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I
Outline of the lectures

Lecture 1: Non-relativistic scale invariant theories

e Introduction to Galilean scaling symmetries

e Schrodinger algebra and its realizations

o Liftshitz theories

e Real world systems with Schrédinger symmetries
Lecture 2: Galilean holography

e The holographic dual spacetime

e String theory realization of Schrodinger invariant theories
Lecture 3: Applications of the Galilean hologram

e Thermodynamics & Hydrodynamics

e Correlation functions
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Motivation

Holographic models for strongly coupled systems

e The AdS/CFT correspondence allows us to probe the physics of
strongly coupled gauge theories.
* Insight into transport properties of QGP, relevant for physics
seen in heavy-ion collisons.
e There are other strongly coupled systems discussed in condensed

matter literature which exhibit a wide range of extremely
interesting physics.

e Use holographic methods to find the classical “Master field” for
these theories.
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Motivation

New insights into Quantum Gravity

e AdS/CFT has a dual role: it allows us to probe quantum aspects
of gravity in terms of a non-perturbatively well defined QFT.

¢ Generalizations of the AdS/CFT correspondence, to new terrains
has the potential to unveil important lessons for quantum gravity.
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Motivation

New insights into Quantum Gravity

e AdS/CFT has a dual role: it allows us to probe quantum aspects
of gravity in terms of a non-perturbatively well defined QFT.

¢ Generalizations of the AdS/CFT correspondence, to new terrains
has the potential to unveil important lessons for quantum gravity.

Understanding fluid dynamics

e The mathematical structure of Navier-Stokes equations
(non-relativistic) poses interesting challenges.

e Can we reformulate the Fluid-Gravity correspondence in a context
relevant fOI‘ non-relatiViSitiC ﬂu1dS7 Bhattacharyya, Hubeny, Minwalla, MR
v
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Motivation

Experimental relevance

e There is currently an intensive experimental effort to understand
the physics of cold atoms.

e These systems seem to admit an hydrodynamic description in
terms of a nearly-ideal fluid.
* The energy per particle is about 50% of the free value, similar
in spirit to the Stephan-Boltzmann saturation of QGP just
above the deconfinement transition.
* Experimental results of elliptic type flow (shear driven
relaxation) give n/s ~ 1/x!
e Can we find systems that have holographic duals which share at
least some of the symmetries exhibited in these cold atom systems?)
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Galilean Conformal Symmetry

The Schrodinger algebra

e The Schrodinger algebra is the symmetry algebra of the free
Schrédinger operator in d 4+ 1 dimensions.

e [t is generated by operators that commute with
1
S=id + — 67
10¢ + om Ui

o [t is analog of the conformal algebra for relativistic systems — we
will see how to relate the two shortly.

e [t is believe that the system of cold atoms at unitarity is an
example of an interacting QFT which realizes this symmetry.
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Galilean Conformal Symmetry

The Schrodinger group

e One can write down the Schrédinger group as the following set of

transformations:
vy — MRx+ot+a
 qt+6
fo = 20O
vyt+46

with ad — B~y = 1.

e The group includes, spatial translations indicated by a, rotations
captured by R, Galilean boosts with velocity v, a scale
transformation and a special conformal generator.

o We will derive the algebra momentarily by employing a useful
trick.
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Galilean Conformal Symmetry

Aside: Galilean Conformal Algebra

Apart from the Schrédinger algebra there is another conformal
algebra which includes the Galilean algebra as a sub-algebra — this
is the Galilean Conformal Algebra (GCA). Bagchi, Gopakumar

The two algebras are quite distinct; they have different numbers of
generators and also treat the dilatation generator differently.

One can view the GCA as a contraction of the conformal algebra
obtained by sending ¢ — oo.

The Schrodinger algebra on the other hand requires us to rescale
the particle mass as well.

We will mostly focus on the Schrodinger algebra in these lectures.
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Galilean Conformal Symmetry

Galileo & Poincaré

Light-cone reductions

e Recall that one can get the Galilean algebra in d dimensions by
reducing the Poincaré algebra SO(d + 1, 1) on light-cone

u=t+y, v=t—y

e Propagation in light-cone time u respects Galilean invariance.

e We can similarly reduce the conformal algebra SO(d + 2,2) in
d + 2 dimensions on a light-cone to obtain the Schrodinger algebra
in d-spatial dimensions.
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Galilean Conformal Symmetry

The Schrodinger algebra: Generators

Starting from the conformal algebra we keep all generators which
commute with the particle number.

