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OUTLINE

e Non-perturbative input to amplitudes for exclusive processes is
analyzed within full non-local chiral quark model

e Two examples:

e Photon Distribution Amplitudes
e Pion-photon Transition Distribution Amplitudes

e Special attention is paid to the question of inheriting QCD
properties by objects calculated in the effective model
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INTRODUCTION

Factorization of the amplitudes for exclusive processes in the presence of the

hard scale!' 3

M = (HARD) ® (SOFT)
= HARD part can be calculated in perturbation theory
= SOFT part is a subject to the non-perturbative treatment

Examples: ~» Distribution Amplitudes (DA)
~+ Generalized Parton Distributions (GPD)
~+ Transition Distribution Amplitudes (TDA)

How to access the SOFT part 7

= extraction from the experiment
= lattice calculations

= low energy effective models

1Efremov, Radyushkin; 2Brodsky, Lepage; 3Collins, Frankfurt, Strikman



INTRODUCTION (continued...)

SOFT part parametrizes matrix elements of certain non-local quark (gluon)
operators on the light-cone, e.g.

(H'[4 (y) 0% (x)| H)
= they should possess properties originating from QCD symmetries (e.g.
Lorentz invariance, Ward identities, axial anomaly)
— it is not obvious that effective models do inherit all QCD symmetries

= possible problems with correct properties of SOFT part in the effective
models



CHIRAL QUARK MODEL (xQM)

For simplicity we consider pions only. In order to obtain considered matrix
elements we need the model of quark-pion interactions.

At low energy scales spontaneous chiral symmetry breaking (xSB) plays very
important role

= the model should incorporate xSB

= there appear constituent quark mass M ~ 350 MeV

The simplest model is the semi-bosonized Nambu-Jona-Lasinio model® (chiral
limit)
Sioc = [ d'x 5 () D= MU (x)
where U7 (x) = exp {%Tawa (x) 75}, with Fr = 93 MeV.
e In order to get finite quark loops we need to impose some kind of

regularization (but we cannot remove the cutoff parameter at the end)

e However to get correct results for anomalous processes we have to
remove regularization

e Particular regularization scheme lacks motivation in terms of QCD...

!see e.g. S.P. Klevansky



NON-LOCAL QM

The most natural way of regularizing quark loops
—> momentum dependent constituent quark mass M = M (k)

S = | S PN BTU™ (k= 1)W1

where usually one defines M (k) = M F2 (k), and F (0) =1, F(k — 00) — 0.
This action was “derived” from QCD instanton vacuum theory, with Euclidean
analytical expression for M (k).

Problem:
momentum dependent mass =- naive vector current ¥y*1 is not conserved

= local vertex v* has to be replaced by the non-local one I'*
The precise form of the vertex is unconstrained and has to be modeled? 3 *,
One of the simplest solution is

k" 4 pH
k2 — p2

r (k,p) =~" — (M (k) = M (p))

The concrete model is specified by giving M (k) and the form of the vertices.

1Dijakonov, Petrov; 2Bowler, Birse; 3B. Holdom, R. Lewis; %A. Bzdak, M. Praszalowicz



ONE LOOP CALCULATIONS

As the mass dependence on momentum we take
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e calculations in Euclidean as well as Minkowski
space

e “analytical” solutions 0 1 2 " [(33v1 2 5
€'

The ansatz above leads to set of poles in the complex plane. Using some tricks
we can express the loop integral with N propagators as

4n+1

dPk
D g = LG

iy

where g is a function containing only N poles, n; are solutions of
Z*" 4 2% — (M/A)® = 0 and f; are some numbers composed from 7;.

Higher twist light cone amplitudes = delta type singularities in the
boundaries of physical support

Praszalowicz, Rostworowski, Bzdak, P.K.




