →∞ the leading term is

u(x = 0, t) = a cos(2t + δ)/t .
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Numerical simulation in the center φ(x = 0, t) for initial data
φ(x , t = 0) = 1− 0.4 exp(−0.5x2), φ̇(x , t = 0) = 0
Agreement with solution to linearized (KG) equation
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However φ(x = 0, t) for initial data φ(x , t = 0) = 1− 0.4 exp(−0.1x2), φ̇(x , t = 0) = 0
showed huge discrepancy with linearized theory.
Note: only the width has changed
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This is clearly a nonlinear effect. Frequency of the oscillations in the second case was
below the mass threshold ω = 1.90 < 2.00.
There is no significant decrease of the amplitude but because φ4 model is
nonintegrable the oscillon radiates, but very very slowly.
Oscillons are very similar to breathers known from integrable sine-Gordon model

More analogy to breathers

For initial data φ(x , t = 0) = 1− a exp(−bx2), φ̇(x , t = 0) = 0 only some pairs (a, b),
give long-time almost periodic solutions ω < m
Sine-Gordon breathers:

φc(x , t) = −4 arc tan

24 cp
1− c2

sin
“p

1− c2t
”

cosh cx

35 .
The less amplitude the higher frequency and wider profile.
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Differences

Sine-Gordon breathers oscillates periodically with time, oscillons do not.

Oscillons radiate, loosing their energy (a ↘ b ↘, ω ↗< m)

In higher dimensions oscillons evolve until they reach some critical amplitude and
then they disappear quickly.

Breathers interact (with other breathers, kinks and wave) elastically whereas
oscillons nonelasctically

T. Romańczukiewicz Oscillons
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Oscillons usually appear in scalar field theories (i.e. D dimensional φ4):

φ̈−∆φ+ 2(φ2 − 1) = 0.

For D = 1, 2, 3 the radiation is very small and one can assume that the solutions are
periodic in time:

φ(x , t) = 1 +
X

n
un(x) cos nΩt .

Just like breathers oscillons posess an oscillating core but they also have radiating tails.

Caution

Solution of this type has infinite energy - there is a standing wave in the whole space.

T. Romańczukiewicz Oscillons
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After substitution we obtain

∆un + (n2Ω2 − 4)un = Fn(u0, u1, . . .),

where

Fn(u0, u1, . . .) = 3
X
m,p

(δn,m+p + δn,m−p)umup+

1
2

X
m,p,k

(δn,m+p+k + δn,m−p+k + δn,m+p−k + δn,m−p−k )umupuk .

For given Ω < 2 this system can be solved with additional condition of minimizing the
outgoing radiation (or asymptotic energy density of the standing wave). In
nonintegrable systems this energy density tends to some finite value. In sine-Gordon
this tends to 0.
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Oscillon profiles
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Minimized radiation
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Kruskal and Segur showed (and later Forgacs et al proved more rigorously), that in
1+1d φ4 the energy of the oscillon changes with time as

dE
dt

= −
A
a

e−B/a

so it is beyond all orders of perturbation series

T. Romańczukiewicz Oscillons
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Oscillons live for relatively long time in comparison to characteristic time in the theory
∼ 1/m
If some phenomenon lasts much shorter than the lifetime of the oscillon we do not
need to consider its radiation and asymptotic stability:

collisions

phase transitions

interaction with waves

In sine-Gordon theory breathers interact with other objects elastically due to the
integrability of the theory. Oscillons do not interact elastically.

T. Romańczukiewicz Oscillons
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Kink-breather collision in integrable sine-Gordon model.
Soliton is reflected elastically.
No radiation.

T. Romańczukiewicz Oscillons
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Kink-oscillon collision for small velocities v = 0.1.
Kink is reflected from the oscillon.
Excitation of the kink and some radiation visible.
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Kink-oscillon collision for large velocities v = 0.2.
Kink could have a larger velocity after the collision.
Energy contained in the oscillations can be transformed into the kinetic energy.
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Final velocity as a function of initial velocity of the kink
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This could be qualitatively described by effective theory using only few degrees of
freedom:

position of the kink X(t)
position of the oscillon Y (t)
for small amplitudes we can assume that only the basic frequency dominates so
we can neglect the rest of them

φ(x , t) = ψ (x − X(t)) + A1(t)Φ (x − Y (t)) + higher harmonics + radiation.