Hamiltonian: H

Spatial rotations: Mj;

Spatial momenta: P;

Galilean boosts: K;

Dilatation: D

Special conformal generator: C

Particle number: N

where we are restricting attention to d-spatial dimensions, i.e.,

{i,j} € {1,---d}.
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Galilean Conformal Symmetry

The Schrodinger algebra from conformal algebra

Generator Galilean
Particle number N
Hamiltonian H
Momenta B;
Angular momenta M;;
Galilean boost K;
Dilatation D
Special conformal C
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Galilean Conformal Symmetry

The Schrodinger algebra: Commutation relations

[Mij, Myg] =1 (01 My — G My + 653 My — 651 M)
[Mj;, Py] =i (6 Pj — O3 Ps)
[Mij, Kk] =1 (5ik Kj — 5jk Kl)
[Mj;, H] = [Mj;, D] = [My;, C] = 0
[Pl?PJ] = [KUKJ] =0 ; [K17PJ] - 151_] N

[D,P;] =iP; , [D,Ki] = —i K;
[H,Pi]=0, [H,Ki] = —iP;
[C,Pi] =iK; , [C,Ki] =0
[D,H] = 2iH , [D,C] = —2iC,
[H,C] = —iD
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Galilean Conformal Symmetry

Scaling dimensions and representations

e From the commutation relations descending from the conformal
algebra one can infer that

[H,D] = —2iH

e This implies that the Hamiltonian has scaling dimension 2.

o Intuitively, this follows from the fact that non-relativistic systems
are first order in time, leading to scaling

t— At X — AX
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Galilean Conformal Symmetry

Scaling dimensions and representations

e Representation of Schrodinger algebra in terms of highest weight

states as usual. Nishida, Son

e In particular, we will talk about 2 quantum numbers
* The scaling dimension:

[D,0] =1Ap0
* The particle number:
[N,0] =Nu0O

e We have Ag =2 and Ap = 1.
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Galilean Conformal Symmetry

Scaling dimensions and representations

o We will realize highest weight representations in terms of primary
operators which have a given conformal dimension Ag and particle
number N.

e As usual the spacetime dependence of the operator can be inferred
via translation:

O(t,x) = et Ht—1Pix; 0(0) ot Ht+HPix;

e The primary operators are defined so that lowering operators K
and C (which have scaling dimensions —1 and —2 respectively
annihilate it i.e.,

[K;, 0] = [C,0] = 0
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Galilean Conformal Symmetry

Scaling dimensions and representations

One can give a simple representation of the algebra in terms using the
usual derivative representation. For an operator O(t, x):

[H,0] = —-i6,0

[P;, 9] =100

[D,0] =1 (2t0 +x10; + Ap) O
[Ki, 0] = (=it + Nox;) O

[C,0] = —i(®pe +tx: 05+t Ap) O

which in particular implies that the quasi-primary operators satisfy

e_”‘DO(t,x)e”‘D =20 9 (e“t,e)‘x)
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Galilean Conformal Symmetry

State-operator correspondence

e Primary operators are in one-one correspondence with the
eigenstates of a quantum system in a harmonic trap.
e The state
o) =71 0" 0)

is an eigenstate of the Hamiltonian Hyse = H + C with eigenvalue
Ag.

e The Schrodinger algebra has a SL(2, R) sub-algebra generated by
{D,H, C}.

1
HOSC:§ (H+C)
aT:%(H—CJriD)

a:%(H—C—iD)
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Galilean Conformal Symmetry

Liftshitz points

e We can also consider more general scaling, but not conformal
symmetries.

e These are described by a real number z =1+ v.
o We assign weight —v to Kj and 1 + v to H.

e The commutation relations are deformed to
[D,H =i(1+v)H, [D,N]=—-i(v—-1)N

[D7 Kl] = —il/Ki

e For v # 1 we don’t have a conserved particle number and the
special conformal generator C does not exist in the algebra.

e These describe generalized scaling

t— ATVt X — AX
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Experimental relevance

Fermions at unitarity

e Cold atom systems are an increasingly interesting arena to explore
a wide range of physical phenomena.

e Fermionic Li® or K* in optical traps provide systems of fermionic
gases where inter-atomic interactions can be externally tuned to
produce different phases.

e The quantity of interest is the s-wave scattering length a; tuning a

one can pass from a BEC condensate to a BCS superfluid.

