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Lecture I

Large N and the lattice – brief overviews

Is N = ∞ physically relevant: i.e. is large-N confining and is N = 3 close

to N = ∞?

What have we learned so far?

Lecture II

What string theory describes confining flux tubes in D = 3 and D = 4?
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Large N – a brief overview

• QCD : value of g2 ↔ scale of physics,

⇒ there is no obvious expansion parameter

⇒ try something much less obvious ’t Hooft 1974:

expand SU(N) as a power series in 1/N around SU(∞)

SU(N) ≃ SU(∞) + O(1/N2)

• now, in perturbation theory gluon loop is O(g2N)
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  j  j
ii
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  j

k

so to have smooth large-N limit for perturbative physics on scale l

⇒ g2(l)N = const at large N
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this uses ’t Hooft’s double line notation

(a) (b)

(c) (d) (e)

Note that although the argument looks rooted in diagrams, it is more

general than that:

if on a typical physical scale g2(l)N ∼ N ǫ then at N = ∞:

ǫ > 0 ⇒ no asymptotic freedom ; ǫ < 0 ⇒ the theory is free
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examples of large-N counting

plagiarised from Manohar’s ’98 Les Houches lectures

planar vacuum bubble:

∼ g4N3 ∼ N(g2N)2

non-planar vacuum bubble:

(a) (b) (c) ∼ g4N ∼ N(g2N)2 × 1
N2
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• N → ∞ colour singlet phenomenology

’t Hooft, Witten-Veneziano, Dashen-Manohar, ...

zero decay widths; no mixing; exact OZI, η′; SU(4) spin-flavour symmetry

for baryons; chiral effective lagrangians, ...

• no scattering of colour singlets – integrability?

but strongly interacting bound states

• factorisation colour singlet operators: e.g.

〈Φ1(x1)Φ2(x2)〉 = 〈Φ1〉〈Φ2〉
˘

1 +O
`

1
N2

´¯

⇒ Witten’s Master Field → translation invariant → Eguchi-Kawai single

point reduction

→ large-N lattice calculations (rough!) in mid-80’s
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• the large N counting for hadrons follows from:

– coupling variation with N determined so as to control the

‘non-confined’perturbative dynamics

– in the confined phase the probability for colour singlets from products of

adjoints → 0 as N → ∞

• Feynman diagrams on 2D surfaces :

g2N → ∞ → vertices dense → stringy sheets

⇒

N = ∞ gauge theory ∼ a string theory ’t Hooft, 1974

N = ∞ gauge theory ∼ dual to a string theory Maldacena, 1997
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• Since 1997 Maldacena new hope of a solution at N = ∞ has been

provided by the strong-weak coupling gauge-gravity dualities and this has

provided new motivation for numerical calculations at large N

• A trivial but effective strategy is to repeat the calculations for larger N

and compare the results, i.e. SU(2), SU(3), SU(4), SU(5), SU(6), ...

• Since the leading correction in a theory with just adjoint fields is

expected to be O(1/N2), going to say N = 8 should usually be sufficient to

provide a range of N from which we can extrapolate using

m(N)√
σ(N)

=
m(∞)√
σ(∞)

+
c

N2
+O

„

1

N4

«
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Lattice – overview

Wilson 1974 ; Creutz 1979-80

• Euclidean R4 −→ hypercubic lattice on T 4 : finite problem

• comparing colour:

continuum infinitesimal: xµ • − • xµ + µ̂δx : Aµ(x) ∈ SU(N) Lie Algebra

−→
continuum finite: xµ • − − − • x′µ : P

n

e
R x′

x A.dx
o

∈ SU(N) group
xµ=anµ−→
finite on lattice: anµ • − −− • anµ + aµ̂ : Uµ(n) ∈ SU(N) group

i.e. SU(N) matrices Ul on each link l
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• gauge transformation: Uµ(n) → g(n)Uµ(n)g†(n+ µ̂)

−→
Tr

Q

l∈∂c Ul gauge invariant for any closed curve c

−→
so Z =

R
Q

l dUle
−βS where S =

P

p

˘

1 − 1
N

ReTrup

¯

and up is product links around the plaquette p is a suitable, although not

unique, SU(N) lattice gauge theory

• symmetries ensure that:
R

Q

l dUle
−βS a→0−→

R

DAe
− 4

g2

R

d4xT rFµνFµν
with β = 2N

g2(a)

a→0−→ ∞
so we vary the parameter β in order to vary the lattice spacing a

• Monte Carlo: Z−1
R

Q

l dUlΦ(U)e−βS = 1
n

n
P

I=1

Φ(UI) +O( 1√
n
)
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Calculating masses : Wilson, Coseners House, March 1981

