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Yang-Mills theories

Standard Yang—Mills theories

Sild] = [ Lin (6,0u0) d*z = [ L (6, d)
@ ¢:M—V,

M — Minkowski space, V — a linear space
@ G —aliegroup, 7:Lie(G)— End(V),

® p(exp(g)) = exp (m(g))
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Yang-Mills theories

Standard Yang—Mills theories

Sld] = [ Lin (6,0u9) d*x = [ L (4,d0)
@ ¢:M—V,
M — Minkowski space, V — a linear space
@ G —aliegroup, 7:Lie(G)— End(V),
® p(exp(g)) = exp (m(g))
® £, (p(9)9,d(p(9)9)) = £m (¢,d¢), VYgeC
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An interaction associated to ¢

Allow the group element to depend on space—time point and demand
the Lagrangian four—form to be invariant under local action of G. In
order to achieve this, replace the differentials by covariant
differentials:

@ dp — D¢ = do + A9,
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An interaction associated to ¢

Allow the group element to depend on space—time point and demand
the Lagrangian four—form to be invariant under local action of G. In
order to achieve this, replace the differentials by covariant
differentials:

@ dp — D¢ = do + A9,

@ A —ar(Lie(G))-valued one—form field on M,

® A— A= p(9)Ap~"(g) — dp(9)p~"(9)-
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Yang-Mills theories

An interaction associated to ¢

Allow the group element to depend on space—time point and demand
the Lagrangian four—form to be invariant under local action of G. In
order to achieve this, replace the differentials by covariant
differentials:

@ dp — D¢ = do + A9,

@ A —ar(Lie(G))-valued one—form field on M,

@ A— A= p(g)Ap~(g) —dp(g)p~ ' (9).
@ D'¢/ =plg)Dp = L (d,do,A) := £, (¢, D¢) invariant
under local transformations.
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Yang-Mills theories

An interaction associated to ¢

Allow the group element to depend on space—time point and demand
the Lagrangian four—form to be invariant under local action of G. In
order to achieve this, replace the differentials by covariant
differentials:

@ dp — D¢ = do + A9,

@ A —ar(Lie(G))-valued one—form field on M,

@ A— A= p(g)Ap~(g) —dp(g)p~ ' (9).
@ D'¢/ =plg)Dp = L (d,do,A) := £, (¢, D¢) invariant
under local transformations.

MCP- the Minimal Coupling Procedure
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Physical meaning of A

@ components of A — Yang—Mills fields,
@ F :=dA + A A A —the field—strength two—form,
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Yang-Mills theories

Physical meaning of A

@ components of A — Yang—Mills fields,

@ F :=dA + A A A —the field—strength two—form,
o ' = p(g)Fp~'(9),

@ dF+AANF-FAA=0.
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The Lagrangian four—form
o £=2¢,+L,

@ £ — gauge—field part, built of A, invariant under gauge
transformations.

Marcin Kazmierczak University of Warsaw

Poincaré Gauge Theory of Gravity



Introduction
0000e

Yang-Mills theories

The Lagrangian four—form

@ £=2¢,+Lc,

@ £ — gauge—field part, built of A, invariant under gauge
transformations.

@ L4 ~tr (F A«F)
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Yang-Mills theories

The Lagrangian four—form

@ £=2¢,+Lc,

@ £ — gauge—field part, built of A, invariant under gauge
transformations.

@ L4 ~tr (F A«F)
@ (will not work for gravity!)
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The Poincaré group as a gauge group

The Poincaré group as a gauge group

@ The Poincaré group P consists of all isometries of M,
¢ (Aya)r=Az+a, zaeM, AecO(1,3),

@ (A1,a1)(Ag,a2) = (A1Ag, Arag + aq).

