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Yang–Mills theories

Standard Yang–Mills theories

Sm[φ] =
∫
Lm (φ, ∂µφ) d4x =

∫
Lm (φ, dφ)

φ : M → V,
M – Minkowski space, V – a linear space
G – a Lie group, π : Lie(G) → End(V),
ρ (exp(g)) = exp (π(g))
Lm (ρ(g)φ, d (ρ(g)φ)) = Lm (φ, dφ) , ∀g ∈ G
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Marcin Kaźmierczak University of Warsaw

Poincaré Gauge Theory of Gravity



Introduction Minimal coupling procedure in Poincaré Gauge Theory Modified coupling procedure

Yang–Mills theories

Standard Yang–Mills theories

Sm[φ] =
∫
Lm (φ, ∂µφ) d4x =

∫
Lm (φ, dφ)

φ : M → V,
M – Minkowski space, V – a linear space
G – a Lie group, π : Lie(G) → End(V),
ρ (exp(g)) = exp (π(g))

Lm (ρ(g)φ, d (ρ(g)φ)) = Lm (φ, dφ) , ∀g ∈ G
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Yang–Mills theories

An interaction associated to G

Allow the group element to depend on space–time point and demand
the Lagrangian four–form to be invariant under local action of G. In
order to achieve this, replace the differentials by covariant
differentials:

dφ→ Dφ = dφ+ Aφ,

A – a π (Lie(G))–valued one–form field on M ,
A → A′ = ρ(g)Aρ−1(g)− dρ(g)ρ−1(g).
D′φ′ = ρ(g)Dφ ⇒ L̃m (φ, dφ,A) := Lm (φ,Dφ) invariant
under local transformations.
MCP– the Minimal Coupling Procedure
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Yang–Mills theories

Physical meaning of A

components of A – Yang–Mills fields,

F := dA + A ∧ A – the field–strength two–form,
F′ = ρ(g)Fρ−1(g),
dF + A ∧ F− F ∧ A = 0.
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Yang–Mills theories

The Lagrangian four–form

L = L̃m+LG,

LG – gauge–field part, built of A, invariant under gauge
transformations.
LG ∼ tr (F ∧ ?F)
(will not work for gravity!)
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The Poincaré group as a gauge group

The Poincaré group P consists of all isometries of M ,

(Λ, a)x = Λx+ a, x, a ∈M, Λ ∈ O(1, 3),
(Λ1, a1)(Λ2, a2) = (Λ1Λ2,Λ1a2 + a1).
Consider a representation

ρ(Λ, a) := ρ(a)ρ(Λ),

ρ(a) := exp (aaP a) , ρ (Λ(ε)) := exp
(

1
2
εabJ

ab

)
where P a, Jab ∈ π (Lie(P)).
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The Poincaré group as a gauge group

ρ(Λ1, a1)ρ(Λ2, a2) = ρ(Λ1Λ2,Λ1a2 + a1)

ρ(Λ, a)P aρ−1(Λ, a) = ΛcaP c,

ρ(Λ, a)Jabρ−1(Λ, a) = ΛcaΛdb
(
Jcd + acP d − adP c

)
,

[P a, P b] = 0,

[P a, Jcd] = ηacP d − ηadP c,
[Jab, Jcd] = ηadJbc + ηbcJad − ηbdJac − ηacJbd.
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The Poincaré group as a gauge group

A = 1
2ωabJ

ab + ΓaP a π (Lie(P))-valued one–form on M ,

ωab = −ωba
ω = (ωab) , Γ = (Γa) ,
A′ = ρ(g)Aρ−1(g)− dρ(g)ρ−1(g) and (1) imply

ω′ = ΛωΛ−1 − dΛΛ−1, Γ′ = ΛΓ− ω′a− da . (2)
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The Poincaré group as a gauge group

General Relativity as a theory of gravitation

The space–time is a manifold M with a Lorentzian metric g.

tetrad: ẽa = ẽµa∂µ, g (ẽa, ẽb) = ηab

cotetrad: ea = eaµdx
µ, ea (ẽb) = δab

g = ηabe
a ⊗ eb

e′a = Λabeb ≡ e′ = Λe, Λ ∈ O(1, 3) (3)

connection one–forms: ωab = Γabce
c, ∇ẽc ẽb = Γabcẽa

ω′ = ΛωΛ−1 − dΛΛ−1,
ωab = −ωba ⇔ ∇g = 0.
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µ, ea (ẽb) = δab

g = ηabe
a ⊗ eb

e′a = Λabeb ≡ e′ = Λe, Λ ∈ O(1, 3) (3)

connection one–forms: ωab = Γabce
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c, ∇ẽc ẽb = Γabcẽa
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µ, ea (ẽb) = δab

g = ηabe
a ⊗ eb

e′a = Λabeb ≡ e′ = Λe, Λ ∈ O(1, 3) (3)

connection one–forms: ωab = Γabce
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The Poincaré group as a gauge group

In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector–valued
zero–form ya on M transforming under the gauge
transformations as

y′ = Λy + a.

e := Γ +Dy, Dy = dy + ωy ⇒ e′ = Λe.
If L = L (e(Γ, y, ω), ω, φ) , then it is justified to acknowledge
e as a fundamental field.
L = LG + L̃m, LG = − 1

4k εabcde
a ∧ eb ∧ Ωcd,

Ωa
b = dωab + ωac ∧ ωcb.