* Small negative a leads to weak attractive interaction — BCS
limit.

* As a — oo we achieve the unitarity limit as the s-wave cross
section is saturated.

* For positive scattering length is the BEC phase where the
fermions form deeply bound molecules.
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Experimental relevance

Fermions at unitarity

e Tuning a is achieved by external magnetic field with the fermionic
atoms in an optical trap.
e Exactly at threshold one obtains a massless bound state, and the

theory is supposed to be described as a non-relativistic conformal
field theory with Schrédinger symmetry.

e Experimental studies of this fluid suggest that it is another
example of a nearly-ideal fluid with n/s ~ 1/7. Schiifer, Teaney

e Fixed points are known to exist in € expansion around 2
dimensions and 4 dimensions. Nishida, Son.
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The AdS/CFT correspondence

Statement of the AdS/CFT correspondence

AdS/CFT

Quantum gravity on asymptotically d-dimensional Anti-deSitter
spacetime is described by a d — 1 dimensional gauge theory sans gravity.

Mukund Rangamani (Durham University)
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The AdS/CFT correspondence

Statement of the AdS/CFT correspondence

AdS/CFT
Quantum gravity on asymptotically d-dimensional Anti-deSitter

spacetime is described by a d — 1 dimensional gauge theory sans gravity.

A particularly appealing and testable form of the conjecture:

Type IIB string theory 4-dimensional

5 _ superconformal
snaiiisri: > - Yang-Mills gauge
P . theory.
Rads, gs - g2, N
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AdS/CFT continued

gy N> 1

N>1

SS
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AdS/CFT continued

stmN <1

N>1
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The AdS/CFT correspondence

Motivating the correspondence

e Start with N D3-branes in flat space. The world-volume is
R3! c R%L
e This has two equivalent descriptions in string theory:
* As open strings ending on D3 interacting with closed strings in
the bulk
* As purely closed strings in a back-reacted spacetime.

e A suitable decoupling limit /5 — 0 zooms in onto the dynamics of
just the open strings whilst in the geometric picture we focus on a
region of the full spacetime.

o Effectively, closing the holes on the world-sheet leads to a pure
closed string description.
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The AdS/CFT correspondence

Salient features of the AdS/CFT correspondence

e Symmetry matching: the SO(4,2) x SO(6) C PSU(2,2|4) global
symmetry of field theory are realized as isometries of the
spacetime.

e Local gauge invariant single trace operators of the field theory
such as O = Tr (X - - - X) are mapped to single particle states in the
super-gravity description.

e There exists a precise prescription to compute the generating
function of correlation functions for these gauge invariant
operators:

(efﬁ eo(x) O(x) Yopr = Zsiring [go(r, X)}93 = QDO(X)]
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The AdS/CFT correspondence

Outline of the lectures

Lecture 1: Non-relativistic scale invariant theories

e Introduction to Galilean scaling symmetries

e Schrodinger algebra and its realizations

o Liftshitz theories

e Real world systems with Schrédinger symmetries
Lecture 2: Galilean holography

e The holographic dual spacetime

e String theory realization of Schrodinger invariant theories
Lecture 3: Applications of the Galilean hologram

e Thermodynamics & Hydrodynamics

e Correlation functions
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A non-relativistic holographic construction

AdS/CFT basics

e Consider the geometry of AdSq3
dr?

ds? = —r?dt? + 2 dx? + —
r

which is the metric covering the Poincaré patch of AdS.

e AdSq3 has the SO(d + 2,2) isometry algebra of which we can
look at the scaling symmetry

t— At X — AX, r— —r

Mukund Rangamani (Durham University) Galilean holography June 09

20/46



A non-relativistic holographic construction

AdS/CFT basics

e This is the familiar scale transformations for the relativistic CFT
on RY4*! which is the boundary of AdSq443 in Poincaré
coordinates.

e The radial direction is holographically said to correspond to a

energy scale in the field theory, cf., the holographic
renormalization group.

