Non-perturbative low energy amplitudes in non-local chiral quark model

Piotr Kotko

Jagiellonian University, Kraków

49 Cracow School of Theoretical Physics, Zakopane 2009

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

OUTLINE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Non-perturbative input to amplitudes for exclusive processes is analyzed within full non-local chiral quark model
- Two examples:
 - Photon Distribution Amplitudes
 - Pion-photon Transition Distribution Amplitudes
- Special attention is paid to the question of inheriting QCD properties by objects calculated in the effective model

TABLE OF CONTENTS

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

- Introduction
- 2 Chiral Quark Model and its problems
- 8 Photon Distribution Amplitudes
- **4** Transition Distribution Amplitudes
- 6 Conclusions

INTRODUCTION

Factorization of the amplitudes for exclusive processes in the presence of the hard $\mathsf{scale}^{1,\,2,\,3}$

 $\mathcal{M} = (HARD) \otimes (SOFT)$

- \Rightarrow HARD part can be calculated in perturbation theory
- \Rightarrow SOFT part is a subject to the non-perturbative treatment

Examples: ~ Distribution Amplitudes (DA)

- → Generalized Parton Distributions (GPD)
- → Transition Distribution Amplitudes (TDA)

How to access the SOFT part ?

- \Rightarrow extraction from the experiment
- \Rightarrow lattice calculations
- \Rightarrow low energy effective models

INTRODUCTION (continued...)

SOFT part parametrizes matrix elements of certain non-local quark (gluon) operators on the light-cone, e.g.

$\left\langle H'\left|\bar{\psi}\left(y\right)\mathcal{O}\psi\left(x ight)\right|H ight angle$

- ⇒ they should possess properties originating from QCD symmetries (e.g. Lorentz invariance, Ward identities, axial anomaly)
- \implies it is not obvious that effective models do inherit all QCD symmetries
- \implies possible problems with correct properties of SOFT part in the effective models

CHIRAL QUARK MODEL (χ QM)

For simplicity we consider pions only. In order to obtain considered matrix elements we need the model of quark-pion interactions.

At low energy scales spontaneous chiral symmetry breaking ($\chi {
m SB}$) plays very important role

- \Rightarrow the model should incorporate $\chi {\sf SB}$
- \Rightarrow there appear constituent quark mass $M\sim 350\,{
 m MeV}$

The simplest model is the semi-bosonized Nambu-Jona-Lasinio model¹ (chiral limit)

$$S_{
m loc} = \int d^4x \, ar{\psi} \left(x
ight) \left(i \ D - M U^{\gamma_5}
ight) \psi \left(x
ight)$$

where $U^{\gamma_5}(x) = \exp\left\{\frac{i}{F_{\pi}}\tau^a\pi^a(x)\gamma_5\right\}$, with $F_{\pi} = 93$ MeV.

- In order to get finite quark loops we need to impose some kind of regularization (but we cannot remove the cutoff parameter at the end)
- However to get correct results for anomalous processes we have to remove regularization
- Particular regularization scheme lacks motivation in terms of QCD...

NON-LOCAL χ QM

The most natural way of regularizing quark loops

 \implies momentum dependent constituent quark mass $M \equiv M(k)$

$$S_{\rm Int} = \int \frac{d^4 k \, d^4 l}{(2\pi)^8} \bar{\psi}(k) \sqrt{M(k)} U^{\gamma_5}(k-l) \sqrt{M(l)} \psi(l)$$

where usually one defines $M(k) = M F^2(k)$, and F(0) = 1, $F(k \to \infty) \to 0$. This action was "derived" from QCD instanton vacuum theory, with Euclidean analytical expression for $M(k)^1$.

Problem:

momentum dependent mass \Rightarrow naive vector current $\bar{\psi}\gamma^{\mu}\psi$ is not conserved \Rightarrow local vertex γ^{μ} has to be replaced by the non-local one Γ^{μ} The precise form of the vertex is unconstrained and has to be modeled^{2, 3, 4}. One of the simplest solution is

$$\Gamma^{\mu}(k,p) = \gamma^{\mu} - \frac{k^{\mu} + p^{\mu}}{k^2 - p^2} (M(k) - M(p))$$

The concrete model is specified by giving M(k) and the form of the vertices.