@ Consider a representation

p(A,a) :== p(a)p(A),

p(a) = exp (a,PY),  p(A(2)) i= exp (;sawb)

where P? J% ¢ 1 (Lie(P)).
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® p(A1,a1)p(Az,a2) = p(A1Az, Aaz + ar)
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The Poincaré group as a gauge group

@ p(A1,a1)p(A2,a2) = p(A1Ag, Avas +a1) =

p(A,a)Pp (A a) = AP,

p(A,a)Jp (A a) = ALA (JCd +a‘P?— ach> ,

[P, P’ =0, (1)
[P, Jo4] = yecpd _ pad pe,

[Jab, jed] — pad be | pbe gad _bd yac _ pac gbd,
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The Poincaré group as a gauge group

@ A=1iwyJ®+T,P* (Lie(P))-valued one—form on M,
@ Wyh = —Whq
o w=(w%), I'=(T2,
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The Poincaré group as a gauge group

@ A=1iwyJ®+T,P* (Lie(P))-valued one—form on M,
@ Wep = —Wpa

°w=(wh), I'=T7),

® A = p(g)Ap~'(g9) —dp(g)p~'(9) and (1) imply
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The Poincaré group as a gauge group

@ A=1iwyJ®+T,P* (Lie(P))-valued one—form on M,
@ Wep = —Wpa

°w=(wh), I'=T7),

® A = p(g)Ap~'(g9) —dp(g)p~'(9) and (1) imply

W =AuAT —dAATY, TV =AT —da—da . (2)
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The Poincaré group as a gauge group

General Relativity as a theory of gravitation

@ The space—time is a manifold M with a Lorentzian metric g.
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General Relativity as a theory of gravitation

@ The space—time is a manifold M with a Lorentzian metric g.
@ tetrad: é, =¢€,0,, ¢ (€a,€) =Nap
@ cotetrad: €% = epdat, et (ép) = 0f
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General Relativity as a theory of gravitation

@ The space—time is a manifold M with a Lorentzian metric g.
@ tetrad: é, =¢€,0,, ¢ (€a,€) =Nap
@ cotetrad: €% = epdat, et (ép) = 0f

® g=nue" ®e°
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The Poincaré group as a gauge group

General Relativity as a theory of gravitation

@ The space—time is a manifold M with a Lorentzian metric g.
@ tetrad: é, =¢€,0,, ¢ (€a,€) =Nap
o cotetrad: e = elda”, €% (&) = Jf
@ g=1nuwe*® eb
o
v =A% = ¢ =Ae, AeO(1,3) 3)
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The Poincaré group as a gauge group

General Relativity as a theory of gravitation

@ The space—time is a manifold M with a Lorentzian metric g.
@ tetrad: é, =¢€,0,, ¢ (€a,€) =Nap

o cotetrad: e = elda”, €% (&) = Jf
o
o

g = Nape® ® €

P =A%e" = ¢ =Ae, AcO(1,3) (3)

connection one—forms: w%, =TI'}.e¢, Vg.é, =T} é,
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The Poincaré group as a gauge group

General Relativity as a theory of gravitation

The space-time is a manifold M with a Lorentzian metric g.
tetrad: é, = €,0,, g (€a,€) = Nab
cotetrad: e® = ejdat, e (&)= 0y

g = Nape® ® €

P =A%e" = ¢ =Ae, AcO(1,3) (3)

@ connection one—forms: w%, =T'}.e¢, Vg.é, =TI1.é,
@ W = AwA 1 —dAAT,
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The Poincaré group as a gauge group

General Relativity as a theory of gravitation

The space-time is a manifold M with a Lorentzian metric g.
tetrad: é, = €,0,, g (€a,€) = Nab
cotetrad: e® = ejdat, e (&)= 0y

g = Nape® ® €

P =A%e" = ¢ =Ae, AcO(1,3) (3)

@ connection one—forms: w%, =T'}.e¢, Vg.é, =TI1.é,
@ W = AwA 1 —dAAT,
Q@ Wyep = —Wpq <~ Vg =0.
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The Poincaré group as a gauge group

In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector—valued
zero—form y* on M transforming under the gauge
transformations as

@y =Ay+a.
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In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector—valued
zero—form y* on M transforming under the gauge
transformations as

@y =Ay+a.

