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Outline of the lectures

Lecture 1: Non-relativistic scale invariant theories
• Introduction to Galilean scaling symmetries
• Schrödinger algebra and its realizations
• Liftshitz theories
• Real world systems with Schrödinger symmetries

Lecture 2: Galilean holography
• The holographic dual spacetime
• String theory realization of Schrödinger invariant theories

Lecture 3: Applications of the Galilean hologram
• Thermodynamics & Hydrodynamics
• Correlation functions
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Introduction

Motivation

Holographic models for strongly coupled systems

• The AdS/CFT correspondence allows us to probe the physics of
strongly coupled gauge theories.
? Insight into transport properties of QGP, relevant for physics

seen in heavy-ion collisons.
• There are other strongly coupled systems discussed in condensed

matter literature which exhibit a wide range of extremely
interesting physics.

• Use holographic methods to find the classical “Master field” for
these theories.

Mukund Rangamani (Durham University) Galilean holography June ’09 3 / 46



Introduction

Motivation

New insights into Quantum Gravity

• AdS/CFT has a dual role: it allows us to probe quantum aspects
of gravity in terms of a non-perturbatively well defined QFT.

• Generalizations of the AdS/CFT correspondence, to new terrains
has the potential to unveil important lessons for quantum gravity.

Understanding fluid dynamics
• The mathematical structure of Navier-Stokes equations

(non-relativistic) poses interesting challenges.
• Can we reformulate the Fluid-Gravity correspondence in a context

relevant for non-relativisitic fluids? Bhattacharyya, Hubeny, Minwalla, MR
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Introduction

Motivation

Experimental relevance
• There is currently an intensive experimental effort to understand

the physics of cold atoms.
• These systems seem to admit an hydrodynamic description in

terms of a nearly-ideal fluid.
? The energy per particle is about 50% of the free value, similar

in spirit to the Stephan-Boltzmann saturation of QGP just
above the deconfinement transition.

? Experimental results of elliptic type flow (shear driven
relaxation) give η/s ∼ 1/π!

• Can we find systems that have holographic duals which share at
least some of the symmetries exhibited in these cold atom systems?
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Galilean Conformal Symmetry

The Schrödinger algebra

• The Schrödinger algebra is the symmetry algebra of the free
Schrödinger operator in d + 1 dimensions.

• It is generated by operators that commute with

S = i ∂t +
1

2 m
∂2

i

• It is analog of the conformal algebra for relativistic systems – we
will see how to relate the two shortly.

• It is believe that the system of cold atoms at unitarity is an
example of an interacting QFT which realizes this symmetry.
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Galilean Conformal Symmetry

The Schrödinger group

• One can write down the Schrödinger group as the following set of
transformations:

x→ x′ =
R x + v t + a

γ t + δ

t→ t′ =
α t + β

γ t + δ

with α δ − β γ = 1.
• The group includes, spatial translations indicated by a, rotations

captured by R, Galilean boosts with velocity v, a scale
transformation and a special conformal generator.

• We will derive the algebra momentarily by employing a useful
trick.
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Galilean Conformal Symmetry

Aside: Galilean Conformal Algebra

• Apart from the Schrödinger algebra there is another conformal
algebra which includes the Galilean algebra as a sub-algebra – this
is the Galilean Conformal Algebra (GCA). Bagchi, Gopakumar

• The two algebras are quite distinct; they have different numbers of
generators and also treat the dilatation generator differently.

• One can view the GCA as a contraction of the conformal algebra
obtained by sending c→∞.

• The Schrödinger algebra on the other hand requires us to rescale
the particle mass as well.

• We will mostly focus on the Schrödinger algebra in these lectures.
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Galilean Conformal Symmetry

Galileo & Poincaré

Light-cone reductions
• Recall that one can get the Galilean algebra in d dimensions by

reducing the Poincaré algebra SO(d + 1, 1) on light-cone

u = t + y , v = t− y

• Propagation in light-cone time u respects Galilean invariance.
• We can similarly reduce the conformal algebra SO(d + 2, 2) in

d + 2 dimensions on a light-cone to obtain the Schrödinger algebra
in d-spatial dimensions.
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Galilean Conformal Symmetry

The Schrödinger algebra: Generators

Starting from the conformal algebra we keep all generators which
commute with the particle number.
• Hamiltonian: H
• Spatial rotations: Mij