Substitution to the lagrangian gives

L = Lk + Losc + Lint ,

where

Losc =
m
2

„
Ȧ2 −

„
4 +

M
m

«
A2

«
− γ3A3 − γ4A4 +

1
2
(A2M + M0)Ẏ 2,

For slow kink:
Lk = −

1
2

Mk Ẋ 2

and the interaction part:

Lint =

Z
dx AẎ ẊΦ′Ψ′ − ȦẊΦΨ′ − 3A2Φ2Ψ2 − 2A3Φ3Ψ− 2AΦΨ3 + 2AΦΨ

After integrations we obtain a huge system of equations which surprisingly gives
similar results as the full PDE.
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Motion of the oscillon under influence of a traveling wave (Ω ' 1.7, ω = 3.3, a = 0.12)
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This phenomenon can be understood in the following way:
A wave ξ with certain frequency ω hits an oscillon which oscillates with frequencies
0,Ω, 2Ω, . . .. Due to the nonlinear interaction (φ2, φ3) modes with frequencies
ωnm = nω + mΩ, n,m ∈ Z appear.
Suppose that Ω/ω is not a rational number (to avoid resonances). For small amplitude
of the wave we can linearize the equation obtaining

ξtt − ξxx + [V0(x) + V1(x) cos Ωt + V2(x) cos 2Ωt + · · · ] ξ = 0

The most dominating part is V1 so neglecting the rest we obtain

ξtt − ξxx + V1(x) cos Ωtξ = 0

The solution can be sought in the following form:

ξ =
X

m
ξm(x)ei(ω+mΩ)t

which leads to the following set of equations:

T. Romańczukiewicz Oscillons
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"
−

d2

dx2
− (ω + mΩ)2

#
ξm +

1
2

V1(x)
`
δn,m+1 + δn,m−1

´
ξn = 0

which can be solved with two-point boundary conditions (for some large |x |).

We want only one wave going towards the oscillon (for frequency ω), and rest
should be going outwards.

What we could expect is that the most dominating waves will have frequencies
ω ± Ω, but if ω < Ω + m than ω − Ω < m so the wave with such freqency cannot
propagate.

It is easier to create a wave which propagate in the same direction as the initial
wave.

But wave with frequency Ω + ω has more momentum than wave with frequency ω
with the same energy. If the energy is conserved (which is true) this could lead to
a surplus of momentum on the further side of the oscillon.

This creates a force which pushes the oscillon towards the source of radiation - an
example of the negative radiation pressure
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Example numerical results:
n An(−L) An(L) ∆Ṗ
−5 2.039121 · 10−05 1.647402 · 10−05 +4.069289 · 10−09

−4 3.137356 · 10−04 1.195274 · 10−03 −1.532133 · 10−05

−3 9.974496 · 10−19 6.130569 · 10−19 +0.000000 · 10+00

−2 1.100515 · 10−16 9.829189 · 10−18 +0.000000 · 10+00

−1 2.143040 · 10−15 7.542940 · 10−16 +0.000000 · 10+00

0 4.903725 · 10−04 9.990235 · 10−01 −1.962688 · 10−02

1 1.331028 · 10−02 2.815201 · 10−02 +1.600781 · 10−02

2 2.296707 · 10−03 4.740838 · 10−04 −2.442669 · 10−04

3 6.507891 · 10−05 5.759091 · 10−06 −3.243351 · 10−07

4 6.508629 · 10−07 4.948536 · 10−08 −4.737035 · 10−11

5 6.814760 · 10−09 3.024025 · 10−10 −7.148810 · 10−15

Total momentum of the wave is equal to ∆Ṗtot = −3.87898 · 10−3.
The oscillon gets −∆Ṗtot so it moves towards the radiation
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Acceleration of the oscillon as a function of frequency (measured from PDE solutions)
(Ω ' 1.7, a = 0.12).
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Oscillons are very common in many field theories and have a long and very interesting
life.

loose energy very slowly (beyond all orders)
interact nonelastically with other objects

small velocities colision with kink - scatter bask
fast collisions - oscillating energy is transformed into kinetic energy

in certain conditions undergo so called negative radiation pressure
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T. Romańczukiewicz Oscillons



Intro Some results Conclusions

Oscillons are very common in many field theories and have a long and very interesting
life.

loose energy very slowly (beyond all orders)
interact nonelastically with other objects

small velocities colision with kink - scatter bask
fast collisions - oscillating energy is transformed into kinetic energy

in certain conditions undergo so called negative radiation pressure
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