
Flux tubes as strings

↔

Confining flux tubes in SU(N) gauge theories and their effective string

theory description

• Veneziano amplitude

• ’t Hooft large-N – genus diagram expansion

• Polyakov action

• Maldacena ... AdS/CFT/QCD ...

at large N , flux tubes and perhaps the whole gauge theory can be

described by a weakly-coupled string theory
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Numerical calculations – a long history:

Euclidean D = 3, 4

• potential between static sources e.g. in D = 3 + 1

V (r) = − cf αs(r)

r
r ≪ 1√

σ

V (r) = σr − π(D−2)
24r

+ O
`

1
r3

´

r ≫ 1√
σ

and corresponding excitations.

• flux tubes wound around a spatial torus

E(l) = σl − π(D−2)
6l

+ O
`

1
l3

´

l ≥ lc = 1
Tc

and corresponding excitations.

• ratios of Wilson loops vs Nambu-Goto
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recent work :

e.g. Luscher, Weisz, Caselle, Gliozzi, Sommer, Necco, Kuti, Meyer,

Bringoltz, Majumdar , Lucini, MT, ... and collaborators

older work – from early 80’s :

e.g. Creutz, Copenhagen group, Michael, Schierholz, Bali, .... and

collaborators
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Here focus on the spectrum of flux tubes

closed around a spatial torus of length l

— mainly D=2+1, but also D=3+1

• flux localised in ‘tubes’ ∀l ≥ lc = 1/Tc

• at l = lc there is a phase transition: first order for N ≥ 3 in D = 4 and

for N ≥ 4 in D = 3

• so may have a simple string description of the closed string spectrum for

all possible lengths

• most plausible at N → ∞ where complications such as mixing, e.g string

→ string + glueball, go away

Note: the static potential V (r) describes the transition in r between UV

(Coulomb potential) and IF (flux tubes) physics; potentially of great interest as

N → ∞.
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based on recent work in collabration with:

◦ Spectrum of fundamental and k > 1 strings in D = 3 + 1 SU(N) gauge

theories:

A. Athenodorou, B. Bringoltz, M.Teper : in progress

◦ Spectrum of fundamental and k = 2 strings in D = 2 + 1 SU(N) gauge

theories:

A. Athenodorou, B. Bringoltz, M.Teper : arXiv:0812.0334 ,

arXiv:0709.0693

◦ Ground state fundamental and k > 1 strings in D = 2 + 1 SU(N) gauge

theories:

B. Bringoltz, M.Teper : hep-th/0611286 arXiv:0802.1490

— also earlier work with Lucini, Meyer, Wenger
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Calculate the mass of a confining flux tube winding around a spatial torus

of length l, using correlators of Polyakov loops:

〈l†p(t)lp(0)〉 t→∞∝ exp{−mp(l)t}

in pictures

6

?

−→
→ t

↑
s

lp l†p

6

?

l

-�
t

where we expect, for linear confinement,

mp(l)
l→∞
= σl − c

π(D − 2)

6l
+ O

„

1

l3

«

where c = 1 if only massless modes are from transverse translations
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◦ linear confinement

⇒ σl

◦ spontaneous breaking of (transverse) translation invariance

⇒ −π(D−2)
6l

from the sum of zero-point energies of the massless (Goldstone) transverse

oscillations – the Luscher correction

◦ any other massless modes on the flux tube

⇒ further O(1/l) contributions

=⇒

determine the coefficient of the O(1/l) Luscher correction in order to

determine whether a long flux tube is described by an effective bosonic

string theory
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simplest example is Nambu-Goto in flat space-time; this is a free string

theory and it is ‘sick’ outside D = 26

but

the diseases are invisible if we focus on the sector of states built on a single

long string

e.g. P. Olesen, PLB160 (1985) 144; J. Polchinski, A. Strominger, PRL67 (1991) 1681.