• Spatial momenta: Pi

• Galilean boosts: Ki

• Dilatation: D
• Special conformal generator: C
• Particle number: N

where we are restricting attention to d-spatial dimensions, i.e.,
{i, j} ∈ {1, · · · d}.
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Galilean Conformal Symmetry

The Schrödinger algebra from conformal algebra

Generator Galilean Conformal
Particle number N Pv

Hamiltonian H Pu

Momenta Pi Pi

Angular momenta Mij Mij

Galilean boost Ki Miv

Dilatation D D + Muv

Special conformal C Kv
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Galilean Conformal Symmetry

The Schrödinger algebra: Commutation relations

[Mij,Mkl] = i (δik Mjl − δjk Mil + δil Mkj − δjl Mki)

[Mij,Pk] = i (δik Pj − δjk Pi)

[Mij,Kk] = i (δik Kj − δjk Ki)

[Mij,H] = [Mij,D] = [Mij,C] = 0
[Pi,Pj] = [Ki,Kj] = 0 , [Ki,Pj] = i δij N

[D,Pi] = i Pi , [D,Ki] = −i Ki

[H,Pi] = 0 , [H,Ki] = −i Pi

[C,Pi] = i Ki , [C,Ki] = 0
[D,H] = 2i H , [D,C] = −2i C ,

[H,C] = −i D
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Galilean Conformal Symmetry

Scaling dimensions and representations

• From the commutation relations descending from the conformal
algebra one can infer that

[H,D] = −2 i H

• This implies that the Hamiltonian has scaling dimension 2.
• Intuitively, this follows from the fact that non-relativistic systems

are first order in time, leading to scaling

t→ λ2 t , x→ λx
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Galilean Conformal Symmetry

Scaling dimensions and representations

• Representation of Schrödinger algebra in terms of highest weight
states as usual. Nishida, Son

• In particular, we will talk about 2 quantum numbers
? The scaling dimension:

[D,O] = i ∆O O

? The particle number:

[N,O] = NO O

• We have ∆H = 2 and ∆P = 1.
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Galilean Conformal Symmetry

Scaling dimensions and representations

• We will realize highest weight representations in terms of primary
operators which have a given conformal dimension ∆O and particle
number NO.

• As usual the spacetime dependence of the operator can be inferred
via translation:

O(t, x) = ei H t−i Pi xi O(0) e−i H t+i Pi xi

• The primary operators are defined so that lowering operators K
and C (which have scaling dimensions −1 and −2 respectively
annihilate it i.e.,

[Ki,O] = [C,O] = 0
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Galilean Conformal Symmetry

Scaling dimensions and representations

One can give a simple representation of the algebra in terms using the
usual derivative representation. For an operator O(t, x):

[H,O] = −i ∂tO

[Pi,O] = i ∂iO

[D,O] = i (2 t ∂t + xi ∂i + ∆O) O

[Ki,O] = (−i t ∂i + NO xi) O

[C,O] = −i
(
t2 pt + t xi ∂i + t ∆O

)
O

which in particular implies that the quasi-primary operators satisfy

e−iλD O(t, x) eiλD = eλ∆O O
(

e2λ t, eλ x
)
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Galilean Conformal Symmetry

State-operator correspondence

• Primary operators are in one-one correspondence with the
eigenstates of a quantum system in a harmonic trap.

• The state
|ψO 〉 = e−H O† |0 〉

is an eigenstate of the Hamiltonian Hosc = H + C with eigenvalue
∆O.

• The Schrödinger algebra has a SL(2,R) sub-algebra generated by
{D,H,C}.

Hosc =
1
2

(H + C)

a† =
1
2

(H− C + i D)

a =
1
2

(H− C− i D)

Mukund Rangamani (Durham University) Galilean holography June ’09 11 / 46



Galilean Conformal Symmetry

Liftshitz points

• We can also consider more general scaling, but not conformal
symmetries.

• These are described by a real number z = 1 + ν.
• We assign weight −ν to Ki and 1 + ν to H.
• The commutation relations are deformed to

[D,H] = i (1 + ν) H , [D,N] = −i (ν − 1) N

[D,Ki] = −i νKi

• For ν 6= 1 we don’t have a conserved particle number and the
special conformal generator C does not exist in the algebra.

• These describe generalized scaling

t→ λ1+ν t x→ λ x
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Experimental relevance

Fermions at unitarity

• Cold atom systems are an increasingly interesting arena to explore
a wide range of physical phenomena.