• write the Euclidean correlator of an operator φ(t) :

〈φ†(t = ant)φ(0)〉 = 〈φ†e−Hantφ〉 =
X

i

|ci|2e−aEint t→∞
= |c|2e−mant

where am is lightest mass (in lattice units) with quantum numbers of φ. In

particular, take ~p = 0, colour singlet, and some particular JP C .

• in a numerical calculation, with finite errors, we need to be able to

calculate am at small t before the ‘signal’ has become too small, so that we

have significant evidence for the exponential ∝ e−mant over some range of

nt – i.e. we need (normalised) |c|2 ≃ 1 ↔ φ is a good wavefunctional for

the desired ground state
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Example of problem:

if we use simple Wilson loops of various sizes, then

the overlap onto ground state ։ 0 as a→ 0

and the ‘signal’ is lost in the ‘noise’ before we can identify the mass of the

ground state

e.g. take

SU(3), 324, a ≃ 0.046 ‘fm’

and use the simple plaquette for the glueball operator

−→
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nt

C(nt)

1612840

1

0.1

0.01

0.001

0.0001

C(t) ∝ e−amnt at larger t = ant ?!?
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The problem is that the plaquette is so local that it does not see the

structure of a wave-function and will therefore have a roughly equal

overlap on all states.

Since the number of states increases rapidly with decreasing a, the overlap

onto the groundstate will decrease rapidly.

So what we need are operators that are ‘smooth’ on a scale ∼ 1fm

We can efficiently construct operators that are ‘smooth’ on physical length

scales by the iterative spatial ‘smearing’ and ‘blocking’ of the lattice gauge

fields, and then use these ‘blocked’ link matrices in constructing

appropriate Wilson loops

−→
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best blocked/smeared glueball operator

nt

C(nt)

1612840

1

0.1

0.01

0.001

C(t = ant)
t↑≃ |c|2e−mant ⇒ fit : am0++ = 0.330(7) with |c|2 ≃ 0.97
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• here we have in addition generalised to a variational calculation over a

vector space Vφ spanned by some convenient blocked/smeared operators

{φi; i = 1, ..., n} of the desired quantum numbers:

〈ψ0
†(t0)ψ0(0)〉 = max

φ∈Vφ

〈φ†(t0)φ(0)〉 = max
φ∈Vφ

〈φ†e−Ht0φ〉

where t0 is some convenient value of t. Then ψ0 is our best variational

estimate for the true eigenfunctional of the ground state (with these

quantum numbers). We can now use 〈ψ0
†(t)ψ0(0)〉 to obtain our best

estimate of the ground state mass.

• generalise this in an obvious way to calculating excited state energies
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So, we are able to calculate masses accurately at a chosen value of a

determined by the choice of β = 6/g2(a) in the lattice action.

But what we want is the continuum value – not some lattice value!

• to obtain the continuum limit from masses that are in lattice units and

are distorted by the finite lattice cutoff, take dimensionless mass ratios and

extrapolate with an O(a2) correction, Symanzik early-80’s , e.g.

am(a)

a
√
σ(a)

=
m(a)√
σ(a)

=
m(0)√
σ(0)

+ c0a
2σ +O(a4)

where we choose to use the square root of the string tension σ as one of the

masses (here c0 is a power series in the bare coupling, but this logarithmic

variation with a can usually be ignored)
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SU(3) continuum limit: B.Lucini et al: hep-lat/0404008

a2σ

mG√
σ

0.160.120.080.040

7

6

5

4

3

2

1

0

(•) m
0++√

σ
; (◦) m

2++√
σ
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O(a2) extrapolations to a = 0 :
m

0++√
σ

= 3.47(4) − 5.52(75)a2σ ;
m

2++√
σ

= 4.93(5) − 0.61(1.36)a2σ

−→
m0++ ≃ 3.5

√
σ ≃ 1.6 GeV

which fits in with the three observed JP C = 0++ flavour ’singlet’ states

f0(1350), f0(1500), f0(1700) coming from mixing of nearby uu+ dd, ss and

glueball states
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Aside : Full QCD

• there are now calculations with quark masses at their physical values i.e.

mu,d ∼ 5MeV ; ms ∼ 90MeV

e.g.