=⇒
the gound state energy: J. Arvis, PLB 127 (1983) 127

E(l) = σl

„

1 − π(D − 2)

3σl2

« 1
2

= σl − π(D − 2)

6l
+ O

„

1

l3

«

: l ≥ √π(D − 2)

3σ

=⇒
so how well does this describe the actual E(l)?
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D=2+1 ; SU(5)

a
√

σ ≃ 0.130 ; lc
√

σ ≃ 1.07

l
√

σ

E0(l)√
σ

54321

6

5

4

3

2

1

0

...Luscher: E0(l) = σl − π
6l

; -Nambu-Goto:- E0(l) = σl
`

1 − π
3σl2

´ 1
2

9



how good are the energies?

aEeff (t) = − ln C(t)/C(t − 1)

nt

15131197531

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
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lattice sizes and MC ‘statistics’

transverse and longitudinal sizes need to be large enough in units of the

loop mass i.e. increase as l ↓

l lattice MC sweeps

10 10 × 40 × 120 0.5M

12 12 × 32 × 80 1.0M

16 16 × 32 × 56 1.5M

20 20 × 32 × 40 2.0M

24 24 × 24 × 32 2.0M

32 32 × 32 × 32 1.5M
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effective string theory – universality class?

central charge appears in the string ‘Casimir’ energy

E0(l)
l→∞
= σl − cπ(D−2)

6l

where e.g.

c = 1, 1.5, 0

for bosonic, Neveu-Schwartz, Ramond strings respectively

to determine the central charge numerically, fit c to neighbouring values of

l obtaining a ceff (l) such that

ceff (l)
l→∞−→ c

and do the same for Nambu-Goto using:

E0(l) = σl
`

1 − ceff
π

3σl2

´ 1
2

we refer to these as Fit 1 and Fit 2 respectively
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SU(5) : lc
√

σ ≃ 1.07

l
√

σ

ceff

54321

2

1.5

1

0.5

0

ceff : from Luscher • , and from Nambu-Goto ◦
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similarly for SU(4) : lc
√

σ ≃ 1.08

l
√

σ

ceff

54321

2

1.5

1

0.5

0

ceff : from Luscher • , and from Nambu-Goto ◦
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⇒

• fitting the ground state energy of the flux tube with just the Luscher

correction, we see good evidence that

ceff (l → ∞) → 1

i.e. that the only massless mode of the confining flux tube is the massless

mode associated with the spontaneous breaking of translations transverse

to the string

but the significant deviation of ceff (l) from unity at smaller l, suggests

substantial higher order corrections to the Luscher term

• by contrast we see that the Nambu-Goto expression is almost exact all

the way down to l ∼ lc

cNG
eff (l) ≃ 1 ∀l

i.e. the confining flux tube behaves almost exactly like an ideal free

bosonic string, even when it is hardly longer than it is wide

⇒ is this a large N effect?
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small N −→ SU(2) : lc
√

σ ≃ 0.95

l
√

σ

ceff

54321

2

1.5

1

0.5

0

ceff : from Luscher • , and from Nambu-Goto ◦
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So it appears that the ground state flux tube energy, E0(l), is very

close to that of a free bosonic string theory ∀N .

◦ Are there theoretical reasons to think that some of the corrections

beyond the Luscher term are just like Nambu-Goto?

◦ What do the excited states look like?

But first two asides ...
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First Aside : l → lc

for small N the phase transition to the deconfined phase with no winding

flux loops, becomes 2nd order, and then

E0(l)
l→l+c∝ (l − lc)

γ

where γ is determined by the critical exponents, which will be the same as

that of the ZN spin model in D − 1 dimensions Svetitsky-Yaffe

e.g. γ = 1.0 for SU(2) in D=2+1 and Ising in D = 2

in contrast for Nambu-Goto we have

E0(l)
l→l+c∝ (l − lc)

1
2

so at some point the Nambu-Goto fit must break down for small N

E.g.
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SU(2) D=2+1

lt = 4 ↔ T = 1
4a

T/
√

σ

E√
σ

1.21.110.90.80.70.60.5

1.8
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−−− : α(T − Tc) ; −−− : Nambu-Goto
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Second Aside:

SU(N) string tension: Karabali-Nair prediction

Barak Bringoltz, MT: hep-th/0611286

Karabali and Nair analytic Hamiltonian formalism: e.g. hep-th/0309061,

arXiv:0705.2898, 0705.0394

( also: Freidel, Leigh, Minic hep-th/0604184 )

