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Progress in the last years

What do we know about black objects (i.e. with event horizon)
in higher dimensional Einstein gravity ? 
→ Dynamics of BHs in D ≥ 5 much richer than four dimensions 

• D=4: black hole uniqueness

• D=5: MP black hole (S3), ER black ring (S2 × S1), black Saturn, …
- 4D inspired techniques successful 
(assuming 2 axial Killing vector fields           integrability

full classification of BHs in terms of “rod-structure” + asympt. charges ) 

• D ≥ 6: MP black holes (SD-2 ) are only known exact solutions
- full dynamics too complex to be captured by conventional approaches

but recent progress: thin black rings (S1 × SD-3 )  in any dimension 

In this lecture: restrict (mostly) to asymptotically flat solutions of pure gravity 

but:- interesting parallels with BHs in KK spaces
- techniques are readily generalized to AdS/dS space + adding charge

Rμν = 0 MD



Novel feature of higher D neutral BHs

I in some regimes horizons are characterized by (at least) two separate scales

r0 ¿ R

Cf. D=4 shape of Kerr BH is
always approx. round
with radius 

r0 ∼ GM

D ≥ 5: no Kerr bound anymore 

two classical length scales can be widely separated

J

M
vs. (GM)1/(D−3)

Analogue for  KK black holes: size of compact manifold vs. horizon radius



Separation of scales 

- Kerr bound for MP

but: rotating black ring can 
have arbitrarily large angular
momentum for given mass

D=5

I observe separation of scales in explicitly known solutions

R

J2

corresponds to:  
GM3 →∞

RÀ r0

R = radius of S1

r0 = radius of SD-3

r0
radius of ring À thickness of ring

ultraspinning (small mass) limit 

Emparan,Reall



Separation of scales (cont’d)

D ≥ 6: no Kerr bound for MP BHs: 
ultraspinning regimes with pancaked horizons

JD−3
GMD−2 →∞

(approaches black membrane geometry                       for large J )R2 × SD−4

radius of disc À thickness of disc 

Note: GL instability is also property of horizons in higher D depending on 
separation of two length scales along horizon 

inhomogeneous black branes arise when the two 
begin to differ 

length vs. thickness (of black brane)

Gregory,Laflamme

Emparan,Myers



Long distance effective theory

I two widely separated scales integrate out short-distance dynamics

long-distance effective theory 
• use to construct BHs perturbatively

R
r0

e.g. 5D rotating black ring

locally described as
boosted straight black string

J by employing method of matched asymptotic expansion (MAE)
thin black ring solution for D ≥ 6 has been constructed

• MAE was first developed for localized BHs in KK space in limit: L À r0

• other technique has been developed as well: classical effective field theory (ClEFT)

Harmark/Kol,Gorbonos/Karsik et.al
Dias,Harmark,Myers,NO

Chu,Goldberger,Rothstein/Kol

Emparan,Harmark,Niarchos,NO,Rodrigue

Goal: use these methods to develop a leading order theory for the long-distance 
dynamics of higher-dimensional black holes

z



General idea

I start with general theory of gravity S[Ψ] Ψ = {graviton, p-forms, scalars}

- look for BH solutions that have two characteristic scales 
+ integrate out short-distance physics   Ψ = Ψshort +Ψlong

J to leading order: blackfold = black-brane probe in asymptotic background

Sfull→ S[Ψlong] + Swv[Xμ]

Aim: give general prescription for Swv to leading order in r0/R

• solve EOM of S[Ψlong] : defines asymptotic background
• solve S[Ψlong] to find black brane soln with flat worldvolume:

- asymptotic charges define the blackfold locally
→ provides short-distance input for Swv

• Swv describes embedding of blackfold in background 

Swv[X
μ] =

Z √−γL[Xμ(σa)]
determined by:
- consistent coupling to bulk fields Ψ (EM/charge conservation)
- use locally stress-energy/currents of the flat black brane solution 
+ enforce horizon regularity



Blackfold approach

Blackfold = Black p-brane whose worldvolume extends along
a curved submanifold (of embedding space)

Emparan,Harmark,Niarchos,NO

I start with flat p-brane: horizon Rp × sn+1
r0size:

bend spatial world-volume into submanifold
characterized by length scale:   

Bp
• for asymptotically flat blackfolds in D dims:                                          
start with a compact embedding                   of submanifold Bp ⊂ RD−1

R

• consider regime of widely separated scales:

curvature radius of submanifold À brane thickness  RÀ r0

can approximate the blackfold locally with flat black brane

Question: which           are possible ? Bp Geometric Censorship

Xμ(σa)