¹Diakonov, Petrov; ²Bowler, Birse; ³B. Holdom, R. Lewis; ⁴A. Bzdak, M. Praszalowicz

ONE LOOP CALCULATIONS

The ansatz above leads to set of poles in the complex plane. Using some tricks we can express the loop integral with N propagators as

$$\sum_{i_1,\ldots,i_N}^{4n+1} f_{i_1}\ldots f_{i_N}\eta_{i_1}^{\mathcal{M}_1}\ldots \eta_{i_N}^{\mathcal{M}_N}\int \frac{d^D\kappa}{(2\pi)^D} g\left(\kappa,\eta_{i_1},\ldots,\eta_N\right)$$

where g is a function containing only N poles, η_i are solutions of $z^{4n+1} + z^{4n} - (M/\Lambda)^2 = 0$ and f_i are some numbers composed from η_i . Higher twist light cone amplitudes \Rightarrow delta type singularities in the boundaries of physical support

Praszalowicz, Rostworowski, Bzdak, P.K.

APPLICATION I

Simplest SOFT objects \implies Distribution Amplitudes (DA)

Example: radiative vector meson decay $V \rightarrow S\gamma$ and Photon DA.

Relevant coordinates are defined by two light-like vectors n = (1, 0, 0, -1), $\tilde{n} = (1, 0, 0, 1)$. Then we can decompose any vector v as

$$v^{\mu} = \frac{v^{+}}{2}\tilde{n}^{\mu} + \frac{v^{-}}{2}n^{\mu} + v^{\mu}_{T}$$

General definition:

$$\left\langle 0\left|\overline{\psi}\left(\lambda n\right)\mathcal{O}\psi\left(-\lambda n\right)\right|\gamma\left(P
ight)
ight
angle \sim\mathcal{F}_{\mathcal{O}}\left(P^{2}
ight)\int_{0}^{1}du\,e^{i\left(2u-1
ight)\lambda P^{+}}\,\phi_{\mathcal{O}}\left(u,P^{2}
ight)$$

where $\mathcal{O} = \{\sigma^{\mu\nu}, \gamma^{\mu}, \gamma^{\mu}\gamma_{5}\}$ and $F_{\mathcal{O}}$ are relevant form factors.

P. Ball, Brown; Arriola, Broniowski, Dorokhov;

As an example consider vector photon DA $\phi_V(u, P^2)$

 \Rightarrow current conservation in QCD: $F_V(0) = 0$.

$N\chi QM$ calculations:

- Using full non-local photon-quark vertex and leaving pure QCD vector current operator we recover $F_V(0) = 0.$
- Diagram in the right has two contributions: hadronic and infinite perturbative part corresponding to electromagnetic ingredient of the photon.
- Amplitudes up to twist-4 in all channels have been calculated.

M = 350 MeV, n = 1

<ロ> (四) (四) (三) (三) (三)

APPLICATION II

More demanding objects to study in Chiral Quark Models: Transition Distribution Amplitudes appearing for example in $\pi^+\pi^- \to \gamma^*\gamma$ in the forward region¹.

Kinematics:

- high virtuality Q^2 of the upper photon
- low momentum transfer to the lower blob

$$\Delta^2 = (P_2 - P_1)^2 = t \ll Q^2$$

Example: Vector TDA (VTDA)

 $\int \frac{d\lambda}{2\pi} e^{i\lambda Xp^+} < \gamma(P_2) |\overline{d}(-\frac{\lambda}{2}n)\gamma^{\mu} u(\frac{\lambda}{2}n)|\pi^+(P_1) > \sim \varepsilon^{\mu\nu\alpha\beta} \varepsilon_{\nu}^* P_{1\alpha} P_{2\beta} V(X,\xi,t)$

where $\xi = -2\Delta^+/p^+$ with $p = \frac{1}{2}(P_1 + P_2)$ is so called skewedness.

¹Pire, Szymanowski

Properties of VTDA originating from QCD:

- polynomiality $\int dX X^n V(X,\xi,t) = a_n \xi^n + a_{n-1} \xi^{n-1} + \ldots + a_0$
- normalization is fixed by axial anomaly $\int dX \ V (X,\xi,t=0) = 1/2\pi^2$

$N\chi QM$ calculations:

- Polynomiality is satisfied.
- We obtain correct normalization only when both vector currents are non-local.

VTDA is related to pion-photon transition form factor

$$\int dX \ V\left(X,\xi,t\right) \sim F_{\pi\gamma}\left(t\right)$$

controlling $\gamma^*\gamma \to \pi^0$ reaction.