@ec:=1'+Dy, Dy=dy+wy = € =Ae.
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The Poincaré group as a gauge group

In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector—valued
zero—form y* on M transforming under the gauge
transformations as

@y =Ay+a.

@c:=T+Dy, Dy=dy+wy = € =Ae.

o If £ =2 (e(I',y,w),w, 9), then it is justified to acknowledge

e as a fundamental field.
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The Poincaré group as a gauge group

In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector—valued
zero—form y* on M transforming under the gauge
transformations as

@y =Ay+a.

@ec:=1'+Dy, Dy=dy+wy = € =Ae.

o If £ =2 (e(I',y,w),w, 9), then it is justified to acknowledge
e as a fundamental field.

@ £=2CLq0+ Em, Lo = —ﬁeabcdea Aeb A QCd,
Q% = dw + w A W,
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The Poincaré group as a gauge group

In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector—valued
zero—form y* on M transforming under the gauge
transformations as

@y =Ay+a.

@ec:=1'+Dy, Dy=dy+wy = € =Ae.

o If £ =2 (e(I',y,w),w, 9), then it is justified to acknowledge
e as a fundamental field.

@ £=2Lg+ Em, La= —ﬁeabcdea Aeb A QCd,
Q% = dw + w A W,

o GR: %T“bceb Aefi=de® +wiy ANeb =0
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The Poincaré group as a gauge group

In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector—valued
zero—form y* on M transforming under the gauge
transformations as

@y =Ay+a.

@ec:=1+Dy, Dy=dy+wy = € =Ae.

o If £ =2 (e(I',y,w),w, 9), then it is justified to acknowledge
e as a fundamental field.

@ £=2Lg+ Em, La= —ﬁeabcdea Aeb A QCd,
Q% = dw® + W A WS,

o %T“bceb A €€ = de® + w A e
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The Poincaré group as a gauge group

The field equations of the Einstein—Cartan theory

6£G 6Em o a . a ]' a _ a
5ea+5ea —0 p== Gb_Rb_§R5b_ktb
68a  08m

(5ng + S 0 & T —T%" +T'* = kS™
6Lm

=M _0

d¢

where R%, := n*R%.4, R := R%,, T := T"%, and the dynamical
definitions of energy—momentum and spin density tensors on
Riemann—Cartan space are

0Lm Sabee, = 2% OLm

b
tape = — % .
“ Jea’ Swap
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The ambiguity of MCP in the presence of torsion
m Constructing a matter part of a Lagrangian
m The Dirac field



Minimal coupling procedure in Poincaré Gauge Theory
[ eJele]e]

Constructing a matter part of a Lagrangian

The addition of a divergence to the flat—space Lagrangian density is a
symmetry transformation

L = Lodiz,
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Constructing a matter part of a Lagrangian

The addition of a divergence to the flat—space Lagrangian density is a
symmetry transformation

L = Lodiz,

L — Ly, = Ly + 0, V", (4)

Marcin Kazmierczak University of Warsaw

Poincaré Gauge Theory of Gravity



Minimal coupling procedure in Poincaré Gauge Theory
[ eJele]e]

Constructing a matter part of a Lagrangian

The addition of a divergence to the flat—space Lagrangian density is a
symmetry transformation

L = Lodiz,

L — Ly, = Ly + 0, V", (4)

0, Vidiz = £y diz = d(Vidiz),
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Minimal coupling procedure in Poincaré Gauge Theory
[ eJele]e]

Constructing a matter part of a Lagrangian

The addition of a divergence to the flat—space Lagrangian density is a
symmetry transformation

L = Lodiz,

L — Ly, = Ly + 0, V", (4)

o, VH d*r = Ly d*r = d(Vid'z),
@ £ denotes the Lie derivative, _ the internal product, x the
Hodge star of Minkowski metric.
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Minimal coupling procedure in Poincaré Gauge Theory
[ eJele]e]

Constructing a matter part of a Lagrangian

The addition of a divergence to the flat—space Lagrangian density is a
symmetry transformation

L = Lodiz,

L — Ly, = Ly + 0, V", (4)

o, VH d*r = Ly d*r = d(Vid'z),
@ £ denotes the Lie derivative, _ the internal product, x the
Hodge star of Minkowski metric.