⇒
√

σ

g2N
=

q

1− 1
N2

8π

within ∼ 3% of ‘old’ lattice calculations for all N

⇒

need calculations where all systematic (=hard) as well as statistical (=

easy) errors are controlled to ≪ 1%.
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no screening in KN ⇒ if it is to be exact, then can only be so for N → ∞

and indeed the ‘old’ lattice results approached KN as N ↑

no O(1/σl2) corrections to E0(l) so can only possibly be exact as l → ∞
KN as N ↑
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some continuum limits :

√
σ(a)

g2N
vs. ag2N

0 0.5 1 1.5
0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2

N2/β
MF

a√
σ 

× 
β M

F
/(

2N
2 )

N=6

N=4
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N → ∞ :

r ≡
“√

σ/g2N
”

Lattice

(
√

σ/g2N)KKN

0 0.05 0.1 0.15 0.2 0.25 0.3
0.95

0.96

0.97

0.98

0.99

1

1/N2

r

⇒ lim
N→∞

√
σ√

σKKN
= 0.9901 ± 0.0010 − 0.0025 convincing ∼ 6 sd

discrepancy
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(bosonic) strings in D=4?

e.g. J. Polchinski: hep-th/9210045

can long confining flux tubes in D = 4 SU(N) gauge theories be described

by some string theory?

but

there are no consistent string theories in D=4 : we need D=26 for bosonic,

and D=10 for SUSY strings

yes, but

while the properties of confining flux tubes are not that well known,

because the physics is strongly coupled, there exist weakly coupled

examples, such as Nielsen-Olesen vortices in the Abelian-Higgs model, that

provide explicit examples of string like objects in D=4

so

effective string theories, for long strings, should certainly exist in D = 4

indeed
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a typical inconsistency in quantising a free bosonic string of length R in

D=4 is a breakdown of Lorentz covariance: e.g. generators of rotations are

anomalous

J. Arvis, Phys. Lett. 127B(1983)106

[Li, Lj ] = −Lij + F (R)

but one sees that

F (R) ∝ 1/R2 R→∞−→ 0

so that the inconsistencies disappear in any D for long enough strings

P. Olesen, Phys. Lett. 160B(1985)144

⋆same for D = 3⋆
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analysing effective string theories

• field theory approach (non-covariant ‘gauge fixing’ of the string theory) ;

low-energy effective Lagrangian for the transverse displacement

M. Luscher, K. Symanzik, P. Weisz : Nucl. Phys. B173 (1980) 365; M.

Luscher : Nucl. Phys. B180 (1981) 317

• covariant effective string approach; low-energy effective Lagrangian for a

long string

J. Polchinski, A. Strominger : Phys. Rev. Lett. 67 (1991) 1681

In both approaches the starting point is to consider a long (open or closed)

string of length l and to consider those corrections allowed by symmetry

arguments (different in the two approaches) ordered in powers of 1/l

lowest order (‘Luscher correction’) ⇒ En = σl + π
l

`

n − D−2
6

´

i.e. identical to Nambu-Goto to this order in 1/l for both D = 2 + 1 and

D = 3 + 1
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at the next order ...

• field theory approach

M. Luscher, P. Weisz : hep-th/0406205

• covariant effective string approach

J. Drummond : hep-th/0411017; N. Hari Dass, P. Matlock :

hep-th/0612291

⇒
En = σl +

π

l

„

n − D − 2

6

«

− π2

2σl3

„

n − D − 2

6

«2

+ O(l−4)

i.e. still identical to Nambu-Goto to this order in 1/l !

for D = 2 + 1 in both approaches and D = 3 + 1 in the Polchinski

framework
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and very recently ...

O. Aharony, E. Karzbrun : arXiv:0903.1927

• extends field theory approach to a further order in 1/σl2

i.e. if we write

En(l) = σl

„

1 +
c1,n

σl2
+

c2,n

(σl2)2
+

c3,n

(σl2)3
+ O

„

1

l8

««

then in addition to older result that

◦ c1,n = Nambu − Goto ∀D

◦ c2,n = Nambu − Goto D = 2 + 1

they show that:

• c2,n = Nambu − Goto ∀D

• c2,n = Nambu − Goto ∀D

• c3,n = Nambu − Goto D = 2 + 1

• c3,0 = Nambu − Goto ∀D

• P

n c3,n = Nambu − Goto ∀D
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and also something else that is very interesting ...

