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Outline of the talk

Motivations

D = 2, supersymmetric Yang-Mills quantum mechanics

>
| 4
» Numerical algorithm and numerical results
» Exact solutions

>

Further perspectives
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Supersymmetric Yang-Mills Quantum Mechanics
» dimensional reduction of AV = 1, D dimensional Yang-Mills quantum
field theory to one point in space (Halpern, Claudson)
> generalization of supersymmetric quantum mechanics (Witten,
Cooper)
» Hamiltonian formulation, fermions and bosons are treated on equal
footing

» the physical Hilbert space is composed of singlet states, as well as,
all relevant operators are invariant

Numerical method
> gauge invariant cut-off (Wosiek)
> fermions can be introduced without difficulties
» rotational symmetry is preserved
Earlier analytic developments
» Claudson-Halpern solutions for SU(2)
» Samuel solutions for SU(N)
> Trzetrzelewski solutions for SU(N)
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System is described by a bosonic variable ¢4 and a complex fermion A4,
where A labels the generators of the gauge group.

Ga = faBc(¢B7c — idBAc),
QR = AaTa, Q = Aaa,

{Q,Q} = mama = 2H — 28 $aGa.

Thus, on physical states,

1
H= §7TA7TA.
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Method - construction of the Fock basis

We construct the Fock basis recursively,

» define the set of elementary, gauge invariant creation operators

SU(2) | SU(3) SU(4)

G | @) | (@)
(afafal) | (afafal)
(afafafal)

Table: Elementary bosonic bricks for SU(2),SU(3) and SU(4).

Thus, a general state with ng quanta for some given N, can be written as

|Sns.0)N = Yo Yk (322 (aP) () 0).
{xfaik=ns |
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Method - construction of the Fock basis

F=1] F=2 | F=3
(FTat) [ (FTFTat) | (FIFTFT)

Table: SU(2) fermionic bricks.

F=1 F=2 F=3 F=4
(fTa") (fTfTal) (FTFTFT) (FTFTFTFTaN)
(Flatal) | (Fiftatal) (FiFiFiat) (Flat)(FHi1)
(ffatafffat) (FTFifatal) (FTFTFTFTaTatl)
(Fa)(fTalal) (FTal)(FTfTal) (Fratal)(FTFTFT)
(Fraffiftafal) (Ftat)(afFTFTFT)
(ftat)(fTftafat) (FHFta)(FTfial)
(fFtataf)(Fiffal) (Ftatah)(FTfTfTal)
(fFfafat)(FifTatal) (FTftat)(FTfiatal)
(Frat)(fTatal)(FTfial)
(FTfTat)(fTalfTalal)

Table: SU(3) fermionic bricks.



Method - cut-off

We must introduce a cut-off: N,
» limit the maximal number of bosonic quanta
» finite number of fermionic quanta (Pauli exclusion principle)
» gauge symmetry as well as rotational symmetry are preserved

Figure: Eigenvalues of the (x?) operator for SU(2).
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Method - recursive relations

We relate an expectation value of an operator O to its expectation values
in sectors with lower number of quanta.

<5nf3,0| O(ng7 0)|5"570> = (<5nf3,0| [O(ngv 0)7 C(p, 0, a)} |S"B*P70>

+ (5my 0l C(p, 0,0)0(n§, 0)lsna—po)) - R(ng,0)
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Numerical results

Figure: Dependence of the eigenenergies on the cut-off for the SU(3) model in
the F = 0 sector.
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Numerical results

Figure: Dependence of the eigenenergies on the cut-off for the SU(3) model in
the F = 2 sector.
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Exact solutions - SU(2)

The Hamiltonian reads
3 1
H=(a'a) + 5~ §<(aTaT) + (aa)).

The eigenequation is

H|E) = E|E).
We expand |E) in the Fock basis
E) =) _aj(E)(a'a'Y|0).
j=0

aj must obey the recursion relation

S(E) ~ (2] + 5~ 4E)aa (E) + (1 +2)(j + 2)aa(E) = O,

which is solved by
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Exact solutions - SU(2)

7 5
aj(E) — (2j+§_4E)3j+1(E)+(j+2)(j+ 5)3j+2(E) =0
_S I ey ataty
|E>—j§0 I'(j+%)Lj (E)a'a')|o>
0 1 2 3. 4 5 6 7
J

Figure: Schematic structure of solutions for the SU(2) model.
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Exact solutions - SU(2)

The bosonic eigensolution in the position representation can be written as

(RIE) = > (RIUIE) =) a(E)RI(a"a'Y|0)
Jj=0 Jj=0

cey DU gy 8
= NF(E)e] 5 B (R)
j=0 r(J+5 j !

Setting f(E) = e~z aswell as, R = r? and E = k2, we get,
sin(kr)

(RIE) = N2,

which is, up to a multiplicative factor, the Claudson-Halpern solution of
the SU(2) model.

Piotr Korcyl Exact solutions in D = 2 SYMQM



Exact solutions - SU(3)

The Hamiltonian reads
1
H=(ala)+4— 3 ((aTaT) + (aa)).

The eigenequation is
H|E) = E|E).

We expand |E) in the Fock basis

Z ajk(E)(aTaTY(a'a'a")¥|0).

J k=0
Degeneracy of basis states: ng = 2j + 3k.
aj k(E) must obey the recursion relation
aj,l’k(E) — (2] +3k+4— 4E)aj’k(E) + (_j + 1)(] + 3k + 4)aj+1’k(E)

+ 3(k+2)%aj-2k12(E) = 0.
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Exact solutions - SU(3)

aj_17k(E) — (2] +3k+4-— 4E)aj7k(E) + (J + 1)(] 4+ 3k + 4)aj+17k(E)
+ 3(k + 2)Qaj,2,k+2(E) =0.

2j + 3k = const

0 T 2 3 4 5 6 7
i

Figure: Schematic structure of solutions of the SU(3) model.
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Exact solutions - SU(3)

The general solutions in the infinite cut-off limit read,

oo k
1 . .
Bl = 52 GO(E)(1.2K) + 3 agli + 30,2k 29))

Jj=0 g=1

4y 1 (2k—qg-1) k! 2
Qq = (—g) * (g+1)! (2k)! ((k—q—l)!) '

For example,
2 § Lg |./7 _g|./+370>)
J\/ 3

In position representation we have,

(RIE)o = S (RI)GIE) ~ oFs (4.~ EF).

J
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Exact solutions vs numerical results

Figure: Spectrum of the SU(3) model in the F = 0 sector.
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Conclusions

Summary:

» numerical algorithm permits calculations of the spectra for any N
and in any fermionic sector

» analytic solutions with possible generalizations to more complicated
models

Possible further directions:

» generalize to higher spatial dimensions - the free spectrum and
eigenstates of the D =4 and D = 10 SYMQM

> large N limit possible

» perturbative expansion of the interacting model around the free
solutions
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Backup slides

Figure: Spectrum of the SU(4) model in the F = 0 sector.
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Backup slides

Figure: Spectrum of the SU(5) model in the F = 0 sector.

Piotr Korcyl Exact solutions in D = 2 SYMQM



Backup slides

Figure: Spectrum of the SU(3) model in the F = 1 sector.
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