@ The field equations, as well as integrated Noether energy
and momenta, remain unchanged.
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Constructing a matter part of a Lagrangian

Introducing gravity

@ How to construct £, (¢, d¢, A) from £,, (¢, d¢)?
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Constructing a matter part of a Lagrangian

Introducing gravity

@ How to construct £, (¢, d¢, A) from £,, (¢, d¢)?

@ A consistency requirement — the transformation (4) is a
symmetry of the resulting theory with gravity.
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Constructing a matter part of a Lagrangian

Introducing gravity

@ How to construct £, (¢, d¢, A) from £,, (¢, d¢)?

@ A consistency requirement — the transformation (4) is a
symmetry of the resulting theory with gravity.

@ MCP does not satisfy this requirement!
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Constructing a matter part of a Lagrangian

Introducing gravity

@ How to construct £, (¢, d¢, A) from £,, (¢, d¢)?

@ A consistency requirement — the transformation (4) is a
symmetry of the resulting theory with gravity.

@ MCP does not satisfy this requirement!
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Constructing a matter part of a Lagrangian

Introducing gravity

@ How to construct £, (¢, d¢, A) from £,, (¢, d¢)?

@ A consistency requirement — the transformation (4) is a
symmetry of the resulting theory with gravity.

@ MCP does not satisfy this requirement!
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Minimal coupling procedure in Poincaré Gauge Theory
[e]e] Te]e]

Constructing a matter part of a Lagrangian

Introducing gravity

@ How to construct £, (¢, d¢, A) from £,, (¢, d¢)?

@ A consistency requirement — the transformation (4) is a
symmetry of the resulting theory with gravity.

@ MCP does not satisfy this requirement!
0 9, Vidiy ME  A(Vie) - T,V T, =T,
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Minimal coupling procedure in Poincaré Gauge Theory
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Constructing a matter part of a Lagrangian

Introducing gravity

@ How to construct £, (¢, d¢, A) from £,, (¢, d¢)?

@ A consistency requirement — the transformation (4) is a
symmetry of the resulting theory with gravity.

@ MCP does not satisfy this requirement!
0 9, Vidiy ME  A(Vie) - T,V T,i=TY,
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Minimal coupling procedure in Poincaré Gauge Theory
[ee]e]e] ]

Constructing a matter part of a Lagrangian

Introducing gravity

@ How to construct £, (¢, d¢, A) from £,, (¢, d¢)?

@ A consistency requirement — the transformation (4) is a
symmetry of the resulting theory with gravity.

@ MCP does not satisfy this requirement!
0 9, Vidiy ME  A(Vie) - T,V T,i=TY,
@ Any physical consequences?
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Minimal coupling procedure in Poincaré Gauge Theory
@000

The Dirac field

An example — the Dirac field

@ Lpo = —i(xdz,) A pyHdyp — mapp d*x
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Minimal coupling procedure in Poincaré Gauge Theory
@000

The Dirac field

An example — the Dirac field

o £F0 = —4 (*dl’u) VAN E’Yﬂdw - mETﬂ d4x
@ Yy Ayt =2, 1= 1pial,
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Minimal coupling procedure in Poincaré Gauge Theory
@000

The Dirac field

An example — the Dirac field

@ Lro = —i(xdz,) APyt dy — minp dia
@ iy oyt =2, =yl
@ Invariant under the global action of P
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Minimal coupling procedure in Poincaré Gauge Theory
@000

The Dirac field

An example — the Dirac field

@ Lpo = —i(xdz,) A pyHdyp — mapp d*x
@ iy oyt =2, =yl
@ Invariant under the global action of P

ot — 't = Nt +at, Y — = S(A)y,

S(A(g)) := exp <25WEW> , TV =

7

nwo v
2[7 77 ]'
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Minimal coupling procedure in Poincaré Gauge Theory
@000