PACS-CS Collaboration:

Y. Kuramashi, Plenary Talk at Lattice 2008, arXiv:0811.2630

and

S. Durr et al., Science 322 (2008) 1224

• For delicate issues we now have good lattice fermions: Neuberger overlap

fermions, Kaplan-Shamir domain wall fermions
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Basic questions for the large-N limit

• Is N = ∞ confining?

• Is N = 3 close to N = ∞?

– glueball masses

– meson masses

• Non-perturbatively, do we find that the limit entails g2N = const?
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SU(6) : energy of flux loop closed around a spatial torus

H. Meyer, M. Teper: hep-lat/0411039

l
√
σ

am(l)

654321

1.5

1

0.5

0

−→ linear confinement: am(l) ≃ σl − π
3l

at large N
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Glueball mass spectrum: large-N limit

B.Lucini, M.Teper, U.Wenger: hep-lat/0404008

1/N2

m√
σ

0.250.20.150.10.050

8

7

6

5

4

3

2

1

0

(•) 0++; (◦) 2++ −→ SU(3) is ‘close to’ SU(∞) for many quantities
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QCD at N = ∞

Note : QCD
N=∞
= quenched QCD

• L. Del Debbio, B. Lucini, A. Patella and C. Pica: arXiv:0712:3036.

• G. Bali and F. Bursa, arXiv:0806:2278; arXiv:0708:3427.

Strategy:

quenched QCDN
N→∞−→ full QCDN=∞

- perform quenched QCD calculations at various N at a common value of a and

various common values of m

- extrapolate at each fixed m to N = ∞, with O(1/N2) corrections

- now do conventional (full QCD) chiral extrapolation

- repeat for various a and extrapolate to continuum

• now compare to full QCD (or expt!) with SU(3)
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G. Bali and F. Bursa, arXiv:0806:2278

 1.6
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ρ/

σ1/
2

mπ
2/σ

SU(2)
SU(3)
SU(4)
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 1.6

 1.65
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 1.75

 0  0.05  0.1  0.15  0.2  0.25

m
ρ(

0)
/σ

1/
2

1/N2

mρ versus mπ (left); mρ for mq = 0 versus 1/N2 (right).
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Del Debbio et al: lim
N→∞

mρ√
σ

= 1.627(10) ; a
√
σ = 0.335

+

Bali and Bursa: lim
N→∞

mρ√
σ

= 1.688(25) ; a
√
σ = 0.209

−→
lim

N→∞,a→0

mρ√
σ

= 1.79(5)

versus, in the real world :
mρ√

σ
≃ 770MeV

440MeV
≃ 1.75

−→
N = 3 is ‘close to’ N = ∞ for full QCD ...
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Some questions:

Scalar mesons as N → ∞ : do the ≤ 1GeV states disappear?

The scalar nonet and the place of lightest scalar glueball?

Flavour singlet tensor and pseudoscalar mesons and glueballs?

Excited states stable −→ Regge trajectories?

Excited states stable −→ clean meson excitation spectrum.

SU(2nf ) baryon (Dashen-Manohar) symmetry as N → 3.
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g2N fixed as N → ∞ ? MT, Lat 08 , arXiv:0812.0085

bare coupling (Parisi): g2
I (a) = g2

up
= 2N

β
1

up

µ = 1
a
√

σ

g2
I (µ)N

121086420

6.5

5.5

4.5

3.5

SU(2) ◦ ; SU(3) ◦; SU(4) • ; SU(6) ◦ ; SU(8) •
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As well as its usual continuum running, the bare lattice coupling will also

receive lattice spacing corrections : thus we fit the relation between the

scale of the coupling, a
√
σ(a) (the lattice spacing expressed in units of the

calculated string tension), and the coupling g2(a) by:

a
√
σ(a) = lattice running × 3 − loop continuum running

=

√
σ(0)

Λs

`

1 + ca2σ
´

e
− 1

2β0g2
s

„

β1

β2
0

+
1

β0g2
s

«

β1
2β2

0 e
− βs

2
2β2

0

g2
s

Now from the 2-loop β-function we see that:

g2N = constant ⇔ physics = ind of N

≡
Λ

MS√
σ

= ind of N
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Fitting the bare coupling at various N one finds:

C. Allton, M. Teper, A. Trivini, arXiv:0803.1092

1/N2

ΛMS√
σ

0.30.20.10

0.8

0.6

0.4

0.2

0

Λ
MS√

σ
= 0.503(2)(40) + 0.33(3)(3)

N2 QED
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same question in D = 2 + 1

g2 dimensions of [m] : β = 2N/ag2

N

√
σ

g2

108642

1.6

1.2

0.8

0.4

0

N

√
σ

g2N

108642

0.24

0.2

0.16

0.12

smooth physics at large N → g2N fixed
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◦ So much for the cheap and dirty calculation ...

cheap ↔ no extra work

dirty ↔ lattice corrections

◦ clearly it would be better to calculate some coupling on a scale l at some

a and then to send a→ 0 while keeping l fixed in ‘physical units’ e.g.

keeping l
√
σ = l/a× a

p

σ(a) fixed.

That is: to extract a continuum running coupling from the lattice

calculation.

◦ a nice calculation of this kind is the ‘Schrodinger Functional scheme’ of

the Alpha Collaboration:
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continuum SF coupling in SU(3)

Alpha collaboration , hep-lat/9810063 S. Bethke, hep-ex/0606035

comparable range to (real) experiment (Λ ∼ 125MeV) and much more

accurate!
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recently for SU(4):

B. Lucini, G. Moraitis, arXiv:0805.2913, 0710.1533

1 10
E (GeV)

1

1.5

2

2.5

3

g2

Numerical data
One-loop beta function
Two-loop beta function

0 0.05 0.1 0.15 0.2 0.25

1/N
2

0

0.2

0.4

0.6

0.8

1

Λ
M

S/σ
1/

2

new SU(4) plus older Alpha SU(2) and SU(3) →
Λ

MS√
σ

= 0.528(40) + 0.18(36)

N2

which is consistent with bare coupling

QUESTION: does the SF coupling acquire non-perturbative jumps at the Narayanan-Neuberger

N = ∞ phase transitions?
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So:

• large N is confining

• N = 3 is close to N = ∞ for many physical quantities –

so large N is phenomenonologically relevant

• g2(l)N = ind/of/N as N → ∞

⇒

interesting and useful to investigate in detail the physics of large-N gauge

theories
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Calculating as N → ∞ : how much harder?

• ∝ N3 factor coming from matrix multiplication;

partly offset by smaller finite V corrections at larger N .

• We calculate masses from connected correlators i.e. correlations between

fluctuations

but

as N → ∞ all fluctuations vanish

⇒

mass calculations become impossible as N → ∞?

NO

the errors on the fluctuations are themselves determined by higher order

correlators, which generically vanish at the same rate

35



the observed ratio of error to signal for the same number of Monte Carlo

field configurations is roughly independent of N

0

0.005

0.01

0.015

0.02

0 2 4 6 8 10

error
signal

N

r
r

r
r

r

c

c

c

c

c

Error to signal ratio for C2(t) after 105 sweeps on 104 lattices at fixed

lattice spacing, a ≃ 1/5Tc, and for t = 0 (•) and t = a (◦).
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• For QCD with quarks:

the most expensive part of current calculations is matrix times vector

multiplication (e.g. in propagators) and this is ∝ N2 ;

in principle also partly offset by smaller finite V corrections at larger N .

• As for glueballs, we calculate masses from connected correlators

but

in this case the errors on the correlators are determined by higher order

correlators, which generically vanish not at the same rate, but as O(1/N)

– which translates into an effective improvement of ∝ N2 in statistics

⇒

ideally, increasing N has no extra cost!

but

in practice things are not ideal and the cost grows as ∝ N

Bali,Bursa
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Most of the following large N topics we will not have time for ...

◦ space-time reduction : see Narayanan ; Neuberger

◦ confinement : see Blaizot ; Greensite

◦ instantons ; topology ; chiral symmetry breaking and topology; k-string

tensions ; domain wall tensions ; intertwined θ-vacua ; glueball spectrum ;

....
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Instead we focus on physics at finite temperature:

L3
sLt ⇒ T = 1

a(β)Lt
if Ls ≫ Lt

• RHIC and LHC experiments

• area of choice for AdS/CFT applications:

SUSY ∼ gauge theory : Tc < T < few × Tc

since :

adjoint fermions acquire a Matsubara mass

scalars then unprotected and acquire mass

• AdS/CFT is at large N , so important to check what features of QCD at

T ≥ Tc have small finite N corrections.
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N counting of free energies: F = E − TS

At T = Tc we have

Fc = Fg

but

Fg ∼ N2 colour singlet spectrum, entropy ∼ N0

So why does Tc 6 →0 as N → ∞?