Classical brane dynamics 

embedding Xμ(σ) of Bp determines induced metric: γαβ = ∂αX
μ∂βX

νgμν

what governs dynamics of a blackfold ?
- For point particles this is Newton’s 2nd law or geodesic eqn. in GR 

I For infinitely thin branes we have Carter equation (brane probe approximation)

TμνKμν
ρ = 0 (⇐ ∇μT

μν = 0)

extrinsic curvature tensor (2nd fund. form) 

energy momentum tensor on brane

Tμν(σ
α) = τμν(σ

α)δ(D−p−1) (x−X(σα))

• Blackfold equations are equivalent to generalized geodesic equation

ταβ
µ
∇(γ)α ∂βX

ρ+ Γρμν∂αX
μ∂βX

ν
¶
= 0

follow from the world-volume action Iwv[Xμ(σα)] =
Z
wv

√−γ ταβγαβ

Emparan,Harmark,Niarchos,NO



Brane stress tensor 

I effective stress tensor of blackfold det’d by matching to short-distance physics
- demand that locally ( r ¿ R ) blackfold is equivalent to black p-brane

up to position dependent Lorentz transformation

We know gravitational field of black p-brane + weak field at  r À r0

→ determines equivalent distributional stress tensor
(sources same field in matching region:  ro ¿ r ¿ R )

ds2 = −fdt2+
pX
i=1

dz2i+f
−1dr2+r2dΩ2n+1 , f(r) = 1−r

n
0

rn

τtt = rn0(n+1)

τii = −rn0 , i = 1 . . . p

J static (flat) black p-brane metric and stress tensor

setup of embedding: m rotation planes that we want blackfold to rotate in:
(rl,φl) , l = 1 . . .m

(define n = D − p− 3)

+ D-1 – 2 m other spatial coordinates

- angular directions correspond locally to boost of flat black brane
- align t with worldvolume time 

zl ∼ zl+2πrl(σ
α)



Boosting the p-brane

I We now act with Lorentz transformation: 
Λ ∈ SO(1,m) ⊂ SO(1, p)

Λ0
0 = coshα , Λi

0 = νi sinhα ,
mX
i=1

ν2i = 1

brane is invariant under spatial rotations: parameterize m boosts as:

boosted EM tensor τij → (ΛτΛ T)ij (σ) is

τtt = rn0[n cosh
2α+1]

τii = rn0[nν
2
i sinh

2α− 1] , i = 1 . . .m

τi 6=j = rn0nνiνj sinh
2α , i, j = 1 . . .m

τti = rn0nνi coshα sinhα , i = 1 . . .m

τii = −rn0 , i = m+1 . . . p

• determined here EM tensor with flat indices since we are using local 
Lorentz frame to map with flat black brane

m boost parameters α (σ) , νi (σ) and brane thickness r0 (σ)
may depend on worldvolume coordinate !

z → Λz



Blackness condition 
I blackfold is now locally a boosted black brane

but still need to impose that it is overall black (regular horizon)

Blackness condition:
surface gravity and angular velocities constant on the blackfold

can find these locally in terms of the embedding

κ =
n

2r0(σα) coshα(σα)
, ΩHi =

νi(σ
α)

ri(σα)
tanhα(σα)

I blackness determines the thickness and the boosts in terms of 
local velocity components 

r0(σ
α) =

n

2κ

q
1−Ξ(σα)2 , tanhα(σα) = Ξ(σα) , νi(σ

α) =
ri(σ

α)ΩHi

Ξ(σα)

with local velocity field defined by: Ξ(σα) =
³Pm

i=1 (ri(σ
α)ΩHi)

2
´1/2

insert these in EM tensor → completely determined in terms of

κ,Ωi, ri(σ)



Final form of boosted stress tensor 

τ00 =
³
n
2κ

´n
(1−Ξ2)n−22

³
n+1−Ξ2

´
τ0i =

³
n
2κ

´n
(1−Ξ2)n−22 nriΩi , i = 1, . . . ,m

τii =
³
n
2κ

´n
(1−Ξ2)n2

µ
n(riΩi)

2

1−Ξ2 − 1
¶
, i = 1, . . . ,m

τii = −
³
n
2κ

´n
(1−Ξ2)n2 , i = m+1, . . . , p

τi 6=j =
³
n
2κ

´n
(1−Ξ2)n−22 rirjΩiΩj i, j = 1, . . . ,m

local velocity field: Ξ(σα) =
³Pm

i=1 (ri(σ
α)ΩHi)

2
´1/2

EM tensor determined in terms of κ,Ωi, ri(σ)



Worldvolume action and Carter equation 

I Easy way to find brane EOMs is now by first computing the worldvolume action

Iwv =
Z √−γ τabηab ∝ −

Z √
γ[1−Ξ(σ)2]n2

+ varying with respect to the embedding coordinates ri(σ)