The Dirac field

An example — the Dirac field

@ Lpo = —i(xdz,) A pyHdyp — mapp d*x
@ iy oyt =2, =yl
@ Invariant under the global action of P

ot — 't = Nt +at, Y — = S(A)y,

7

7

@ £ro Mop EF() = —i(*eq) A @’yaDQb —mynpe
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Minimal coupling procedure in Poincaré Gauge Theory
@000

The Dirac field

An example — the Dirac field

@ Lro = —i(xdz,) APyt dy — minp dia
@ iy oyt =2, =yl
@ Invariant under the global action of P
ot — 't = Nt +at, Y — = S(A)y,

7

Z’ v LV L v
S(A(E)) = exp <4€HVE// ) s P — 2[7/ , 7Y ]
o Ly LU Bpy = —i(ked) AYYEIDY — mibibe
@ DY =dy— iwabZ“bﬂ), e=e"Nnel Ne? Aed.
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Minimal coupling procedure in Poincaré Gauge Theory
[e] Je]e]

The Dirac field

6L ro 0L r0
01 o
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Minimal coupling procedure in Poincaré Gauge Theory

The Dirac field

5Lr0 5L50

o 5
@ Commonly accepted solution:
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Minimal coupling procedure in Poincaré Gauge Theory
[e] Je]e]

The Dirac field

0 0LF0 _ o L fm0_
oy o

@ Commonly accepted solution:

® £rp = —3 (xdz,) A (Pydi — dry) — miprpd'a
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Minimal coupling procedure in Poincaré Gauge Theory
[e] Je]e]

The Dirac field

0 JEr0 g o Lm0
oy o
@ Commonly accepted solution:
1

s (o) A (P ey — Tyy) — mip

OEFR:

e justified, since Lrpr = Lpo + 9, VH, VH = —Lipyke
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Minimal coupling procedure in Poincaré Gauge Theory
[e] Je]e]

The Dirac field

0 JEr0 g o Lm0
oy o
@ Commonly accepted solution:
O Lrp =~ (dry) A (Ui - %w) — mipd'e

e justified, since Lrp = Lro + 9, VF, VI = —Lipyip
) -

@ MCP = £pp = —% (xeq) A (WDw D"
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Minimal coupling procedure in Poincaré Gauge Theory
[e] Je]e]

The Dirac field

0 JEr0 g o Lm0
oy o
@ Commonly accepted solution:
O Lrp =~ (dry) A (Ui - %w) — mipd'e

@ justified, since Lrr = Lro + 9.V, - f%@ )
) -

@ MCP = £pp = —% (xeq) A (WDw D"

@ £,r is real and the theory is well defined. But
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Minimal coupling procedure in Poincaré Gauge Theory
[e] Je]e]

The Dirac field

0 JEr0 g o Lm0
oy o
@ Commonly accepted solution:
O Lrp =~ (dry) A (Ui - %w) — mipd'e

@ justified, since Lrr = Lro + 9.V, - f%@ )
) -

@ MCP = £pp = —% (xeq) A (WDw D"

@ £,r is real and the theory is well defined. But
® Lrr — Lrr+ 0,V#,
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Minimal coupling procedure in Poincaré Gauge Theory
[e] Je]e]

The Dirac field

0 0LF0 _ o L fm0_
oy o

@ Commonly accepted solution:

O Lrp =~ (dry) A (Ui - %w) — mipd'e

justified, since Lrr = Lpo + 9,VH, L= —Lopyip
) -

N i
MCP = &pr=—; (*eq) A (zWDz/J D"

£ is real and the theory is well defined. But
Lrr — Lrr+0,VH,

VH = aJ(“V) + bJ(“A), a,beR,
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Minimal coupling procedure in Poincaré Gauge Theory
[e] Je]e]

The Dirac field

0 0LF0 _ o L fm0_
oy o

@ Commonly accepted solution:

O Spp = — (wday) A (Pydi %w) — migpdte

e justified, since Lpr = Lo + 9,VH, b= — Lyt

® MOP = &=~ (xen) A (zzwaDw D) — mie.
@ £ppis real and the theory is well defined. But

@ Lrr — Lpr+ 0,V

o VH= aJ(“V) + bJ(“A), a,beR,

Ty =0, Il =9y
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Minimal coupling procedure in Poincaré Gauge Theory
[e]e] 6]

The Dirac field

Effective Lagrangian for Einstein—Cartan theory with fermions

Exploiting the algebraic invertible relation between spin and torsion
Teb—TapbeTbpac=gSabe, Sabee,:=2x SEm one obtaines

dwap’

Eeff:/QG‘FEFR'F(CAA J(SA)J(GA)"FCAV J(SA)J(“V)-FCVV Jiv)J(“V))e )
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Minimal coupling procedure in Poincaré Gauge Theory
[e]e] 6]

The Dirac field

Effective Lagrangian for Einstein—Cartan theory with fermions

Exploiting the algebraic invertible relation between spin and torsion
Teb—TapbeTbpac=gSabe, Sabee,:=2x SEm one obtaines

dwap’

Eeffiﬂc-l-EFR-l-(CAA J(SA)J(GA)"FCAV J(SA)J(“V)-FCVV Jiv)J(“V)>€ )

Caa=%(1-4%) . Cav=—Tab,  Cyv=—3d*,
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Minimal coupling procedure in Poincaré Gauge Theory
[e]e] 6]

The Dirac field

Effective Lagrangian for Einstein—Cartan theory with fermions

Exploiting the algebraic invertible relation between spin and torsion
Teeb —Tapbey Thpec=fgabe, §ebCeci=2x 3o, one obtaines

Eeffiﬂc-l-EFR-l-(CAA J(SA)J(GA)"FCAV g )J(“V)-i-va 7y )J(‘LV)>

Caa=3k(1-4b%) , Cay=—3Eab , Cyv=—23ka?

(i-y“%a—m>w+[—QCAAJéA)'yE’—i-CA (7Y =a %) +20v v IV ]y =0
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Minimal coupling procedure in Poincaré Gauge Theory
[e]e]e] ]

The Dirac field

Effective Lagrangian for Einstein—Cartan theory with fermions

Exploiting the algebraic invertible relation between spin and torsion
Teab_TapbeyTbpac=fgabe, §obeoi=2xgim, one obtaines

o 2
Sepp=SatLrr+(Can JEVIgy +Cav IV I8 4Oy I TG, Ve

Can=3%(1-4b%) , Cav=—3Fab , Cyy=—3ka?

(z‘va%a—m)w+[—2cAAJéAH5+CAv(JéA)—J§V>w5)+2cvvJéV>]vaw:o :

Loop Quantum Gravity: £o=—€apcac®Ae? AQ+ oAb A Qg
2L/ 332
Can=1glss [10+8(1-417)],  Cav=12Lra(1-280), Cyv=—7225a2.
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The general idea

The generalisation of the YM construction

° m fﬁm ¢7 u¢ l’ - fsm ¢7 d¢)
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The general idea

The generalisation of the YM construction

° Sm fﬁm ¢7 u¢ $ - fsm ¢7 d¢)

° dngHD(ﬁ:dqurA(b,
where A is a Lin(V)-valued one—form field on M,

Marcin Kazmierczak University of Warsaw

Poincaré Gauge Theory of Gravity



Modified coupling procedure
[ o]

The general idea

The generalisation of the YM construction

° Sm fﬁm ¢7 u¢ $ - fsm ¢7 d¢)

° dngHD(ﬁ:dqurA(b,
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The general idea

The generalisation of the YM construction

° Sm fﬁm ¢7 u¢ $ - fsm ¢7 d¢)

° dngHD(ﬁ:dqurA(b,
where A is a Lin(V)-valued one—form field on M,

o A— A = p(9)Ap~(9) — dp(g)p~"(9)-

@ A=A+DB(Ae),
where A is Ran(m)—valued and B(A, e) is Ran(r)+—valued.
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Modified coupling procedure
[ o]

The general idea

The generalisation of the YM construction

° Sm fﬁm ¢7 u¢ $ - fsm ¢7 d¢)

° dngHD(ﬁ:dqurA(b,
where A is a Lin(V)-valued one—form field on M,

o A— A = p(9)Ap~(9) — dp(g)p~"(9)-

@ A=A+DB(Ae),
where A is Ran(m)—valued and B(A, e) is Ran(r)+—valued.