GR: 1
2T

a
bce

b ∧ ec := dea + ωab ∧ eb = 0
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The Poincaré group as a gauge group

In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector–valued
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Marcin Kaźmierczak University of Warsaw

Poincaré Gauge Theory of Gravity



Introduction Minimal coupling procedure in Poincaré Gauge Theory Modified coupling procedure

The Poincaré group as a gauge group

In order to construct a cotetrad within the framework of the
Poincaré gauge theory, one has to introduce a vector–valued
zero–form ya on M transforming under the gauge
transformations as

y′ = Λy + a.

e := Γ +Dy, Dy = dy + ωy ⇒ e′ = Λe.
If L = L (e(Γ, y, ω), ω, φ) , then it is justified to acknowledge
e as a fundamental field.
L = LG + L̃m, LG = − 1

4k εabcde
a ∧ eb ∧ Ωcd,

Ωa
b = dωab + ωac ∧ ωcb.

GR: 1
2T

a
bce

b ∧ ec := dea + ωab ∧ eb = 0
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The Poincaré group as a gauge group

The field equations of the Einstein–Cartan theory

δLG
δea

+
δL̃m
δea

= 0 ⇔ Gab := Rab −
1
2
Rδab = k tb

a

δLG
δωab

+
δL̃m
δωab

= 0 ⇔ T cab − T aηbc + T bηac = kSabc

δL̃m
δφ

= 0

where Rab := ηacRdcdb, R := Raa, T a := T bab and the dynamical
definitions of energy–momentum and spin density tensors on
Riemann–Cartan space are

tabe
b := − ? δL̃m

δea
, Sabcec := 2 ?

δL̃m
δωab

.
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Introduction Minimal coupling procedure in Poincaré Gauge Theory Modified coupling procedure

Constructing a matter part of a Lagrangian

The addition of a divergence to the flat–space Lagrangian density is a
symmetry transformation

Lm = Lmd4x,

Lm → L′m = Lm + ∂µV
µ, (4)

∂µV
µ d4x = £V d

4x = d(V y d4x),
£ denotes the Lie derivative, y the internal product, ? the
Hodge star of Minkowski metric.
The field equations, as well as integrated Noether energy
and momenta, remain unchanged.
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Constructing a matter part of a Lagrangian

Introducing gravity

How to construct L̃m (φ, dφ,A) from Lm (φ, dφ)?

A consistency requirement – the transformation (4) is a
symmetry of the resulting theory with gravity.
MCP does not satisfy this requirement!

∂µV
µd4x

MCP−→ d (V yε)− TaV aε, Ta := T bab.

Any physical consequences?
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The Dirac field

An example – the Dirac field

LF0 = −i (?dxµ) ∧ ψγµdψ −mψψ d4x

γµγν + γνγµ = 2ηµν , ψ := ψ†γ0.

Invariant under the global action of P

xµ → x′µ = Λµνxν + aµ, ψ → ψ′ = S(Λ)ψ,

S(Λ(ε)) := exp
(
− i

4
εµνΣµν

)
, Σµν :=

i

2
[γµ, γν ].

LF0
MCP−→ L̃F0 = −i (?ea) ∧ ψγaDψ −mψψ ε

Dψ = dψ − i
4ωabΣ

abψ, ε = e0 ∧ e1 ∧ e2 ∧ e3.
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The Dirac field

δL̃F0

δψ
= 0 <

δL̃F0

δψ
= 0

Commonly accepted solution:

LFR = − i
2

(?dxµ) ∧
(
ψγµdψ − dψγµψ

)
−mψψd4x

justified, since LFR = LF0 + ∂µV
µ, V µ = − i

2ψγ
µψ

MCP ⇒ L̃FR = − i
2

(?ea) ∧
(
ψγaDψ −Dψγaψ

)
−mψψ ε.

L̃FR is real and the theory is well defined. But
LFR −→ LFR + ∂µV

µ,

V µ = aJµ(V ) + bJµ(A), a, b ∈ R,

Jµ(V ) = ψγµψ, Jµ(A) = ψγµγ5ψ

Marcin Kaźmierczak University of Warsaw
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The Dirac field

Effective Lagrangian for Einstein–Cartan theory with fermions

Exploiting the algebraic invertible relation between spin and torsion
T cab−Taηbc+T bηac=kSabc, Sabcec:=2? δL̃m

δωab
, one obtaines

Leff=
◦
LG+

◦
L̃FR+

“
CAA J

(A)
a Ja

(A)
+CAV J

(A)
a Ja

(V )
+CV V J

(V )
a Ja

(V )

”
ε ,

CAA= 3k
16 (1−4b2) , CAV =− 3k

2
ab , CV V =− 3k

4
a2 ,

„
iγa

◦
∇a−m

«
ψ+

h
−2CAAJ

(A)
a γ5+CAV

“
J

(A)
a −J(V )

a γ5
”
+2CV V J

(V )
a

i
γaψ=0 .