• calculate explicitly in a class of confining theories with a dual string

theory description in a weakly curved background – leading dependence on

curvature of background ↔ to a certain order in the inverse ’t Hooft

coupling

⇒

◦ all above contraints satisfied

and also

◦ c3,n = Nambu − Goto ∀D

⇒

there may indeed be extra constraints not captured in the effective field

theory approach.

So Nambu-Goto interesting even if no-one expects it to be the whole story!
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Nambu-Goto free string theory
R

DXe−
i
σ
×Area

Spectrum:

E2(l) = (σ l)2 + 8πσ
“

NL+NR
2

− D−2
24

”

+
`

2πq

l

´2
.

2πq/l = total momentum along string;

NL, NR = sum left and right oscillators (‘phonons’);

state =
Q

k a
nk
k

Q

k′ ã
nk′
′ k|0〉

NL =
P

k>0 nL(k) k, NR =
P

k′>0 nR(k′) k′, NL − NR = q

J. Arvis, Phys. Lett. 127B(1983)106
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Nambu-Goto ground state NL = NR = 0 :

E2(l) = (σ l)2 − π(D−2)σ
6

where the second term is the ‘Luscher term’, from zero-point energies of

oscillators - the Casimir energy of a (periodic) string

⇒ tachyon of mass µ2 = −π(D−2)σ
6

↔ ‘Hagedorn’ deconfinement

⇒ string theory does not exist for l ≤ lc =
√π(D−2)

6σ

⇒ spectrum exists and well-behaved for l >
√π(D−2)

6σ
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field-theoretic approach

• string of length r with fixed ends and world sheet coords

z = (z0, z1), 0 ≤ z1 ≤ r ; 0 ≤ z0 ≤ T

and displacement vector h(z) with effective action (D=2)

S = σrT + µT + S0 + S1 + · · · , S0 =
1

2

Z

dDz (∂ah∂ah)

one finds

S1 = 1
4
b

R

dD−1z
n

(∂1h∂1h)z1=0 + (∂1h∂1h)z1=r

o

, b = [l]1

S2 = 1
4
c2

R

dDz (∂ah∂ah) (∂bh∂bh) , c2 = [l]2

S3 = 1
4
c3

R

dDz (∂ah∂bh) (∂ah∂bh) , c3 = [l]2

since the couplings of Si are increasing powers of length, they will

contribute with increasing powers of 1/r
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• lowest O({∂h}2) ⇒ linear + Luscher correction

– exact expression (standard functions) for partition function.

• impose open-closed duality at higher orders (Luscher) – or open-open

duality (Aharony) i.e. cylinder → torus, using

Z =
X

n

e−En(r)T =

′
X

n

e−En′ (T )r

calculate Z in powers of Si and this fixes corresponding powers of 1/r or

1/T : the consistency of the latter then fixes some of the free coefficients.

⇒
accurate calculation of the energy spectrum as a function of l provides a

direct way to determine the effective string action
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covariant effective string theory approach

J. Polchinski, A. Strominger : Phys. Rev. Lett. 67 (1991) 1681

imagine integrating out all massive modes leaving an integration over the

massless D − 2 transverse oscillators with action

So = 1
σ

R

dτ+dτ−∂+Xµ∂−Xµ

and some determinants from the massive modes. These should be made

out of the induced metric

hab = ∂aXµ∂bXµ

and suppose the determinant is as for Polyakov but replacing the intrinsic

metric eφ with the induced metric h+−. Then the determinant (in

conformal gauge) is eiSL where

So = 26−D
48π

R

dτ+dτ−∂+φ∂−φ

becomes

SL = 26−D
48π

R

dτ+dτ− ∂2
+X·∂−X∂+X·∂2

−X

(∂+X·∂−X)2

Instead of pursuing this, encode the determinants in an effective string
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action, with conformal invariance as the sole restriction.

Since we are quantising around a long string, we do not mind

non-polynomial terms since the denominator will always be large. One

finds:

S =
R

dτ+dτ− 1
σ
∂+Xµ∂−Xµ + β

4π

∂2
+X·∂−X∂+X·∂2

−X

(∂+X·∂−X)2
+ O(1/l3)

coordinate invariance not anomalous

⇒ β = D−26
12

which translates into the usual expression for the Luscher string correction

we can now continue to higher orders imposing the same anomaly

constraint

Note:

the effective action is only valid for very long strings – l
√

σ ≫ 1 – as is

obvious from the denominators in the effective action.