@ A =p(g)Ap~t(g) —dp(g)p~(9), € = Ae,
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Modified coupling procedure
[ o]

The general idea

The generalisation of the YM construction

° Sm fﬁm ¢7 u¢ $ - fsm ¢7 d¢)

° dngHD(ﬁ:dqurA(b,
where A is a Lin(V)-valued one—form field on M,

o A— A = p(9)Ap~(9) — dp(g)p~"(9)-

@ A=A+DB(Ae),
where A is Ran(m)—valued and B(A, e) is Ran(r)+—valued.

® A =p(g)Ap~(g) —dp(g)p~'(9), € =Ae,
@ B(A',¢) = p(g)B(A, e)p~ ' (g).
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The general idea

What is Ran(r)*?
@ Lin(V) = Ran(r) ® Ran(m)* = A andB(A,e) are
uniquely determined by A.
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What is Ran(r)*?
@ Lin(V) = Ran(r) ® Ran(m)* = A andB(A,e) are
uniquely determined by A.

@ Ran(m)t is not uniquely determined by this requirement.
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The general idea

What is Ran(r)*?
@ Lin(V) = Ran(r) ® Ran(m)* = A andB(A,e) are
uniquely determined by A.
@ Ran(m)t is not uniquely determined by this requirement.

@ if V admits a p—invariant scalar product (,),, such that
Yo,weV, geG, (plg)v,plg)w)y = (v,w),
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The general idea

What is Ran(r)*?
@ Lin(V) = Ran(r) ® Ran(m)* = A andB(A,e) are
uniquely determined by A.
@ Ran(m)t is not uniquely determined by this requirement.
@ if V admits a p—invariant scalar product (,),, such that
VoweV, geG, (p(g)v,p(g)w), = (v,w),,

(e.g. ¥°¢ for Dirac representation, 7, V*W" for vector
representation etc.)
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Modified coupling procedure
o] ]

The general idea

What is Ran(r)*?
@ Lin(V) = Ran(r) ® Ran(m)* = A andB(A,e) are
uniquely determined by A.
@ Ran(m)t is not uniquely determined by this requirement.
@ if V admits a p—invariant scalar product (,),, such that
VoweV, geG, (p(g)v,p(g)w), = (v,w),,

(e.g. ¥°¢ for Dirac representation, 7, V*W" for vector
representation etc.)

then the induced product (, >>p on Lin(V) satisfying
(p(9)Xp(9),p(9)Y P (9)), = (X,Y), can be used.
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Modified coupling procedure
o] ]

The general idea

What is Ran(r)*?
@ Lin(V) = Ran(r) ® Ran(m)* = A andB(A,e) are
uniquely determined by A.
@ Ran(m)t is not uniquely determined by this requirement.
@ if V admits a p—invariant scalar product (,),, such that
VoweV, geG, (p(g)v,p(g)w), = (v,w),,

(e.g. ¥°¢ for Dirac representation, 7, V*W" for vector
representation etc.)

then the induced product (, >>p on Lin(V) satisfying
(p(9)Xp(9),p(9)Y P (9)), = (X,Y), can be used.