Loop Quantum Gravity: LG=− 1
4k
εabcde

a∧eb∧Ωcd+ 1
2kβ

ea∧eb∧Ωab ,

CAA= 3kβ

16(1+β2)
[4b+β(1−4b2)], CAV = 3kβ

4(1+β2)
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Introduction Minimal coupling procedure in Poincaré Gauge Theory Modified coupling procedure

The general idea

The generalisation of the YM construction

Sm[φ] =
∫
Lm (φ, ∂µφ) d4x =

∫
Lm (φ, dφ)

dφ→ Dφ = dφ+Aφ,
where A is a Lin(V)–valued one–form field on M ,
A → A′ = ρ(g)Aρ−1(g)− dρ(g)ρ−1(g).

A = A + B(A, e),
where A is Ran(π)–valued and B(A, e) is Ran(π)⊥–valued.

A′ = ρ(g)Aρ−1(g)− dρ(g)ρ−1(g), e′ = Λe,
B(A′, e′) = ρ(g)B(A, e)ρ−1(g).

Marcin Kaźmierczak University of Warsaw
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The general idea

What is Ran(π)⊥?

Lin(V) = Ran(π)⊕Ran(π)⊥ ⇒ A and B(A, e) are
uniquely determined by A.

Ran(π)⊥ is not uniquely determined by this requirement.
if V admits a ρ–invariant scalar product 〈, 〉ρ, such that
∀v, w ∈ V, g ∈ G, 〈ρ(g)v, ρ(g)w〉ρ = 〈v, w〉ρ ,
(e.g. ψγ0φ for Dirac representation, ηµνV

µW ν for vector
representation etc.)

then the induced product
〈
〈 , 〉

〉
ρ

on Lin(V) satisfying〈
〈 ρ(g)Xρ−1(g), ρ(g)Y ρ−1(g) 〉

〉
ρ

=
〈
〈X,Y 〉

〉
ρ

can be used.

if the subspace Ran(π) ⊂ Lin(V) is nondegenerate with
respect to

〈
〈 , 〉

〉
ρ
, then Lin(V) = Ran(π)⊕Ran(π)⊥.
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The Dirac field

The Dirac field

V = C4, Ran(π) is spanned by Σab = i
2 [γa, γb],〈

〈X,Y 〉
〉
ρ

= trace
(
γ0X†γ0Y

)
, Ran(π)⊥ is spanned by

1, γ5, γa, γ5γa.

Dψ = dψ +Aψ, A = A + B,

A = − i
4
ωabΣab, B = χ1 + κγ5 + τaγ

a + ρaγ
5γa,

where χ, κ, τa, ρa are complex–valued one–forms on
space–time.
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The Dirac field

We will require that the Leibniz rule hold

(Dψ)γaψ + ψγaDψ = dJa(V ) + ω̃abJ
b
(V ),

(Dψ)γaγ5ψ + ψγaγ5Dψ = dJa(A) + ω̃abJ
b
(A),

where Dψ := (Dψ)†γ0 and ω̃a
b is a modified connection on

space–time. The solution:

ω̃ab = ωab + λδab , B =
1
2
λ1+iµ11 + iµ2γ

5,

where λ, µ1, µ2 are real–valued one–forms.

µ1 and µ2 do not influence ω̃. They could be hidden in the gauge
fields corresponding to the localization of the global symmetry
ψ → eiαψ and the approximate symmetry ψ → eiαγ5

ψ. We set
µ1 = µ2 = 0.
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The Dirac field

The procedure would be free of the ambiguity iff λ = T,
where T = Tae

a is the torsion–trace–one–form.

ω̃ab = ωab + Tδab – a modified connection on M (ω, e),

Dψ = dψ − i
4ωabΣ

ab + 1
2T.

Leff =
◦
LG+

◦
L̃FR +

3k
16

J (A)
a Ja(A) ε .
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Conclusions

The modified coupling procedure provides a consistent method
for coupling gravity to other field theories within the framework of
the Poincaré gauge theory of gravity.

As opposed to MCP, the results obtained do not depend on the
choice of flat space Lagrangian from the class of equivalence
corresponding to the possibility of adding divergence.

In particular, the predictions of EC theory with fermions are
made unique – they agree with those derived in earlier accounts
for a particular choice of fermionic Lagrangian. The same
concerns the predictions of EC theory modified by the presence
of the Holst term.
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