⇒ it tells us nothing about light glueballs since these are composed of

small closed loops
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it tells us nothing about k-strings or other multiple strings, since the

interaction between these (at the origin of their binding) will in general

involve the exchange of small closed loops

⇒
what we learn about confining flux tubes with l

√
σ 6≫ 1 will tell us whether

what we have is just an effective string theory for very long flux tubes or

possibly an effective string theory on all scales ...
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Strings in D=2+1 : quantum numbers

◦ length of string

◦ non-zero momentum p = 2πq/l along string

−→ requires a deformation along the string

−→ so need non-trivial phonon excitation: q = NL − NR

◦ parity: h(x) → −h(x) ↔ ak → −ak, ãk → −ãk

−→ P = (−1)
P

k>0 nL(k)+
P

k′>0 nR(k′)

◦ no rotations (2 space dimensions); transverse momentum uninteresting;

C = ± sectors degenerate, so charge conjugation uninteresting.
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Excited States

to have good overlaps onto excited string states, we need to include many

more operators in our variational basis – in particular operators that ‘look’

excited and ones that have an intrinsic handedness so that we can

construct P = − as well as P = +, e.g.

typically we have 100-200 operators in our basis ...
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SU(3) : q = 0 closed string spectrum

a
√

σ = 0.17395(7) ; lc
√

σ ≃ 1.0

l
√

σ

E√
σ

654321

10

8

6

4

2

0

— : Nambu-Goto : σ from ground state

× : +ve parity ◦ : -ve parity
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SU(3) : how close to continuum limit?

compare a
√

σ ≃ 0.174 vs a
√

σ ≃ 0.087

l
√

σ

E√
σ

654321

10

8

6

4

2

0

no significant difference as a → a/2 ⇒ we have ‘continuum’ physics
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SU(3) vs SU(6) : same a

l
√

σ

E√
σ

654321

10

8

6

4

2

0

⇒ SU(3) ≃ SU(∞)
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⋄ Striking agreement with free string model, down to l
√

σ ≃ 2.

⋄ Remarkable since l
√

σ ≃ 2 ⇒ the flux tube is maybe only twice as long

as it is wide – hardly an ideal ‘string’.

⋄ Is this just a manifestation of the fact that the first 3 or 4 terms in an

expansion of En(l) in powers of 1/σl2 must be the same as Nambu-Goto?
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Nambu-Goto vs Luscher-Symanzik-Weisz

l
√

σ

E√
σ

654321

12

10

8

6

4

2

0

— Nambu-Goto : En = σl
q

1 + 8π
σl2

`

n − 1
24

´

... Luscher 1980: En = σl + 4π
l

“

n − D−2
24

”
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Nambu-Goto vs Luscher-Weisz, Drummond

l
√

σ

E√
σ

654321

12

10

8

6

4

2

0

— Nambu-Goto : En = σl
q

1 + 8π
σl2

`

n − 1
24

´

... MLPW,JD 2004: En = σl + 4π
l

`

n − 1
24

´

− 8π2

σ l3

`

n − 1
24

´2
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Why ?

the covariant Nambu-Goto expression e.g. for q = 0,

E(l) = σl
`

1 + 8π
σl2

`

n − D−2
24

´´ 1
2

can only be expanded as a power series in 1/l
√

σ when
8π
σl2

`

n − 1
24

´

≤ 1 ↔ l
√

σ ≥
√

8πn ∼ 5
√

n

whereas in practice we have a very good fit by Nambu-Goto even down to

l
√

σ ∼ 2 , n = 1, 2

which is well outside its radius of convergence

⇒
the agreement with NG that we see goes well beyond the range of valdity

of an expansion of Leff in powers of derivatives: it makes a statement

about Leff to all orders in 1/σl2

45



content of lightest q = 0 NG states:

|0〉 P=+, q=0

aR(k = 1)aL(k = 1)|0〉 P=+, q=0

aR(k = 2)aL(k = 2)|0〉 P=+, q=0

aR(k = 1)aR(k = 1)aL(k = 1)aL(k = 1)|0〉 P=+, q=0

aR(k = 2)aL(k = 1)aL(k = 1)|0〉 P=−, q=0

aR(k = 1)aR(k = 1)aL(k = 2)|0〉 P=−, q=0

Since our lightest states have energies and degeneracies as in Nambu-Goto

down to l
√

σ ∼ 2, they are well-described by the above states.