Well

Ec = hadronmasses+ Evac

and

Evac ∼ −O(N2) ∼ gluon condensate

so

Fg = −Evac at T = Tc

So if the gluon plasma above Tc was weakly coupled we could calculate Tc

just from the gluon condensate
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Deconfining temperature for all N B.Lucini et al: hep-lat/0307017,0502003

1/N2

Tc√
σ

0.30.250.20.150.10.050

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

2nd order ◦ ; 1st order •

⇒ Tc√
σ

= 0.597(4) + 0.45(3)

N2
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Aside : D=3+1 −→ D=2+1

J. Liddle, M.Teper : hep-lat/0509082; arXiv:0803.2128 ; K. Holland : hep-lat/0509041 ; K. Holland,

M. Pepe, U-J Wiese : arXiv:0712.1216

1/N2

Tc√
σ

0.30.250.20.150.10.050

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

2nd order ◦ ; 1st order (N = 4 weak) • ⇒ Tc√
σ

= 0.903(3) +
0.88(5)

N2
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Confinement-deconfinement latent heat

B.Lucini, M.Teper, U.Wenger: hep-lat/0307017,0502003

1/N2

1
Tc

{

Lh

N2

}
1
4

0.150.10.050

1.2

1

0.8

0.6

0.4

0.2

0

⇒

large-N deconfinement is ‘normal’ first order ; N = 3 ‘weakly’ first order
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Confinement-deconfinement wall tension (aT=0.2)

B.Lucini, M.Teper, U.Wenger: hep-lat/0502003

N

σcd

T 3
c

1098765432

0.8

0.6

0.4

0.2

0

fit : σcd
T3

c
= 0.0138N2 − 0.104 = 0.0138N2

`

1 − 7.53
N2

´

⇒ interface tension small and O(1/N2) corrections large
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For T > Tc topology disappears exponentially fast in N :

Lucini, Teper, Wenger, hep-th/0401028

N

χdecon
t (Tc)

χcon
t (Tc)

98765432

10

1

0.1

0.01

0.001

⇒ the UA(1) symmetry is restored at large N – exponentially fast

45



Strongly Coupled Gluon Plasma - at large N?

Consider

Z(T, V ) = exp
n

− F
T

o

= exp
n

−
fV
T

o

=
R

DU exp
`

−βSW
´

.

now p = T ∂
∂V

log Z(T, V ) = T
V

log Z(T, V ) = T
V

R β
β0

dβ′ ∂ log Z
∂β′

but
∂ log Z

∂β
= −〈SW 〉 = Np〈up〉

so a4[p(T ) − p(0)] = 6
R β
β0

dβ′(〈up〉T − 〈up〉0).

i.e.
p(T )

T4 = 6L4
t

R β
β0

dβ′(〈up〉T − 〈up〉0).

similarly (ǫ − 3p)/T4 = 6L4
t (〈up(β)〉0 − 〈up(β)〉T ) ×

∂β
∂ log(a(β))

.
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Strong Gluon Plasma - high-T pressure anomaly

B. Bringoltz, M.Teper: hep-lat/0506034
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m
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/T
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N=4, 16
3
x5

N=8, 8
3
x5

N=3, 20
3
x5

N=3, 32
3
x6, Boyd et al.
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∆ ≡ ǫ − 3p

B. Bringoltz, M.Teper: hep-lat/0506034

[ ∆ = 0 in Stefan-Boltzman gas ]
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⇒

SGP is a large-N phenomenon: dynamics must survive at N = ∞
⇒

• not (colour singlet) hadrons above Tc

• not topology (instantons)

• good news for AdS/CFT !