e We can map out the other symmetries as well similarly in terms of
AdS isometries.
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A non-relativistic holographic construction

Holography for non-relativistic CFTs: DLCQ

e Consider the scaling symmetery
t— ATy, X — AX

e This can be achieved by starting from AdS4;3 in light-cone

coordinates
2 2 2 dr?
ds® =r (—2dudv—|—dx ) +—
;
and define an unconventional scaling
v+1 1-v 1
u— A" u v—o ATy, X — AX, r—>Xr

and interpreting u as time.
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A non-relativistic holographic construction

Holography for non-relativistic CFTs: DLCQ

e This Galilean symmetry is familiar from DLCQ.

e In fact, this is essentially the observation that DLCQ of any
relativistic theory gives a Galilean invariant model in a sector with
fixed light-cone momentum.

e However, we should be careful about the zero mode.

e Finally, the underlying theory is relativistic — the Galilean
symmetry is an artifact of our choice of light-cone quantization.
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A non-relativistic holographic construction

Holography for non-relativistic CFTs

e To motivate a dual that has manifest Galilean scaling consider

Son; Balasubramanian K, McGreevy

d 2
ds? =12 (—2dudv — B2 12" du? + dx®) + =
T
which naturally has the required scaling
v+1 1-v 1
u—A""u v—o ATy, X — AX, r—>Xr

* v =0 is pure AdSq4s.

* v = 1 corresponds to the Schrédinger algebra.

* v = 2 is relevant for lightlike non-commutative SYM.
* We will call such spacetimes Schrqs.
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A non-relativistic holographic construction

Holography for non-relativistic CFTs

e The metric with 3 # 0 is sourced by null energy momentum T\,.

e This can be shown to be a solution of Einstein-Hilbert action with
negative cosmological constant, with a massive vector field
providing the appropriate stress tensor. Son

e In fact, this spacetime has naturally a Galilean causal structure.
e Technically, it belongs to a class of spacetimes that is known as

non-distinguishing. Hubeny, MR, Ross

Before we discuss this issue lets take a classical gravity detour.
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Causal pathologies and holography

Causality conditions I: Top-Down

@ Global hyperbolicity: A spacetime is said to be globally hyperbolic if
it admits a Cauchy surface.

Examples
Minkowski space, Schwarzschild black hole. J
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Causal pathologies and holography

Causality conditions I: Top-Down
@ Global hyperbolicity: A spacetime is said to be globally hyperbolic if
it admits a Cauchy surface.

Not-examples J

AdS, plane wave geometries.
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Causal pathologies and holography

Causality conditions I: Top-Down

@ Global hyperbolicity: A spacetime is said to be globally hyperbolic if
it admits a Cauchy surface.

@ Stable causality: A stably causal spacetime is one that admits a
time-function, i.e.,

3 smooth t : M — R, with ||V,t|? < 0 everywhere

Examples
Minkowski space, AdS, plane wave spacetimes. }
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Causal pathologies and holography

Causality conditions I: Top-Down

@ Global hyperbolicity: A spacetime is said to be globally hyperbolic if
it admits a Cauchy surface.

@ Stable causality: A stably causal spacetime is one that admits a
time-function, i.e.,

I smooth t : M — R, with | V,t|* < 0 everywhere

® Strong causality: For point p € M, causal curves passing close to p
do not come arbitrarily close to being CCCs.
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Causal pathologies and holography

Causality conditions II: Bottom-Up

@ Causal: A causal spacetime is one which is devoid of closed causal
curves.

Examples

Minkowski space, AdS, plane wave spacetimes.
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Causal pathologies and holography

Causality conditions II: Bottom-Up

@ Causal: A causal spacetime is one which is devoid of closed causal
curves.

Not Examples

Godel,Minkowski space with periodic time identification.
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Causal pathologies and holography

Causality conditions II: Bottom-Up

@ Causal: A causal spacetime is one which is devoid of closed causal
curves.

@ Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.

For p,q € M,
75(p) =T (a) = p=gq
Examples
Minkowski space, AdS, plane wave spacetimes. J

AN

R
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Causal pathologies and holography

Causality conditions 1I: Bottom-Up

@ Causal: A causal spacetime is one which is devoid of closed causal
curves.

® Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.