• Fermionic Li6 or K40 in optical traps provide systems of fermionic
gases where inter-atomic interactions can be externally tuned to
produce different phases.

• The quantity of interest is the s-wave scattering length a; tuning a
one can pass from a BEC condensate to a BCS superfluid.
? Small negative a leads to weak attractive interaction – BCS

limit.
? As a→∞ we achieve the unitarity limit as the s-wave cross

section is saturated.
? For positive scattering length is the BEC phase where the

fermions form deeply bound molecules.
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Experimental relevance

Fermions at unitarity

• Tuning a is achieved by external magnetic field with the fermionic
atoms in an optical trap.

• Exactly at threshold one obtains a massless bound state, and the
theory is supposed to be described as a non-relativistic conformal
field theory with Schrödinger symmetry.

• Experimental studies of this fluid suggest that it is another
example of a nearly-ideal fluid with η/s ∼ 1/π. Schäfer, Teaney

• Fixed points are known to exist in ε expansion around 2
dimensions and 4 dimensions. Nishida, Son.
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The AdS/CFT correspondence

Statement of the AdS/CFT correspondence

AdS/CFT
Quantum gravity on asymptotically d-dimensional Anti-deSitter
spacetime is described by a d−1 dimensional gauge theory sans gravity.

A particularly appealing and testable form of the conjecture:

Type IIB string theory
on AdS5 × S5

spacetime.
≡

4-dimensional
superconformal
Yang-Mills gauge
theory.

RAdS, gs ↔ g2
YM, N
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The AdS/CFT correspondence

AdS/CFT continued

——

g2
YM N� 1

N� 1
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The AdS/CFT correspondence

Motivating the correspondence

• Start with N D3-branes in flat space. The world-volume is
R3,1 ⊂ R9,1.

• This has two equivalent descriptions in string theory:
? As open strings ending on D3 interacting with closed strings in

the bulk
? As purely closed strings in a back-reacted spacetime.

• A suitable decoupling limit `s → 0 zooms in onto the dynamics of
just the open strings whilst in the geometric picture we focus on a
region of the full spacetime.

• Effectively, closing the holes on the world-sheet leads to a pure
closed string description.
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The AdS/CFT correspondence

Salient features of the AdS/CFT correspondence

• Symmetry matching: the SO(4, 2)× SO(6) ⊂ PSU(2, 2|4) global
symmetry of field theory are realized as isometries of the
spacetime.

• Local gauge invariant single trace operators of the field theory
such as O = Tr (X · · ·X) are mapped to single particle states in the
super-gravity description.

• There exists a precise prescription to compute the generating
function of correlation functions for these gauge invariant
operators:

〈 e
R

B ϕ0(x) O(x) 〉CFT = Zstring

[
ϕ(r, x)

∣∣
B

= ϕ0(x)
]
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The AdS/CFT correspondence

Outline of the lectures

Lecture 1: Non-relativistic scale invariant theories
• Introduction to Galilean scaling symmetries
• Schrödinger algebra and its realizations
• Liftshitz theories
• Real world systems with Schrödinger symmetries

Lecture 2: Galilean holography
• The holographic dual spacetime
• String theory realization of Schrödinger invariant theories

Lecture 3: Applications of the Galilean hologram
• Thermodynamics & Hydrodynamics
• Correlation functions
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A non-relativistic holographic construction

AdS/CFT basics

• Consider the geometry of AdSd+3

ds2 = −r2 dt2 + r2 dx2 +
dr2

r2

which is the metric covering the Poincaré patch of AdS.
• AdSd+3 has the SO(d + 2, 2) isometry algebra of which we can

look at the scaling symmetry

t→ λ t , x→ λ x , r→ 1
λ

r
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A non-relativistic holographic construction

AdS/CFT basics

• This is the familiar scale transformations for the relativistic CFT
on R1,d+1 which is the boundary of AdSd+3 in Poincaré
coordinates.

• The radial direction is holographically said to correspond to a
energy scale in the field theory, cf., the holographic
renormalization group.