→ Carter equation becomes a set of purely geometric equations for embedding
of B and given temperature + angular velocities 

Geometric censorship for blackfolds

(much stronger than topological restrictions)

J Technical aside: how many EOMs are there ? 

embedding is defined by functions Fi(X
μ) = 0 , i = 1 . . . n+2

number of eqs. = codimension

• e.g. round S1 satisfies Carter +blackness, but a wiggly S1 does not 

(number of non-trivial EOMs typically reduced using symmetries)



Thermodynamic quantities and horizon topology 

J can compute mass and angular momentum by integrating appropriate
EM tensor components over brane worldvolume

M =

Z
Bp
√−γ τtt , Ji =

Z
Bp
√−γ riτti

J to compute total area: use that locally we have area of a boosted black brane
aH(σ

α) = Ωn+1r
n+1
0 (σα) coshα(σα)

- small sn+1-sphere at each point of blackfold

→ horizon is fibration of  sn+1 over Bp

• if fiber is regular, horizon topology: (topology of Bp)× Sn+1
• but r0 (σ) can go go to zero at codimension-1 locus on B
(where local boost is light-like) 

- e.g. if Bp is p -ball with sn+1 shrinking at boundary: Sp+n+1 = SD−2

total area of horizon: AH =
Z
Bp
√−γ aH(σα)



1st law of thermodynamics

I consider Gibbs free 
energy funtional: 

IG[X
μ(σ)] =M −ΩiJi − 4πκAH

by explicit computation on finds that this is 
proportional to the worldvolume brane action: (D − 2)IG = −Iwv

varying IG  ⇒ 1st law of thermodynamics

1st law of thermo  ⇔ geometric blackfold equations 

also get from this: 

(D − 3)M = (D − 2)
µ
ΩiJi+ TS

¶
+ T
T = − R √−γPpi=1 τiitotal integrated tension of blackfold

• same as integrated version of local Smarr for black p-brane ! 

but asymptotically flat solutions should obey Smarr above with zero tension: T = 0

total tension vanishes for blackfold (explicitly checked in examples)

Harmark,NO/Kastor,Traschen



Example:  Black ring

specify embedding:  S1 in R2 (times point in RD-3 )  

I wrap black string on a compact 1D space (topologically S1) 

R2 : (r,φ) r = R(σ) , φ = σ

action Iwv ∝
Z √−γ(1−Ξ2)n2 = Z

dσ
q
(R0)2 +R2(1−Ω2R2)n2

full EOM is:

(1−Ω2R2)RR00+((n+2)Ω2R2−2)R02+((n+1)Ω2R2−1)R2 = 0

• highly non-linear DE; simple solution with constant R. R =
1√
n+1

1

Ω

or directly from Carter equation:
τ11
R = 0 (total tension vanishes)

J zero tension condition is equivalent to balancing forces on ring
- centrifugal repulsion balances gravitational tension
- solution with horizon topology S1 × SD-3

R



New solutions: odd-spheres

B2k+1 = S2k+1I black brane wrapped on

embed in R2k+2: dρ2 + ρ2

⎛⎝k+1X
i=1

dμ2i + μ2i dφ
2
i

⎞⎠ , k+1X
i=1

μ2i = 1

worldvolume coordinates: μi , φisphere embedded as ρ = R

• assume R = const. and take all Ωi equal (simple solution ansatz)

I action is: Iwv ∝
Z
Rp(1−Ω2R2)n2

R =EOM solved by 

s
p

n+ p

1

Ω

(equivalent to                                so total tension vanishes) 
Pp
i=1 τii = 0

Novel family of blackfolds with horizon topology: S2k+1 × Sn+1
• includes black rings for k = 0
• for k ≥ 1: boosts depend on location on the S2k+1

• uniform thickness

R



products of odd-spheres

Bp =
Q
a S

pa , pa = odd ,
P
a pa = p

I black brane wrapped on

•assume R = const. for each sphere
+  take all Ωi equal for each sphere (simple solution ansatz) 

I action is: Iwv ∝
Y
a

Z
Rpa(1− (Ω(a))2R2a)

n
2

Ra =EOM solved by 

s
pa

n+ p

1

Ω(a)

many new blackfolds with non-trivial horizon topology:

Tp × Sn+1 , (Tp−3 × S3)× Sn+1 ,
(S3 × S3)× Sn+1 , . . .