⇒ also the case for q 6= 0 :
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q = 1 spectrum : SU(3) at smaller a

l
√

σ

E√
σ

654321

12

10

8

6

4

2

0

• P = − ; ◦ P = +

curves: NG predictions for q = 1 and also q = 0 ground state
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q = 2 spectrum : SU(3) at smaller a

l
√

σ

E√
σ

654321

12

10

8

6

4

2

0

• P = − ; ◦ P = +

curves: NG predictions for q = 1 and also q = 0 ground state
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content of q = 1, 2 NG states:

aR(k = 1)|0〉 P=−, q=1

aR(k = 2)|0〉 P=−, q=2

aR(k = 1)aR(k = 1)|0〉 P=+, q=2

aR(k = 2)aL(k = 1)|0〉 P=+, q=1

aR(k = 1)aR(k = 1)aL(k = 1)|0〉 P=−, q=1

aR(k = 3)aL(k = 1)|0〉 P=+, q=2

aR(k = 2)aR(k = 1)aL(k = 1)|0〉 P=−, q=2

aR(k = 1)aR(k = 1)aR(k = 1)aL(k = 1)|0〉 P=+, q=2

q 6= 0 requires a deformation of the flux tube (otherwise it is translation

invariant and hence q = 0) so in NG the ground state will have at least one

phonon
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• in D=2+1 SU(N) gauge theories, confining flux tubes belong to the

universality class of a simple bosonic string theory

• more than that, the Nambu-Goto covariant free string spectrum

E2(l) = (σ l)2 + 8πσ
“

NL+NR
2

− D−2
24

”

+
`

2πq

l

´2
.

very accurately describes the spectrum down to values of l
√

σ where an

effective string theory expansion in x = l
√

σ,
En√

σ
= x

`

1 + c
x2

´ 1
2 = x + c

2x
− c

8x3 + · · ·
makes no sense (i.e. is far past its range of convergence)

• This suggests that we take the energy eigenstates to be those of the free

NG string theory, as our starting point, and treat the deviations as a

perturbation induced by some weak interactions between the phonons.

There should be relations in the interaction energies within different NG

eigenstates that depend on the nature of the interactions in this D = 1 + 1

phonon field theory
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• why is a simple bosonic string theory so good?

• usually we think of the flux tube as

either

some non-Abelian dual Nielsen-Olesen vortex, with a finite intrinsic width

∼ 1/
√

σ;

and/or

a string in some ‘5D’ gravity dual, dangling near some ‘horizon’ where the

metric will have a highly non-trivial curvature, so that it projects tp a flux

tube of non-zero width on our ‘4D’ boundary

• in either scenario:

– where are the excited states due to excitations of the massive degrees of

freedom generating the finite width?

– and the corrections to the stringy states from these massive degrees of

freedom.
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• very naively we might expect the mass scale of the lightest such extra

states to be

E(l) ∼ E0(l) + mG ∼ E0(l) + 4
√

σ

or maybe

E(l) ∼ E0(l) + ∆mG ∼ E0(l) + 2
√

σ

at low l
√

σ this should be one of the lightest excitations – but we do not

see it in our spectra ...

⇒ k-strings
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k-strings

source = product of k fundamental sources

flux tube between such static sources = k-string

source may be screened by gluons from vacuum

gluons = adjoint so transform trivially under centre ⇒ the screened source,

always transforms under z ∈ ZN as

φk → zkφk

Thus k is a good quantum number.

Typically a source will be screened to give the lightest string of given k.