• We can map out the other symmetries as well similarly in terms of
AdS isometries.
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A non-relativistic holographic construction

Holography for non-relativistic CFTs: DLCQ

• Consider the scaling symmetery

t→ λν+1 t , x→ λ x

• This can be achieved by starting from AdSd+3 in light-cone
coordinates

ds2 = r2
(
−2 du dv + dx2

)
+

dr2

r2

and define an unconventional scaling

u→ λν+1 u , v→ λ1−ν v , x→ λ x , r→ 1
λ

r

and interpreting u as time.
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A non-relativistic holographic construction

Holography for non-relativistic CFTs: DLCQ

• This Galilean symmetry is familiar from DLCQ.
• In fact, this is essentially the observation that DLCQ of any

relativistic theory gives a Galilean invariant model in a sector with
fixed light-cone momentum.

• However, we should be careful about the zero mode.
• Finally, the underlying theory is relativistic – the Galilean

symmetry is an artifact of our choice of light-cone quantization.
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A non-relativistic holographic construction

Holography for non-relativistic CFTs

• To motivate a dual that has manifest Galilean scaling consider
Son; Balasubramanian K, McGreevy

ds2 = r2
(
−2 du dv − β2 r2 ν du2 + dx2

)
+

dr2

r2

which naturally has the required scaling

u→ λν+1 u , v→ λ1−ν v , x→ λ x , r→ 1
λ

r

? ν = 0 is pure AdSd+3.
? ν = 1 corresponds to the Schrödinger algebra.
? ν = 2 is relevant for lightlike non-commutative SYM.
? We will call such spacetimes Schrd+3.
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A non-relativistic holographic construction

Holography for non-relativistic CFTs

• The metric with β 6= 0 is sourced by null energy momentum Tuu.
• This can be shown to be a solution of Einstein-Hilbert action with

negative cosmological constant, with a massive vector field
providing the appropriate stress tensor. Son

• In fact, this spacetime has naturally a Galilean causal structure.
• Technically, it belongs to a class of spacetimes that is known as

non-distinguishing. Hubeny, MR, Ross

Before we discuss this issue lets take a classical gravity detour.
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Causal pathologies and holography

Causality conditions I: Top-Down

1 Global hyperbolicity: A spacetime is said to be globally hyperbolic if
it admits a Cauchy surface.

Examples

Minkowski space, Schwarzschild black hole.

3!

!1

!

!2

!1

2

2 Stable causality: A stably causal spacetime is one that admits a
time-function, i.e.,

∃ smooth t : M→ R,with ‖∇at‖2 < 0 everywhere

3 Strong causality: For point p ∈M, causal curves passing close to p
do not come arbitrarily close to being CCCs.
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——

g1

g2

I
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Causal pathologies and holography

Causality conditions II: Bottom-Up

1 Causal: A causal spacetime is one which is devoid of closed causal
curves.

Examples

Minkowski space, AdS, plane wave spacetimes.

2 Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.
For p, q ∈M,

I±(p) = I±(q)⇒ p = q
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Causal pathologies and holography

Causality conditions II: Bottom-Up
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Gödel,Minkowski space with periodic time identification.

2 Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.
For p, q ∈M,

I±(p) = I±(q)⇒ p = q

Mukund Rangamani (Durham University) Galilean holography June ’09 24 / 46



Causal pathologies and holography

Causality conditions II: Bottom-Up

1 Causal: A causal spacetime is one which is devoid of closed causal
curves.

2 Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.
For p, q ∈M,

I±(p) = I±(q)⇒ p = q

Examples

Minkowski space, AdS, plane wave spacetimes.

P

Q

R

S

Mukund Rangamani (Durham University) Galilean holography June ’09 24 / 46



Causal pathologies and holography

Causality conditions II: Bottom-Up

1 Causal: A causal spacetime is one which is devoid of closed causal
curves.

2 Distinguishing: A spacetime is said to be distinguishing if we can
distinguish points on the manifold M based on their causal sets.
For p, q ∈M,

I±(p) = I±(q)⇒ p = q

Not Examples

A large class of pp-wave spacetimes are non-distinguishing.
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Causal pathologies and holography

Hierarchy of causality conditions

The hierarchy

The causality conditions are inclusive:

Causal ⇐ Distinguishing ⇐ Strong causality
⇐ Stable causality ⇐ Global hyperbolicity
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Causal pathologies and holography

Non-distinguishing pp-wave spacetimes

pp-wave

pp-wave spacetimes are those that admit a covariantly constant, null
Killing field, say

(
∂
∂v

)a
ds2 = −2 du dv − f(u, xi) du2 + dxidxi

Non-distinguishing pp-waves

• If f(u, xi) grows super-quadratically in xi or is singular at some
xi = xi

0 then the pp-wave is non-distinguishing.
• Require that f(u, xi) diverges to +∞. Flores, Sanchez, HRR

Example

The Schrd+3 spacetime is conformal to a pp-wave and hence is
non-distinguishing.
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Causal pathologies and holography

Why is the spacetime non-distinguishing?

v

P
Q

R
u

r

——

• The causal future of
p = (u0, v0, r0,~x0) is the
set of points with u > u0.