@ if the subspace Ran(w) C Lin(V) is nondegenerate with
respect to (, >>p, then Lin(V) = Ran(n) @ Ran(m)*.
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The Dirac field
@ V =C* Ran(m) is spanned by £% = %[y 4],
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The Dirac field

The Dirac field
@ V =C* Ran(m) is spanned by £% = %[y 4],
° (XY >>p = trace (\"XT9%Y), Ran(r)* is spanned by
1,9%,9% 9%
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Modified coupling procedure

@00

The Dirac field

The Dirac field
@ V =C* Ran(m) is spanned by £% = %[y 4],
° (XY >>p = trace (\"XT9%Y), Ran(r)* is spanned by
1,9%,9% 9%y
°
Dy =dp+ Ay, A=A+B,
A= —%wabZ“b, B = X1+ #7° + 727" + par*7%

where v, k, T4, pq are complex—valued one—forms on
space—time.
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The Dirac field

We will require that the Leibniz rule hold
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The Dirac field

We will require that the Leibniz rule hold

° — J—
(DY + Py D = dJfy + &% Iy,

(DPIV*Y % + 7"y D = dJ¢y) + &% I 0y,
where D) := (D)7 and &%, is a modified connection on
space—time. The solution:
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Modified coupling procedure

(o] o}

The Dirac field

We will require that the Leibniz rule hold

° — J—
(DY + Py D = dJfy + &% Iy,

(DPIV*Y % + 7"y D = dJ¢y) + &% I 0y,
where D) := (D)7 and &%, is a modified connection on
space—time. The solution:

(]
1
0% =w' + Ay, B= 5)\1—#@'#11 +ipo7y”,

where \, i1, p2 are real-valued one—forms.
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Modified coupling procedure

(o] o}

The Dirac field

We will require that the Leibniz rule hold
° — J—
(DY + 7" DY = dJfyy + "Iy,
(DPIV*Y % + 7"y D = dJ¢y) + &% I 0y,
where D) := (D)7 and &%, is a modified connection on
space—time. The solution:
° 1
0% =w + A, B= 5A1+m11 +ipony’,

where \, i1, uo are real-valued one—forms.

@ 11 and u9 do not influence ©. They could be hidden in the gauge
fields corresponding to the localization of the global symmetry
¥ — ey and the approximate symmetry ¢ — e ¢). We set
p1 = pr2 = 0.
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The Dirac field

@ The procedure would be free of the ambiguity iff A = T,
where T = T,e“ is the torsion—trace—one—form.
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The Dirac field

@ The procedure would be free of the ambiguity iff A = T,
where T = T,e“ is the torsion—trace—one—form.

@ 0% =w% + Ty — a modified connection on M (w, e),
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The Dirac field

@ The procedure would be free of the ambiguity iff A = T,
where T = T,e“ is the torsion—trace—one—form.

@ 0% =w% + Ty — a modified connection on M (w, e),

® Dy = dip — twe X% + 3T,
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Modified coupling procedure

ooe

The Dirac field

@ The procedure would be free of the ambiguity iff A = T,
where T = T,e“ is the torsion—trace—one—form.

@ 0% =w% + Ty — a modified connection on M (w, e),
® Dy = dip — twe X% + 3T,
o

o Q k a
Lerr = La+ Lrr + J(A)J(A)E.

3k
16
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@ The modified coupling procedure provides a consistent method
for coupling gravity to other field theories within the framework of
the Poincaré gauge theory of gravity.
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@ The modified coupling procedure provides a consistent method
for coupling gravity to other field theories within the framework of
the Poincaré gauge theory of gravity.
@ As opposed to MCP, the results obtained do not depend on the
choice of flat space Lagrangian from the class of equivalence
corresponding to the possibility of adding divergence.
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Conclusions

Conclusions

@ The modified coupling procedure provides a consistent method
for coupling gravity to other field theories within the framework of
the Poincaré gauge theory of gravity.

@ As opposed to MCP, the results obtained do not depend on the
choice of flat space Lagrangian from the class of equivalence
corresponding to the possibility of adding divergence.

@ In particular, the predictions of EC theory with fermions are
made unique — they agree with those derived in earlier accounts
for a particular choice of fermionic Lagrangian. The same
concerns the predictions of EC theory modified by the presence
of the Holst term.
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