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Motivation

In two Euclidean dimensions: Dilated from a small size to a large one,
Wilson loops in SU(N) gauge theory exhibit an infinite-N phase
transition (discovered by Durhuus and Olesen in 1981)

Eigenvalue distribution of the untraced
Wilson loop unitary matrix expands from a
small arc to the entire unit circle

Transition has universal properties (shared
across dimensions and analog
two-dimensional models)

For finite N : integral representation for the resolvent

In this talk: show that the known infinite-N result for the eigenvalue
density can be obtained by a saddle point analysis
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Expectation values

Probability density for Wilson loop matrix W is given by

P N (W, t) =
∑

r

drχr(W )e
− t

2N
C2(r)

with t = λA , standard ’t Hooft coupling λ= g2N , Wilson loop encloses
areaA
dr , C2(r), χr(W ): dimension, quadratic Casimir, character for irreducible
representation r of SU(N)
Averages over W at fixed t are given by

〈O (W )〉=
∫

dWPN (W, t)O (W )

with Haar measure dW
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Different densities

True resolvent and eigenvalue density

Gtrue
N (z, t) =

1

N

�

Tr
1

z−W

�

=
1

N

∂

∂ z
〈logdet(z−W )〉

ρtrue
N (θ) = Re

�

2zGtrue(z)− 1
�

z = eiθ+ε, ε→ 0+

Define in analogy

Gsym
N (z, T ) =−

1

N

∂

∂ z
log〈det

�

1

z−W

�

〉

ρ
sym
N (θ) = Re

�

2zGsym
N (z)− 1

�

Densities have the same infinite-N limit (due to infinite-N factorization)

lim
N→∞

ρtrue
N (θ) = lim

N→∞
ρ

sym
N (θ) = ρ∞(θ)
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Plots of the densities ρtrue
N (θ , t) (red) and ρsym

N (θ , T ) (blue) for t = 2 (left)
and t = 5 (right), N = 10 (top), and N = 50 (bottom).
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Plots
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ρ
sym
N (θ , T ) for T = 2 (left), T = 5 (right), and N = 3,5, 10,25, 50,100, 250

together with ρ∞(θ , T ).
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Character expansion

ρtrue can be obtained from the expectation value of

R(u, v, W ) =
det(1+ uW )
det(1− vW )

=
N
∑

p=0

∞
∑

q=0

up vqχA
p (W )χ

S
q (W )

when we set u=−v+ ε and expand to linear order in ε

R(−v + ε, v, W ) = 1− εTr
1

v−W †

After decomposing the tensor product pA⊗ qS into irreducible
representations, we can compute the expectation value (character
orthogonality)

R̄(v)≡
�

Tr
1

v−W †

�

=−
N−1
∑

p=0

∞
∑

q=0

(−1)p vp+qe−
t

2N
C(p,q)d(p, q)
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C(p, q), d(p, q): value of the quadratic Casimir operator and dimension of
irreducible representation identified by Young diagram

1 q
1

p

C(p, q) = (p+ q+ 1)
�

N −
p+ q+ 1

N
+ q− p

�

d(p, q) = dA(p)dS(q)
(N − p)(N + q)

N

1

p+ q+ 1

dA(p) =
�

N

p

�

, dS(q) =
�

N + q− 1

q

�

We can perform sums of the form

N−1
∑

p=0

zpdA(p)(N − p) = N(1+ z)N−1 ,
∞
∑

q=0

zqdS(q)(N + q) =
N

(1− z)N+1
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Integral representation

Write

1

p+ q+ 1
=

∫ 1

0

dρρp+q+1

Introduce Gaussian integrals to decouple the terms which are nonlinear
in p and q in exp(− t

2N
C(p, q))

Performing the (independent) sums over p, q then leads to

R̄(v) =−
N2

t
e−

t
2

∫ ∫ ∞

−∞

d xd y

2π

∫ 1

0

dρ e−
N
2t
(x2+y2)+ 1

2t
(x+i y)2− 1

2
(x−i y)