• D=2+1? su3: Bialas,Daniel,Morel,Petersson, arXiv:08070855
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now back to some topics at T = 0 ....
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Interlaced θ-vacua in SU(N) gauge theories

Consider the gauge action with a θ term

S[g2, θ] =
1

4g2

Z

d4xTrFµνF
µν +

iθ

16π2

Z

d4xǫµνρσTrFµνFρσ

Since

1

16π2

Z

d4xǫµνρσTrFµνFρσ = Q = integer

we know that exp−S[θ] and hence the vacuum energy density E(θ) are

periodic in θ

E(θ) = E(θ + 2π) ∀N
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On the other hand, we expect that for a smooth N → ∞ limit, we need to

factor N from S so that the couplings to keep fixed are 1/g2N , θ/N , ... i.e.

E(θ) = N2h(θ/N)

How do we reconcile these two apparently irreconciliable demands?

E.Witten hep-th/9807109
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suggestion: E(θ) is a multi-branched function E.Witten hep-th/9807109

Ek(θ) = N2h

„

θ + 2πk

N

«

; E(θ) = min
k
Ek(θ)

so that: E(θ) = E(θ + 2π)

while each Ek(θ) is periodic in 2πN

e.g. N=10:
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θ

E(θ)

0

0

domain wall tension between different ‘k-vacua’ is O(N) so as N → ∞
these will all become stable ...

Witten: AdS/CFT ; Shifman: N = 1 SUSY
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So:

T ≤ Tc

we have N vacua at any given θ

there is some nice lattice evidence for this scenario:

Del Debbio, Panagopoulos, Vicari, hep-th/0204125, arXiv:0706.1479

T > Tc

topology disappears exponentially in N :

so no interlaced vacua – just naive 2π periodicity in θ with exponentially

small E(θ) variation
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−→

So as N → ∞ there are N stable vacua at θ = 0

Now

large N → lowest vacua are close to their minima → we can use a

quadratic approximation for Ek(θ) if k ≪ N , →

Ek(θ = 0) = E0(θ = 0) +
1

2
χt(2πk)

2

where χt is the topological susceptibility
E.g.

Ek=1 − E0 = 2π2χt ∼ (360MeV )4

in contrast to the E0 ∼ −O(N2) vacuum energy
So:

these near-stable vacua should appear as quasistable in computer time

when using local Monte Carlo updates and we should be able to find them!
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Some properties of these k-vacua:

• in a k 6= 0 vacuum

〈Q〉 6= 0

since k
CP→ N − k ; degeneracy, mixing?

• string tension ↓ as k ↑ since vacuum energy decreases,

perhapsZhitnitsky

σ(k) ≃ σ(k = 0) cos{ 2πk
N

}

• upper half of vacua, N/4 ≤ k ≤ 3N/4, are unstable?

• since the vacuum energy increases with k,E(k) = E(k = 0) +O(k2),
perhaps such a state deconfines at a lower temperature

Tc(k 6= 0) < Tc?
How to find?

•quench β across bulk transition ? has not worked for me

•quench β from high T to low T ?
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SU(8) in 3+1 dimensions

β = 2N/g2

a
√

σ

46454443

1.2

0.8

0.4

0

1st order bulk transition for N ≥ 5 ensures clean weak-coupling physics on

weak-coupling branch

⇒
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Is there a ‘physical’ lattice strong coupling regime?

• Why ask? AdS/CFT addresses g2N → ∞.

• usual lattice

g2N → ∞ ↔ β → 0

is presumably not relevant as essential space-time symmetries badly broken

in that limit

• but at large N we can use the metastability of the strong-to-weak

coupling bulk transition to go to smaller β while remaining still in a strong

coupling phase

• if we are past the ‘roughening transition’ then the space-time symmetries

will begin to be restored and we might be in a strong coupling phase that

has some physical features – even if it does not have an asymptotically free

UV completion

there is some numerical evidence for this:
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SU(8) , β = 44.3 , 2 × 62 × 8

(ap)2

aE2
f (p)

543210

5

4

3

2

1

0

−−− E2 = m2 + p2 with p2 → 4sin2p/2 better
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Some core Conclusions

◦ large N gauge theories are linearly confining at low T

◦ moreover for many basic physical quantities,

e.g. the lightest glueball masses, mρ, the deconfinement temperature, the

string tension, ΛMS ,

one finds SU(3) ≃ SU(∞)

◦ this is good news for applications of gauge-gravity duality, where what

one calculates is at N = ∞

◦ in particular, it appears that for simple thermodynamic quantities in the

region Tc < T < few × Tc, which is currently the favourite area for

applying AdS/CFT methods, we also have SU(3) ≃ SU(∞)
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