One finds:

The lightest k-string is not composed of k separate fundamental strings,

σk = kσk=1 , but is a bound state with σk < kσk=1

e.g. for k = 2 in SU(4) one finds σk ≃ 1.35σk=1
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k = 2 string corrections

Nambu-Goto: Ek(l) = σkl
“

1 − π(D−2)

3σkl2

” 1
2

and Luscher Ek(l) = σkl − π(D−2)
6l

1 1.5 2 2.5 3 3.5 4 4.5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

l√σ

E
/(

σ 
l)

Luscher

NG

⇒
Much larger deviations at smaller l than for k = 1 flux tube : Nambu-Goto

not much better than Luscher
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SU(4) : Nambu-Goto effective charge, ◦k = 1 •k = 2

l
√

σk

ceff

54321

2

1.5

1

0.5

0

⇒ k = 2 ground state flux tube is in the bosonic string universality class,

but has larger corrections than for the k = 1 flux tube for l
√

σk ≤ 2
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lightest k = 2 (antisymmetric) states with q = 0, 1, 2 , for SU(4)

NG NL = 2, NR = 0
ground state q = 2, P = +
ground state q = 2, P = −

NG NL = 1, NR = 0
ground state q = 1, P = −

NG NL = NR = 0
ground state q = 0, P = +

l
√

σf

E/
√

σf

4.543.532.521.5

12

10

8

6

4

2

0

Lines are NG predictions with σk obtained by fitting the ground state.
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effective excitation numbers for q = 1, 2 using

πσk{4(Nl + NR)}eff = E2
gs(q; l) − E2

gs(0; l) −
`

2πq

l

´2

NG NL = 2, NR = 0

ground state q = 2, P = +

ground state q = 2, P = −
NG NL = 1, NR = 0

ground state q = 1, P = −

l
√

σf

4(NL + NR)

4.543.532.521.5

9

8

7

6

5

4

3

2

1

0

lines are NG
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ASIDE: lightest k = 2 symmetric states with q = 0, 1, 2 for SU(4)

NG NL = 2, NR = 0

ground state q = 2, P = +

ground state q = 2, P = −
NG NL = 1, NR = 0

ground state q = 1, P = −
NG NL = NR = 0

ground state q = 0, P = +

l
√

σf

E/
√

σf

4.543.532.521.5

16

14

12

10

8

6

4

2

0

Lines are NG predictions with σk=2S obtained by fitting the ground state.
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spectrum light k = 2 (antisymmetric) states with q = 0 and P = + for

SU(4)

NGNL = NR = 2

NG NL = NR = 1

Fit for NGNL = NR = 0

NGNL = NR = 0

2A q = 0, P = + spectrum

l
√

σf

E√
σf

4.543.532.521.5

10

9

8

7

6

5

4

3

2

1

0

Lines are NG predictions with σk obtained by fitting the ground state.
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• q = 0 excited states are far from NG – not even clear that they approach

(rather than cross) NG

• indeed, is the first excited state maybe not NG, but a ‘breather’ mode ?

comparing the k = 1 and k = 2 wave-functionals it looks like it is a stringy

NG mode

• So:

some states very close to NG (e.g. q=0,1,2 ground states) while other

states (such as these) have large deviations

– this is ideal in a sense : it allows us to try and draw structural

conclusions about the dynamics

e.g.

both the q = 2 P + + ground state and the q = 0 first excited states have 2

lowest momentum phonons: the only difference is that for q = 0 they have

opposite momenta while for q = 2 they have the same momentum

⇒ interactions between 2 phonons on a k = 2 string are small near

threshold and large at ‘high energies’.
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ASIDE: k-strings in D = 3

Bringoltz and Teper, arXiv:0802.1490

continuum limit:

O(a2) — ;O(a4) - - -

a2σf

σk=2

σf

0.150.10.050

1.6

1.55

1.5

1.45

1.4
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Casimir scaling: σk
σf

=
k(N−k)

N−1

‘MQCD’ Sine scaling: σk
σf

=
sin kπ

N
sin π

N

Karabali-Nair: σk
(g2N)2

= 1
8π

k
“

1 − k
N

”

`

1 − 1
N

´

k N σk/σf Casimir Sine Nair

2 4 1.3552(22) 1.333.. 1.414.. 1.361..

2 5 1.5275(26) 1.5 1.618.. 1.529..

2 6 1.6234(66) 1.6 1.732.. 1.629..

2 8 1.7524(51) 1.714.. 1.848.. 1.741..

3 6 1.8522(48) 1.8 2.0 1.832..

3 8 2.174(19) 2.143.. 2.414.. 2.177..

4 8 2.366(11) 2.286.. 2.613.. 2.322..