For p,q € M,
() =T (@) =>p=q
Not Examples
A large class of pp-wave spacetimes are non-distinguishing. J
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Causal pathologies and holography

Hierarchy of causality conditions

The hierarchy

The causality conditions are inclusive:

Causal <« Distinguishing < Strong causality
< Stable causality < Global hyperbolicity
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Causal pathologies and holography

Non-distinguishing pp-wave spacetimes

pp-wave

pp-wave spacetimes are those that admit a covariantly constant, null
Killing field, say (a%)a

ds? = —2dudv — f(u,x') du? + dx'dx’

Mukund Rangamani (Durham University)
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Causal pathologies and holography

Non-distinguishing pp-wave spacetimes

pp-wave

pp-wave spacetimes are those that admit a covariantly constant, null
Killing field, say (a%)a

ds? = —2dudv — f(u,x') du? + dx'dx’

Non-distinguishing pp-waves

e If f(u,x') grows super-quadratically in x' or is singular at some
x' = x; then the pp-wave is non-distinguishing.
e Require that f(u,x!) diverges to +oo.

Flores, Sanchez, HRR
y
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Causal pathologies and holography

Non-distinguishing pp-wave spacetimes

o If f(u, x') grows super-quadratically in x' or is singular at some
x! = X}) then the pp-wave is non-distinguishing.
e Require that f(u,x') diverges to +oo.

Flores, Sanchez, HRR
The Schrq. s spacetime is conformal to a pp-wave and hence is
non-distinguishing.
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Causal pathologies and holography

Why is the spacetime non-distinguishing?

e The causal future of
p = (ug, vo, 0, Xp) is the
set of points with u > ug.
e So every point on a
plane of constant u
shares the same causal
future.
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Causal pathologies and holography

Why is the spacetime non-distinguishing?

e The geometry despite
having local Lorentzian
tangent space, achieves a
global Galilean
light-cone by its
non-distinguishing
character.
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Schrodinger in string theory

Realization in string theory

e The spacetime dual to Galilean CFTs can be generated from
known solutions by a solution generating techinque.

e This technique Null Melvin Twist or TsT transformation maps an
asymptotically AdS geometry and converts it into a deformed
spacetime with § # 0.

TsT = T-duality + shift + T-duality

e Starting from AdSg13 xX with X having one U(1) isometry we
generate Schryqys Xy X.
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Schrodinger in string theory

Realization in string theory

e Starting from AdSs x S° and writing S® as S' fibration over CP?
(with fibre ) we obtain via NMT

d 2
ds*> = 1? (-2dudv —r?du® +dx?) + iz + (dyp 4+ A)? + dx3,
Tr

F(5) = 2(1+*)dw/\J/\J,
B(g) = r’duA (dy + A),
e This geometry can be reduced to a solution of a 5 dimensional

effective theory which is a consistent truncation of II1B supergravity
involving a massive vector and 3 scalars. Maldacena, Martelli, Tachikawa
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Schrodinger in string theory

The Dual Field Theory

e The NMT also allows us to infer the dual field theory since we can
follow the solution generating technique on the open string side.

e The field theory (for v =1) is N =4 SYM deformed by a
(heterotic) star product

fag= ei,@(Vng—Vng)fg

where V is the v-momentum of the field and R refers to a global
U(1)gr charge.
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Schrodinger in string theory

Effective Lagrangian

e For purposes of discussing thermodynamics issues we can however
truncate to a one scalar model with action

16 G5 8 = / d°xy/—g (R - %(8@)(8%) - V(cb))
+ / dSxy/—g <ie8¢/3FWFW - 4AMA“>

V(9) = 4¢™/3(e* — 4)

e This action needs to be supplemented with appropriate boundary
terms.
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Schrodinger in string theory

Outline of the lectures

Lecture 1: Non-relativistic scale invariant theories

e Introduction to Galilean scaling symmetries

e Schrodinger algebra and its realizations

o Liftshitz theories

e Real world systems with Schrédinger symmetries
Lecture 2: Galilean holography

e The holographic dual spacetime

e String theory realization of Schrodinger invariant theories
Lecture 3: Applications of the Galilean hologram

e Thermodynamics & Hydrodynamics

e Correlation functions
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Schrodinger in string theory

Duals for Liftshitz points

e For v # 1 one can write down holographic duals for theories which
have anisotropic scaling.