• So every point on a
plane of constant u
shares the same causal
future.
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Causal pathologies and holography

Why is the spacetime non-distinguishing?

v

P
Q

R
u

r

——

• The geometry despite
having local Lorentzian
tangent space, achieves a
global Galilean
light-cone by its
non-distinguishing
character.
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Schrödinger in string theory

Realization in string theory

• The spacetime dual to Galilean CFTs can be generated from
known solutions by a solution generating techinque.

• This technique Null Melvin Twist or TsT transformation maps an
asymptotically AdS geometry and converts it into a deformed
spacetime with β 6= 0.

TsT = T-duality + shift + T-duality

• Starting from AdSd+3 ×X with X having one U(1) isometry we
generate Schrd+3 ×w X.
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Schrödinger in string theory

Realization in string theory

• Starting from AdS5 × S5 and writing S5 as S1 fibration over CP2

(with fibre ψ) we obtain via NMT

ds2 = r2
(
−2 du dv − r2 du2 + dx2

)
+

dr2

r2
+ (dψ + A)2 + dΣ2

4,

F(5) = 2 (1 + ?) dψ ∧ J ∧ J,

B(2) = r2 du ∧ (dψ + A),

• This geometry can be reduced to a solution of a 5 dimensional
effective theory which is a consistent truncation of IIB supergravity
involving a massive vector and 3 scalars. Maldacena, Martelli, Tachikawa
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Schrödinger in string theory

The Dual Field Theory

• The NMT also allows us to infer the dual field theory since we can
follow the solution generating technique on the open string side.

• The field theory (for ν = 1) is N = 4 SYM deformed by a
(heterotic) star product

f ? g = eiβ (Vf Rg−Vg Rf) f g

where V is the v-momentum of the field and R refers to a global
U(1)R charge.
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Schrödinger in string theory

Effective Lagrangian

• For purposes of discussing thermodynamics issues we can however
truncate to a one scalar model with action

16πG5 S =

∫
d5x
√
−g
(

R− 4
3

(∂µφ)(∂µφ)−V(φ)

)
+

∫
d5x
√
−g
(

1
4

e−8φ/3FµνFµν − 4 AµAµ

)
V(φ) = 4 e2φ/3(e2φ − 4)

• This action needs to be supplemented with appropriate boundary
terms.
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Schrödinger in string theory

Outline of the lectures

Lecture 1: Non-relativistic scale invariant theories
• Introduction to Galilean scaling symmetries
• Schrödinger algebra and its realizations
• Liftshitz theories
• Real world systems with Schrödinger symmetries

Lecture 2: Galilean holography
• The holographic dual spacetime
• String theory realization of Schrödinger invariant theories

Lecture 3: Applications of the Galilean hologram
• Thermodynamics & Hydrodynamics
• Correlation functions
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Schrödinger in string theory

Duals for Liftshitz points

• For ν 6= 1 one can write down holographic duals for theories which
have anisotropic scaling.

ds2 = −r2ν+2 dt2 + r2 dx2 +
dr2

r2

Kachru, Liu, Mulligan

• These spacetimes haven’t yet been embedded into string theory;
however it is possible to write down low energy effective actions
which have these spacetimes as solutions.
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Schrödinger in string theory

Duals for Liftshitz points

• One can also realize variants of the Schrodinger spacetimes which
different spatio-temporal scaling:

ds2 = r2 (−2 du dv − β2 r2 ν du2 + dx2) +
dr2

r2

• Various values of ν are realized in supergravity theories.
• For some of these embeddings one can indeed find the dual field

theory; typically these are non-local deformations of known field
theories.
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Schrödinger in string theory

Upshot of stringy embedding

• Given any superconformal theory with U(1) R-symmetry, the twist
procedure described above can be used to deform the theory.

• In the holographic context we want to consider the theory at
strong coupling λ� 1 and restrict to the planar limit N� 1.

• This is an interesting class of non-local quantum field theories
which provide examples of Schrödinger invariant theories. Rather
different from fermions at unitarity.