- number of spheres cannot be larger than n+2 



Ultraspinning MP BHs as even-ball blackfolds

I blackfold eqs. do not admit even-sphere solutions for Bp
- tension at fixed points of rotation group cannot be counterbalanced by 
centrifugal forces

instead solutions with Bp = ellipsoidal even-ball
thickness r0 shrinks to zero at boundary of ball so 
including the sn+1 fibers, horizon topology is SD-2

• reproduce precisely all physical quantities of MP BH with p/2 ultra-spins 
- highly non-trivial check on approach 
(rotation has fixed points at center of ball, r0(σ) varying)

J simplest example: black disc: D2 ⊂ R2

boost depends 
on radius:  

• corresponds to MP BH with one angular momentum in ultraspinning limit



Blackfold Bestiary
I blackfold construction shows existence of new types of asymptotically flat

stationary black holes in higher dimensions

Kerr, MP BH

ultraspinning
MP BH

black ring

black torus

J for product odd-sphere and even-ball blackfolds
with equal sizes and angular momenta (at fixed mass):

A(J) ∼ J−p/n tori dominate entropically



Caveats

• regularity of black brane horizon after bending ? 
- shown for black 1-folds (i.e. black strings)
- extension to p-folds (to appear)  

(use matched asymptotic expansion)

• backreaction of blackfold on background geometry is neglected 
(to leading order in r0/R) 
- could make it impossible for leading-order solution to remain stationary
(must be analyzed case-by-case)

• blackfolds may be (classically) unstable
- can use blackfold equations to analyze stability under long wavelength

perturbations (λÀ r0 )
- there are short wavelength ( λ ∼ r0 ) instabilities (GL-type) outside approach



Lessons from blackfold approach
I dynamics of higher-dimensional black holes naturally organized 

in relative value of scales

0 ≤ J . M(GM)
1

D−3

J ÀM(GM)
1

D−3

J & M(GM)
1

D−3

• single length scale: Kerr BH behavior

• regime of mergers and connections between phase
when two horizon scales meet  r0 ∼ R 

- not accesible to effective methods; 
requires extrapolation or numerics

• blackfolds
- extreme rich physics in this regime; 
study dynamics rather than exact solutions for all
possible BHs

Bp × Sn+1

supported by internal 
structure of the BH

J blackfold horizon topologies

supported by
mechanical equilibrium

- purely topological analysis cannot distinguish between these two factors



Other cases 

I axisymmetric blackfolds

(no boost)

minimal submanifold

e,g. hyperboloid (static non-compact blackfold)

I static minimal blackfolds τij = −Pηij
Kρ = 0 (mean curvature vector)

use numerics or further perturbative
approach ? 



New blackfolds in 5D: helical rings and strings
Emparan,Harmark,Niarchos,NO (in progress)

for black 1-folds we can take curves with tangent vector equal to 
a linear combination of isometries

ζ =
P
i ciξ

(i)|x=X(σ)
→ for critical boost this satisfies Carter + blackness

• helical black string:  ζ ∼ (k∂x+ ∂φ)|r=R
- helix with pitch k
- boost along string gives momentum along x and angular momentum along φ

• helical black ring: ζ ∼ (n∂φ+m∂ψ)|r1=R1,r2=R2
- helix of radius R2 around circular trajectory of radius R1

that closes on itself after m turns  
- boost is linear combo of two angular momenta

has only single spatial U(1) isometry:  
first evidence of such a solution in 5D ! (as admited by rigidity theorem) 

Hollands, Ishibashi, Wald



Charged  blackfolds

• use branes in EMD-gravity (includes supergravities relevant for string theory)

Emparan,Harmark,Niarchos,NO (in progress)

Iwv =
Z √

γτ ijγij +A · J

Carter equation: 

seems to generate highly non-trivial blackfolds

K
ρ
αβτ

αβ = F ρ , ∇μ1J
μ1···μp+1 = 0

worldvolume action

• odd-sphere solutions 
S1: dipole rings in any dimension (includes known dipole ring in 5D)

- from boosting and bending a charged string
higher spheres (in progress)

• even-ball solutions
- charged rotating discs ?   ……

Emparan

- must now also add charge conservation to blackness conditions

could potentially be stable !  (under investigation)



Further Outlook

• charged blackfolds
- in progress  

• method can also be applied to blackfolds in other backgrounds (AdS, dS)
- black rings in (A)dS

• stability analysis

• relation with DBI

• blackfold motion + relation to fluid/gravity correspondence

Caldarelli,Empran,Rodriguez

• SUSY blackfolds ? 
- extremal black holes and black rings 

cf. 5D supersymmetric black ring Elvang,Emparan,Mateos,Reall

• duality of higher D black holes to plasma balls + rings in AdS
(cf. Lahiri,Minwalla) – many similar features 

Figueras,Kunduri,Lucetti,Rangamani

Emparan,Harmark,Niarchos,NO

• higher-order analysis (via MAE/ClEFT) (in progress: horizons stay regular) 



The end
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