dr?
ds? = 12 de? + P A + S
T

Kachru, Liu, Mulligan

e These spacetimes haven’t yet been embedded into string theory;
however it is possible to write down low energy effective actions
which have these spacetimes as solutions.
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Schrodinger in string theory

Duals for Liftshitz points

e One can also realize variants of the Schrodinger spacetimes which
different spatio-temporal scaling;:

d 2
ds? =12 (—2dudy — 8212¥ du® + dx?) + rig

e Various values of v are realized in supergravity theories.

e For some of these embeddings one can indeed find the dual field
theory; typically these are non-local deformations of known field
theories.
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Schrodinger in string theory

Upshot of stringy embedding

e Given any superconformal theory with U(1) R-symmetry, the twist
procedure described above can be used to deform the theory.

e In the holographic context we want to consider the theory at
strong coupling A > 1 and restrict to the planar limit N > 1.

e This is an interesting class of non-local quantum field theories
which provide examples of Schrédinger invariant theories. Rather
different from fermions at unitarity.
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Black holes and thermodynamics

Effective Lagrangian for Schrodinger spacetimes

e For purposes of discussing thermodynamics issues we can however
truncate to a one scalar model with action

16 G5 8 = / d°xy/—g (R - %(8@)(8%) - V(cb))
+ / dSxy/—g <ie8¢/3FWFW - 4AMA“>

V(9) = 4¢™/3(e* — 4)

e This action needs to be supplemented with appropriate boundary

terms.
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Black holes and thermodynamics

Black Hole solution

dd = r2k(r)-} (F ;ﬂff) —r2f(r)] du? 52 CRE N ) dudv)
+ Kt (e + )

2

A = r<1+f(r)du ﬁ%*d)
r

Mukund Rangamani (Durham University)
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Black holes and thermodynamics

Thermodynamics

e The NMT/TsT does not change the entropy

_TiB
4G5

e Note that the canonically normalized Killing generator of the

horizon is
o (OV, L (oY
~ \Ou 232 \ ov

e This gives the temperature:

S AvV

'+
T=—
T
e Moreover, the system is in a grand canonical ensemble with
(particle number) chemical potential
1

/’L:Tﬁg
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Black holes and thermodynamics

Thermodynamics contd.

e To determine the Gibbs potential of this grand canonical
ensemble, we can do an “Euclidean action” computation.

e Analytically continuation of t gives a complex geometry, which
leads to a real Euclidean action.

3
ﬂl“Jr

_ AvV
16Gs "

e This action is the identical to the on-shell action (regulated) for
the Schwarzschild-AdS black hole.
* The NMT/TST does not change the leading large N
thermodynamic properties (follows from star product).

e Careful analysis of boundary counter-terms required to obtain the
result.
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Black holes and thermodynamics

Equation of state

e From the Gibbs potential easy to read off

7I.3 T4

- T _AvV
64Gs 2 "

(E)

Av B I
V27T N 64G5/L

e This leads to an equation of state

(N) =P

E=PV

which is the non-relativisitc conformal equation of state in 2
spatial dimensions.

e Generalizes to all dimensions easily. Herzog, MR, Ross; Kovtun, Nickel.
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Linearized fluctuations

Study the two point function of the spatial stress tensor IMj;(u, x)
to learn about 7.

Gravitational computation involves fluctuation analysis about the
black hole solution.

While generically dg, A and d¢ give a coupled system: the shear
mode dgy,x, decouples.

In fact dgx, x, satisfies massless, minimally coupled wave equation
(for zero spatial momentum).
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Shear viscosity of the conformal plasma

e Remembering that the stress tensor has zero particle number
Py = 0, the wave equation in fact reduces to that in the
Schwarzschild-AdS background, modulo

wWAdS = B WSchr

e One can easily compute (y,x, My x, ) at zero spatial momentum
and read off 1 using a Kubo formula.

e One finds
n 1
s 4m
¢ Finally, note that non-relativisitic conformal invariance requires

that the bulk viscosity vanish; ¢ = 0.
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Non-relativistic hydrodynamics

Aim: Derive the hydrodynamic equations for the non-relativistic
plasma from gravity using the fluid-gravity correspondence.

The Hard Way

e Take the asymptotically Schrqys black hole and generalize it to a
d + 2 parameter solution (d Galilean velocities v;.)