New BaBar data are available (29 May) which cast some new light on pion Distribution Amplitudes...

 \Rightarrow this is currently under investigation...

SUMMARY

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

- Non-local chiral quark model allows for analyzing low energy matrix elements
 - However, before using in real processes they have to be evolved (scale of effective models is low) not discussed
- In order to make calculations consistent we have to use modified currents
 - The form of the full currents is not restricted and has to be modelled
 - However, in general it is not clear yet which currents we should modify and when
 - Case of full axial current is more difficult not discussed
- First analysis of pion-photon Transition Distribution Amplitudes in non-local model

PHOTON DA DEFINITIONS

tensor channel

$$\begin{split} \Big\langle 0 \left| \overline{\psi} \left(\lambda n \right) \sigma^{\alpha \beta} \psi \left(-\lambda n \right) \right| \gamma \left(P, \varepsilon \right) \Big\rangle &= i^2 e \big\langle \overline{\psi} \psi \big\rangle F_T \left(P^2 \right) \\ & \left\{ \left(\varepsilon_T^{\alpha} \tilde{n}^{\beta} - \varepsilon_T^{\beta} \tilde{n}^{\alpha} \right) \frac{P^+}{2} \chi_m \int_0^1 du \, e^{i\xi\lambda P^+} \, \phi_T \left(u, P^2 \right) \right. \\ & \left. + \frac{1}{2P^+} \left(\tilde{n}^{\alpha} n^{\beta} - \tilde{n}^{\beta} n^{\alpha} \right) \varepsilon^+ \int_0^1 du \, e^{i\xi\lambda P^+} \, \psi_T \left(u, P^2 \right) \right. \\ & \left. + \frac{1}{P^+} \left(\varepsilon_T^{\alpha} n^{\beta} - \varepsilon_T^{\beta} n^{\alpha} \right) \int_0^1 du \, e^{i\xi\lambda P^+} \, h_T \left(u, P^2 \right) \right\}, \end{split}$$

vector channel

$$\left\langle 0 \left| \overline{\psi} \left(\lambda n \right) \gamma^{\mu} \psi \left(-\lambda n \right) \right| \gamma \left(P, \varepsilon \right) \right\rangle = i e f_{3\gamma} F_{V} \left(P^{2} \right)$$

$$\left\{ \frac{1}{2} \tilde{n}^{\mu} \varepsilon^{+} \int_{0}^{1} du \, e^{i \xi \lambda P^{+}} \, \phi_{V} \left(u, P^{2} \right) \right.$$

$$\left. + \varepsilon_{T}^{\mu} \int_{0}^{1} du \, e^{i \xi \lambda P^{+}} \, \psi_{V} \left(u, P^{2} \right) - \frac{1}{2} \frac{P^{2}}{\left(P^{+} \right)^{2}} n^{\mu} \varepsilon^{+} \int_{0}^{1} du \, e^{i \xi \lambda P^{+}} \, h_{V} \left(u, P^{2} \right) \right\},$$

axial channel

$$\left\langle 0 \left| \overline{\psi} (\lambda n) \gamma^{\mu} \gamma_{5} \psi (-\lambda n) \right| \gamma (P, \varepsilon) \right\rangle = i \frac{1}{2} e f_{3\gamma} F_{A} \left(P^{2} \right)$$

$$\epsilon_{\mu\nu\alpha\beta} \varepsilon^{\nu}_{T} \tilde{n}^{\alpha} n^{\beta} P^{+} \lambda \int_{0}^{1} du \, e^{i\xi\lambda P^{+}} \phi_{A} \left(u, P^{2} \right),$$

 $\xi=2u-1,\,\left<\bar\psi\psi\right>$ is quark condensate, χ_m is the magnetic susceptibility of the quark condensate.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

AXIAL TDA

$$\int \frac{d\lambda}{2\pi} e^{i\lambda X p^{+}} \left\langle \gamma\left(P_{2},\varepsilon\right) \left| \overline{d}\left(-\frac{\lambda}{2}n\right) \gamma^{\mu} \gamma_{5} u\left(\frac{\lambda}{2}n\right) \right| \pi^{+}\left(P_{1}\right) \right\rangle$$
$$= \frac{ie}{2\sqrt{2}F_{\pi}p^{+}} P_{2}^{\mu}\left(q\cdot\varepsilon^{*}\right) A\left(X,\xi,t\right) + \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

LEADING TWIST PHOTON DA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