×

�

1− vρe−x−t/2
�N−1

�

1− vρei y−t/2
�N+1
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Integral representation for ρsym

Similarly, ψ(z) = 〈det(z−W )(−1)〉 (which determines ρsym) has an
integral representation (valid for |z|> 1)

ψ(z) = e
N T
8

Ç

N

2πT

∫ ∞

−∞
dw e−

N
2T

w2 �

ze−i w
2 − ei w

2

�−N

We set z = eiθ+ε and take the limit ε→ 0+ at the end

Integrand is exp(−N f (w)) with

f (w) =
w2

2T
+ log

�

ze−i w
2 − ei w

2

�

.

Singularities of the integrand are located on the line Im w =−ε < 0

Integration path (along Im wi = 0) can be shifted upwards in the complex
plane
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Saddle points

Saddle point equation f ′(w0) = 0 can be written as

e−T U(θ ,T ) U(θ , T ) + 1/2

U(θ , T )− 1/2
= eε+iθ .

with w0 = iT U(θ , T ) = iT (Ur(θ , T ) + iUi(θ , T ))
Taking the absolute value leads to

U2
i = Ur coth(T Ur + ε)− U2

r −
1

4

This equation describes one or more curves in the complex U plane on
which the saddle points have to lie

For given value of θ , saddles are isolated points on these curves
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Curves of solutions
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Curves in the complex-U plane for T = 3 (left), T = 4 (middle), and T = 5
(right). Red curves: small ε > 0; black curves: ε= 0

For given θ : always one (and only one) saddle point on the closed curve
encircling U = 1

2

Integration contour (along imaginary U axis) can be smoothly deformed
to go through this saddle along a path of steepest descent (no
singularities are crossed)
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Deformation of the integration contour

Saddle points and corresponding paths of steepest descent in complex
w-plane (arrows: direction of increasing Re f (w))
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Robert Lohmayer, Tilo Wettig, Herbert Neuberger Infinite-N limit of the eigenvalue density of Wilson loops in 2D SU(N) YM June 2009 17 / 29



Motivation Eigenvalue densities Integral representations Saddle point analysis for ρsym Saddle point analysis for ρtrue Summary

Saddle point result

Limit ε→ 0 can be taken once the integration contour has been
deformed to go through the saddle point

Parametrize the contour in the vicinity of the saddle point by
w = w0 + xeiβ (β : angle which the path of steepest descent makes with
the real w axis)

Expanding the exponent to quadratic order in x and integrating over x
leads to

ψ(z) = e
N T
8

Ç

N

2πT
e−N f (w0)

r

2π

N f ′′(w0)
+O (1/N)

The density ρsym =−2 Re
�

1/2+ 1/Nz∂z lnψ
�

is given by

ρ
sym
N (θ , T ) = 2 Re

�

U

�

1+
1

N

T (1/4− U2)
[1− T (1/4− U2)]2

��

+O (1/N2)
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Infinite-N result is ρsym = 2Re[U(θ , T )]
Next order term diverges if denominator 1− T (1/4− U2) = 0 (this
corresponds to f ′′(w0) = 0)

This happens for T ≤ 4 at the transition point θc (from zero to non-zero
ρ∞)

For T ≤ 4 and |θ |> θc , leading order and 1/N term are both zero

In this interval ρsym approaches zero by corrections that are exponentially
suppressed in N

This saddle point analysis is not the right tool to compute finite N effects
in this region
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Examples for the 1/N corrections to ρ∞(θ , T ) for N = 10, T = 2 (left), and
T = 5 (right)
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blue: exact result for ρsym
N (θ , T )

red: infinite-N result (blue dashed curve)
black: asymptotic expansion of ρsym

N (θ , T ) up to order O (1/N)
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True eigenvalue density ρtrue