Promote r, 8 and v; to fields depending on {u,x}.

Solve bulk gravity equations order by order in derivatives of {u,x}
for asymptotically Schrqys solutions.

Gravity constraint equations — Navier-Stokes equations.

Asymptotic fall-off conditions — ‘boundary’ stress tensor.
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Non-relativistic hydrodynamics

Aim: Derive the hydrodynamic equations for the non-relativistic
plasma from gravity using the fluid-gravity correspondence.

The Short-Cut

e Leading planar physics of the non-relativistic theory is the same as
the parent relativistic theory.

e Obtain the stress tensor complex for the non-relativistic theory by
reducing the corresponding relativistic stress tensor on the
light-cone (along v).

e The bulk metric is obtained by TsT transformation of the

asymptotically AdS fluid black hole solutions (with 0, being the
null Killing vector).
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Relativistic & non-relativistic hydrodynamics

Equations for ideal relativistic hydrodynamics: These are just conservation
of energy-momentum tensor and are d + 2 equations for d + 2 variables
(fluids on RI*TL1)

V. IT* =0.

T = (Erel + Prel) uwhu? + Prel TIW )
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Relativistic & non-relativistic hydrodynamics

Equations for ideal non-relativistic hydrodynamics: These are again
conservation equations:

Continuity equation: Ocp + O (,0 Ui) =0,
Momentum conservation: d(pv') +o,N¥ =0,

1 .
Energy conservation: Ok <€ + B P 02> + 8ij. =0,

where we have defined
spatial stress tensor: N = polo 4+ 69P

1 .
energy flux: je = 5 (e + P)v?v!
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Light-cone reduction of ideal relativistic hydrodynamics

Consider the relativistic stress tensor in light-cone coordinates
x* = {u,v}.

o, Tt +6TH =0, 0, T+ 9TV =0, o, T +6T ' =0,
which allows us to identify
Tt =p, TH =pv, TV=nY

1 .
T+ :6+§p02, T =]l

e
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Light-cone reduction of ideal relativistic hydrodynamics

The map between relativistic and non-relativistic variables:

p
e+P’
Pt = P, €rel =26+ P.

ut =

u =ut ol

DN |

The component of the relativistic velocity u™ can be determined using
the normalization condition u, u* = —1 to be

1 /1
-_ =+ + .2
u—2<u+—|—u U).
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Light-cone reduction of viscous relativistic hydrodynamics

e The map can be extended to incorporate dissipative effects.

e The conformal relativistic stress tensor at first order reads:
T = (erel + Prel) uwhu? + 77'uVPrel — 2 Mgel T

with 7# being the shear tensor.

e Light-cone reduction is as before, with derivative corrections to
the map between velocities.

e Can use the map to derive the non-relativistic transport
coefficients at first order.
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Light-cone reduction of viscous relativistic hydrodynamics

Non-relativistic transport coefficients:
e We find for the shear viscosity

-
nrel—u+ o

e The heat conductivity is given by

e The dimensionless ratio Prandtl number defined as the ratio of
kinematic viscosity v to thermal diffusivity x is 1.
v n K

PI':*, V=—-, X =—
P PCp
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Correlation functions

Schrodinger correlators

e Can use the Galilean hologram to discuss correlation functions of
quasi-primary operators.

e Schrodinger algebra constrains two point functions:

iy k2
(O(t,x) 07(0,0) ) oc t=20 e71No 3%

e Can derive correlation functions using a minor modification of

AdS/CFT:

<efB SOO(X) O(X) >CFT = Zstring [S@(r, X)}B = SOO(X)]

where we impose boundary conditions at r = R, > 1.

Balasubramainan K, McGreevy; Fuertes, Moroz; Volovich, Wen
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Salient points

e Holographic dual for system with Galilean conformal invariance,
using D-brane construction.

e D-branes probing a Null Melvin geometry naturally give rise to
such non-relativistic CF'Ts.

e Discussed thermodynamics and some hydrodynamic properties of
such plasmas.

e As usual, brane engineering leads to systems where 7/s takes on
the universal value 1/47.

e Can discuss conformal non-relativistic hydrodynamics for the
system: derived transport coefficients at first order and
constructed dual gravity solutions.
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