APPLICATION |

Simplest SOFT objects = Distribution Amplitudes (DA)

Example: radiative vector meson decay V — S+ and V(q)
Photon DA. q S(q+P)
Relevant coordinates are defined by two light-like
vectors n = (1,0,0,—1), 7 =(1,0,0,1). Then we
can decompose any vector v as
" _
- V7~u+v7nu+vf’t_

, v(P)
General definition:

(0 [ (An) O% (—An)| 7 (P)) ~ Fo (P?) /01 du e g0 (u, P?)

where O = {o"",4*,v"~5} and Fo are relevant form factors.

P. Ball, Brown; Arriola, Broniowski, Dorokhov;



As an example consider vector photon DA ¢v (u, P?)
= current conservation in QCD: Fy (0) = 0.

) nonlocal
Nx QM calculations: current
e Using full non-local photon-quark Tyt x ~(P)
vertex and leaving pure QCD vector Tu
current operator we recover
Fv (0) =0.
e Diagram in the right has two
contributions: hadronic and infinite ,

. . Fu(P?) local vertex
perturbative part corresponding to 04 non—local vertex
electromagnetic ingredient of the 03
photon. 02

e Amplitudes up to twist-4 in all o /_\ _Pee]
channels have been calculated. _MV 0204060810
-0.2:

M =350 MeV, n =1



APPLICATION I

More demanding objects to study in Chiral Quark Models:
Transition Distribution Amplitudes appearing for example in 7
the forward region®.

+

T — "y in

Kinematics: 7 (q1) 7"(g2)

e high virtuality Q? of the upper photon

e |ow momentum transfer to the lower blob

A= (P—P) =t <@
Example: Vector TDA (VTDA)

d\ ; — A A .
/ T2 < (P)(= S u(Gn)a (Pr) > e e PraPag V (X, €, )

where £ = —2A" /p" with p = 1 (P1 + P2) is so called skewedness.

1Pjre, Szymanowski



Properties of VTDA originating from QCD:
e polynomiality [ dX X"V (X, &, t) = anf" + an-1£"' + ...+ a0
e normalization is fixed by axial anomaly [ dX V (X,&,t =0) = 1/272

" nonlocal
Nx QM calculations: Yy currents
e Polynomiality is satisfied.
. L 7t (Py) 7(P2)
e \We obtain correct normalization only I

when both vector currents are non-local.

VTDA is related to pion-photon transition form
factor

/dX V (X, t) ~ Fry (t)

0

controlling v*y — 7 reaction.

New BaBar data are available (29 May) which '
cast some new light on pion Distribution Ampli-
tudes...

=- this is currently under investigation... M=350MeV, n=1, £ =05




SUMMARY

e Non-local chiral quark model allows for analyzing low energy matrix
elements

e However, before using in real processes they have to be evolved
(scale of effective models is low) - not discussed

e In order to make calculations consistent we have to use modified
currents

e The form of the full currents is not restricted and has to be modelled

e However, in general it is not clear yet which currents we should
modify and when

e Case of full axial current is more difficult - not discussed

e First analysis of pion-photon Transition Distribution Amplitudes in
non-local model
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PHOTON DA DEFINITIONS

e tensor channel

(0[F(An) o7 (=An)| 1 (P,2)) = Pe(b0) Fr (P?)
{(5‘%n’8—57-n % / du P ¢ (u, P?)

+—1 (ﬁan’g—ﬁﬁna /due'g/\P br (u, P?)

2P+
1 a lf)\P
+ 57 (e-,—n —5Tn due hr (u, P?) ¢,
e vector channel
(0% (An) " (=An)| v (P, €)) = iefs, Fv (P?)

{ B +/ du P ov (u, P2)
1 2
“w HIN 4 p2?) _ l P w +/ iexPt h p?
—|—£-,-/0 due Vv (u, P?) 2—(P+)2n € | due v (u, P?) ¢,



e axial channel
— 1
(O] (An) 7159 (=An)| v (P, €)) = izefs, Fa (P?)
1 .
ewage?ﬁanﬁPJ’)\/ du e'&'ﬁgé/_\ (u, P?),
0

¢ =2u—1, () is quark condensate, X, is the magnetic susceptibility
of the quark condensate.
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LEADING TWIST PHOTON
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