Mukund Rangamani (Durham University) Galilean holography June ’09 33 / 46



Black holes and thermodynamics

Effective Lagrangian for Schrödinger spacetimes

• For purposes of discussing thermodynamics issues we can however
truncate to a one scalar model with action

16πG5 S =

∫
d5x
√
−g
(

R− 4
3

(∂µφ)(∂µφ)−V(φ)

)
+

∫
d5x
√
−g
(

1
4

e−8φ/3FµνFµν − 4 AµAµ

)
V(φ) = 4 e2φ/3(e2φ − 4)

• This action needs to be supplemented with appropriate boundary
terms.
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Black holes and thermodynamics

Black Hole solution

ds2E = r2 k(r)−
2
3

([
1− f(r)

4β2
− r2 f(r)

]
du2 +

β2r4+
r4

dv2 − [1 + f(r)] du dv
)

+ k(r)
1
3

(
r2dx2 +

dr2

r2 f(r)

)
,

A =
r2

k(r)

(
1 + f(r)

2
du−

β2r4+
r4

dv
)
,

eφ =
1√
k(r)

,

f(r) = 1−
r4+
r4

, k(r) = 1 +
β2 r4+

r2
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Black holes and thermodynamics

Thermodynamics

• The NMT/TsT does not change the entropy

S =
r3+ β
4 G5

∆v V

• Note that the canonically normalized Killing generator of the
horizon is

ξa =

(
∂

∂u

)a
+

1
2β2

(
∂

∂v

)a
• This gives the temperature:

T =
r+

π β

• Moreover, the system is in a grand canonical ensemble with
(particle number) chemical potential

µ =
1

2β2
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Black holes and thermodynamics

Thermodynamics contd.

• To determine the Gibbs potential of this grand canonical
ensemble, we can do an “Euclidean action” computation.

• Analytically continuation of t gives a complex geometry, which
leads to a real Euclidean action.

I = −
β r3+

16 G5
∆v V

• This action is the identical to the on-shell action (regulated) for
the Schwarzschild-AdS black hole.
? The NMT/TsT does not change the leading large N

thermodynamic properties (follows from star product).
• Careful analysis of boundary counter-terms required to obtain the

result.
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Black holes and thermodynamics

Equation of state

• From the Gibbs potential easy to read off

〈E 〉 =
π3 T4

64 G5 µ2
∆v V

〈N 〉 = Pv
∆v
2π

=
π2 T4

64 G5 µ3
(∆v)2 V

• This leads to an equation of state

E = P V

which is the non-relativisitc conformal equation of state in 2
spatial dimensions.

• Generalizes to all dimensions easily. Herzog, MR, Ross; Kovtun, Nickel.
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Hydrodynamics

Linearized fluctuations

• Study the two point function of the spatial stress tensor Πij(u, x)
to learn about η.

• Gravitational computation involves fluctuation analysis about the
black hole solution.

• While generically δg, δA and δφ give a coupled system: the shear
mode δgx1x2 decouples.

• In fact δgx1x2 satisfies massless, minimally coupled wave equation
(for zero spatial momentum).
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Hydrodynamics

Shear viscosity of the conformal plasma

• Remembering that the stress tensor has zero particle number
Pv = 0, the wave equation in fact reduces to that in the
Schwarzschild-AdS background, modulo

ωAdS = β ωSchr

• One can easily compute 〈Πx1x2 Πx1x2 〉 at zero spatial momentum
and read off η using a Kubo formula.

• One finds
η

s
=

1
4π

• Finally, note that non-relativisitic conformal invariance requires
that the bulk viscosity vanish; ζ = 0.
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Hydrodynamics

Non-relativistic hydrodynamics

Aim: Derive the hydrodynamic equations for the non-relativistic
plasma from gravity using the fluid-gravity correspondence.

The Hard Way
• Take the asymptotically Schrd+3 black hole and generalize it to a

d + 2 parameter solution (d Galilean velocities vi.)
• Promote r+, β and vi to fields depending on {u, x}.
• Solve bulk gravity equations order by order in derivatives of {u, x}

for asymptotically Schrd+3 solutions.
• Gravity constraint equations → Navier-Stokes equations.
• Asymptotic fall-off conditions → ‘boundary’ stress tensor.
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Hydrodynamics

Non-relativistic hydrodynamics

Aim: Derive the hydrodynamic equations for the non-relativistic
plasma from gravity using the fluid-gravity correspondence.