⇒

Casimir scaling:⋆⋆ ; ‘MQCD’ Sine scaling:(⋆); Karabali-Nair:⋆ ⋆ ⋆
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Corrections: O(1/N) or O(1/N2)?

e.g.

Casimir scaling gives an O(1/N) correction:

σk
σ

= k(N−k)
N−1

= k − k(k−1)
N−1

while the (MQCD) sine formula gives a more conventional O(1/N2)

correction.

since an O(1/N) correction can feed into an O(1/N) correction to glueball

masses – think of excited glueballs composed of closed k-strings – this is an

interesting issue ...
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fit σk=2

σ
= 2 − a

Np − b
N2p

0 0.05 0.1 0.15 0.2 0.25 0.3
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1/N

r 2

Fit with p=2

Fit with p=1

Casimir

⇒
p = 1 fit OK ; and gives ∼1,0 for N =3,2

p = 2 fit only possible if we drop SU(4)

64



fit
σ

k= N
2

σ
= N

2

˘

a + b
Np

¯

0 0.05 0.1 0.15 0.2 0.25 0.3
0.45

0.5

0.55

0.6

0.65

0.7

1/N

r N
/2

/(
N

/2
)

Casimir

Fit with p=1 Fit with p=2

⇒

p = 1 fit OK, and a = 0.501(4) consistent with Casimir

p = 2 fit less good

⇒ overall evidence is for O(1/N) corrections
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What about D=3+1?

[ SU(3) ; β = 6.0625 ; lc
√

σ ∼ 1.6 ]

l
√

σ

ceff

43.532.521.5

2

1.5

1

0.5

◦ Nambu-Goto; • Luscher
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relevant string quantum numbers in 3+1 dimensions:

◦ length, l.

◦ momentum along string, p = 2πq/l.

◦ angular momentum around string axis, J = 0, 1, 2...

◦ D = 2 + 1 parity in plane orthogonal to string axis, Pρ

◦ reflection ‘parity’ across this same plane, Pr

⇒

excitation spectrum – in progress
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SU(3) D=3+1 ; q = 0 spectrum

l
√

σf

E
/
√

σ
f

432

6

4

2

0

• : J = 0, Pρ = Pr = +. ◦ : J = 0, Pρ = Pr = −. 2 :

J = 2, Pρ = Pr = +. • : J = 0, Pρ = −, Pr = +.
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SU(3) D=3+1 ; q = 1 ground state

l
√

σf

E
/
√

σ
f

432

6

4

2

0

• : J=1
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SU(5) D=3+1 ; q = 0 spectrum

l
√

σf

E
/
√

σ
f

432

6

4

2

0

• : J = 0, Pρ = Pr = +. ◦ : J = 0, Pρ = Pr = −. 2 :

J = 2, Pρ = Pr = +. • : J = 0, Pρ = −, Pr = +.
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SU(5) D=3+1 ; q = 1 ground state

l
√

σf

E
/
√

σ
f

432

6

4

2

0

• : J=1
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⇒

in D = 3 + 1 many states remarkably close to NG;

and some very far from NG

– reminiscent of k > 1 in D = 2 + 1

as in D = 2 + 1, there is very little N -dependence
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Some Conclusions

• The flux tube spectrum in D = 2 + 1 is very close to Nambu-Goto ∀N

– down to such small string lengths, l
√

σ ∼ 2, that an expansion in 1/σl2

no longer converges

→ this striking feature cannot be readily attacked in the usual approach

where one considers the low-energy effective string action, order-by-order

in derivatives of transverse fluctuations

• It is also hard to see, within a traditional, bottom-up ‘dual non-Abelian

Nielsen-Olesen vortex’ picture, why the fat flux-tube blob should have a

phonon-like spectrum of a non-interacting thin string.

• Even a short fat flux tube appears to know that it is really a string:

evidence for a stringy dual?

– although this does not in itself resolve this puzzle.
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• In D = 3 + 1 corrections are larger but still modest, and again many

states are remarkably close to NG down to very small l
√

σ, again ∀N ;

but there are other states that have large corrections.

• This is also the case for k > 1 strings in D = 2 + 1.

• In some sense this situation is ideal – far better than just having a

variety of corrections all over the place.

It provides a potentially useful focus on the structure of the dynamics

e.g our 2-phonon scattering example.

• But where are the massive modes?
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