Infinite-N limit of ρtrue is obtained by saddle point approximation of

R̄(v) =−
N2

t
e−

t
2

∫ ∫ ∞

−∞

d xd y

2π

∫ 1

0

dρ e−
N
2t (x2+y2)+ 1

2t
(x+i y)2− 1

2
(x−i y)

× e(N−1) log(1−vρe−x−t/2)−(N+1) log(1−vρei y−t/2) .

valid for |v|< 1; v = eiθ−ε, ε→ 0+

Approximate integrals over x and y , integrate over ρ at the end
Integrals decouple at leading order and can be approximated
independently
coefficients of −N in the exponent are

f̄ (y) =
1

2t
y2 + log

h

1− vρei y− t
2

i

f̃ (x) =
1

2t
x2 − log

�

1− vρe−x−t/2
�

=− f̄ (i x)
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Relation to integral for ρsym

Substituting y = w− i t/2 leads to the integral for ψ (with z→ 1/(vρ)),
integration over w is along line from −∞+ i t/2 to +∞+ i t/2

No singularities between this line and the real w axis

Saddle point equation reads (ys = i t(U − 1/2))

e−tU U + 1/2

U − 1/2
=

1

vρ
,

Difference to previous analysis: 0≤ |vρ|< 1

Relevant saddle point is located on a closed curve around U = 1/2
(corresponds to y = 0)

Curve shrinks for decreasing ρ

Integral can be approximated by one single saddle point, y0(θ , tρ)
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Curves in the complex-U plane for t = 3, t = 4, and t = 5 (right)
black: ρ = 1, red: ρ = 0.9, green: ρ = 0.6, blue: ρ = 0.3
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Integral over x

Due to f̃ (x) =− f̄ (i x), saddle points of x and y integrals are related by
rotation of π/2 in the complex plane, xs =−i ys

Relation to U is xs = t(U − 1/2) (integration is now along the real U
axis)
Directions of steepest descent through ys and xs are identical (no
rotation)

f̃ ′′(xs) =
1

t
+

xs

t

�

1+
xs

t

�

= f̄ ′′(ys = i xs)

Integration contour can always be deformed to go through the (single)
saddle-point in the right half-plane (on the curve around U = 1/2)
Depending on ρ, v, and t : either one or no additional saddle point on the
contour(s) in the left half-plane through which we can also go in the
direction of steepest descent
But: contribution of additional saddle point (if there is one) is exponential
suppressed
Relevant saddle point is x0 =−i y0
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Contours of steepest descent
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Example for t = 5, ρ = 0.95, θ = 3.0
dashed black: curves on which all saddle points (for t = 5 and ρ = 0.95) have
to lie; dashed blue: integration path for y integral; solid red-blue: integration
path for x integral;
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ρ integral

Combining saddle point approximations for x and y integrals gives
(x0 = x0(θ , t,ρ))

R̄(v) =−
N

t
e−

t
2

∫ 1

0

dρ

�

t + x0
�2

t + x0
�

t + x0
� e−x0

Differentiating the saddle point equation with respect to ρ leads to

∂ x0

∂ ρ
= ve−x0−t/2

�

t + x0
�2

t + x0
�

t + x0
�

and

R̄(v) =−
N

tv

∫ 1

0

dρ
∂ x0

∂ ρ
=−

N

tv
�

x0(θ , t,ρ = 1)− x0(θ , t,ρ = 0)
�

For the eigenvalue density

lim
N→∞

ρtrue(θ , t) = 2Re U(θ , t,ρ = 1) = lim
N→∞

ρsym(θ , t)
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Summary

For SU(N) YM in 2 Euclidean dimensions: Probability distribution of
Wilson loop given by sum over all irreducible representations (only
Casimir, dimension, character enter)

Definition of different density functions which have the same infinite-N
limit

For fintite N : exact integral representations

Infinite N results can be obtained by saddle point approximations in
leading order

Next order terms give reasonable results in the interval where ρ∞ > 0
(power corrections in 1/N )

More work is needed to get finite N effects in the interval where ρ∞ = 0
(corrections are exponentially suppressed in N )
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