The Short-Cut
• Leading planar physics of the non-relativistic theory is the same as

the parent relativistic theory.
• Obtain the stress tensor complex for the non-relativistic theory by

reducing the corresponding relativistic stress tensor on the
light-cone (along v).

• The bulk metric is obtained by TsT transformation of the
asymptotically AdS fluid black hole solutions (with ∂v being the
null Killing vector).
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Hydrodynamics

Relativistic & non-relativistic hydrodynamics

Equations for ideal relativistic hydrodynamics: These are just conservation
of energy-momentum tensor and are d + 2 equations for d + 2 variables
(fluids on Rd+1,1)

∇µTµν = 0.

Tµν = (εrel + Prel) uµ uν + Prel η
µν ,
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Hydrodynamics

Relativistic & non-relativistic hydrodynamics

Equations for ideal non-relativistic hydrodynamics: These are again
conservation equations:

Continuity equation: ∂tρ+ ∂i

(
ρ vi
)

= 0,

Momentum conservation: ∂t(ρ vi) + ∂jΠ
ij = 0,

Energy conservation: ∂t

(
ε+

1
2
ρ v2

)
+ ∂i jiε = 0,

where we have defined

spatial stress tensor: Πij = ρ vi vj + δijP

energy flux: jiε =
1
2

(ε+ P) v2 vi
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Hydrodynamics

Light-cone reduction of ideal relativistic hydrodynamics

Consider the relativistic stress tensor in light-cone coordinates
x± = {u, v}.

∂+T++ + ∂iT+i = 0 , ∂+T+i + ∂jTij = 0 , ∂+T+− + ∂iT−i = 0,

which allows us to identify

T++ = ρ, T+i = ρ vi, Tij = Πij,

T+− = ε+
1
2
ρ v2, T−i = jiε.
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Hydrodynamics

Light-cone reduction of ideal relativistic hydrodynamics

The map between relativistic and non-relativistic variables:

u+ =

√
1
2

ρ

ε+ P
, ui = u+ vi,

Prel = P , εrel = 2 ε+ P.

The component of the relativistic velocity u− can be determined using
the normalization condition uµ uµ = −1 to be

u− =
1
2

(
1

u+
+ u+ v2

)
.
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Hydrodynamics

Light-cone reduction of viscous relativistic hydrodynamics

• The map can be extended to incorporate dissipative effects.
• The conformal relativistic stress tensor at first order reads:

Tµν = (εrel + Prel) uµ uν + ηµνPrel − 2 ηrel τ
µν

with τµν being the shear tensor.
• Light-cone reduction is as before, with derivative corrections to

the map between velocities.
• Can use the map to derive the non-relativistic transport

coefficients at first order.
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Hydrodynamics

Light-cone reduction of viscous relativistic hydrodynamics

Non-relativistic transport coefficients:
• We find for the shear viscosity

ηrel =
η

u+
.

• The heat conductivity is given by

κ = 2 η
ε+ P
ρT

.

• The dimensionless ratio Prandtl number defined as the ratio of
kinematic viscosity ν to thermal diffusivity χ is 1.

Pr =
ν

χ
, ν =

η

ρ
, χ =

κ

ρ cp

,
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Correlation functions

Schrödinger correlators

• Can use the Galilean hologram to discuss correlation functions of
quasi-primary operators.

• Schrödinger algebra constrains two point functions:

〈O(t, x) O†(0, 0) 〉 ∝ t−∆O e−i NO
x2

2 t

• Can derive correlation functions using a minor modification of
AdS/CFT:

〈 e
R

B ϕ0(x) O(x) 〉CFT = Zstring

[
ϕ(r, x)

∣∣
B

= ϕ0(x)
]

where we impose boundary conditions at r = Rc � 1.
Balasubramainan K, McGreevy; Fuertes, Moroz; Volovich, Wen
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Discussion

Salient points

• Holographic dual for system with Galilean conformal invariance,
using D-brane construction.

• D-branes probing a Null Melvin geometry naturally give rise to
such non-relativistic CFTs.

• Discussed thermodynamics and some hydrodynamic properties of
such plasmas.

• As usual, brane engineering leads to systems where η/s takes on
the universal value 1/4π.

• Can discuss conformal non-relativistic hydrodynamics for the
system: derived transport coefficients at first order and
constructed dual gravity solutions.
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