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1. Abelian Wilson loop operators

Free abelian gauge theory

Z[Jµ] =
∫
e
− 1

4g2

∫
ddxF2

µν+i
∫
ddxJµAµ

∫
e
− 1

2g2

∫
Ãµ(k)[δµνk2−kµkν]Ãν(−k)

ei
∫
J̃µ(−k)Ãµ(k)

Current conservation: s.p. cond. has solution

∂µFµν = g2Jν ⇒ ∂µJµ = 0

Decouple vector indices in mom. space

Ãµ(k) =
kµ

|k|
aL(k) + εiµ(k)ai⊥(k)

No aL in action

aL not coupled to a conserved current



Current associated with a closed contour

Jµ(x) =
∫ l

0
dτδd(x− z(τ))

dzµ

dτ

Closed contour ⇒ current conserved

Fix parametrization by(
dzµ

dτ

)2
= 1

l = perimeter of loop

Wilson loop operator

W [A] = ei
∫
ddxJµAµ = ei

∮
dzµAµ(z)

Problems in evaluating 〈W [A]〉

• No weight for Ãµ(0); J̃µ(0) = 0; Wilson
loops appear to be “infrared safe”.



• aL(k) integral unbounded; fix by extra weight

e
− 1

2a0g
2

∫
ddk

(2π)d
k2aL(k)aL(−k)

Current conservation ⇒ a0-independence

• Product of integrals over modes diverges;

solved by ultraviolet cutoff Λ with

k2 < Λ2

• Jµ(x) is a distribution and cannot be squared

e−
1
2

∫
ddxddyJµ(x)Jν(y)Gµν(x−y)

Solved by setting

J̃µ(k) = 0 for k2 > Λ2

JΛ
µ (x) =

∫
k2<Λ2

ddk

(2π)d
e−ikx

∫ l
0
dτ
dzµ

dτ
eikz(τ)

is conserved, but no longer localized.



Circular loop; d = 4

Exercise: Show

〈W 〉 = eg
2(ΛR)2

∫ 1
0 dξ log ξJ 2

1 (RΛ
√
ξ)/2

Exercise: Show

Exponent is linearly divergent

∼ c0 (ΛR) + lower orders

Exercise: Show

Can make 〈W 〉 finite by JΛ → JΛ′ with Λ′ kept

finite as Λ→∞

In d = 3 only log divergence

In d = 2 no divergence



Holonomy

eaµ∂
x
µψ(x) = ψ(x+ a)

⇒ for a closed curve

e
∮
dzµ∂xµψ(x) = ψ(x)

Minimal substitution

e
∮
dzµ[∂xµ−iAµ(z)]ψ(x) = W ∗ψ(x)

W is phase factor = holonomy

Small loops

W ≈ 1 + iδσµνFµν

Holonomy determines action.



2 Nonabelian holonomy

G = su(N); Aµ(x)→ A
j
µ(x), j = 1, ..., N2 − 1

R: Irreps. ; Generators T (R)j
a,b , a, b = 1, .., dR;

Tr T (R)iT (R)j ∝ δij, [T (R)i, T (R)j] = iCijkT (R)k

Covariant derivative acting on ψ
(R)
a (x)

[Dµψ]a(x) = [∂xµδab − iT
(R)j
ab Ajµ(x)]ψb(x)

Parallel transport ψ(R)
a (x) round a closed curve

WR(x) = Pei
∮
dzµA

j
µ(z)T (R)j

Under gauge transformation g(x)

WR(x)→ g(R)(x)WR(x)g(R)†(x)

Gauge invariant content of holonomy is x-indep.

χR(W ) = Tr WR(x) ∀R



Equivalently, eigenvalues of matrix Wf(x)

eiλa, a = 0, ...N − 1, =(λa) = 0,
N−1∏
a=0

eiλa = 1

Wf(x) = Pei
∮
dzµA

j
µ(z)T (f)j

, (f) = fundamental

Wilson loop probability density P (W )

Action determined by P0(W ), with

Wf ∼ 1 + δσµνF
j
µνT

(f)j

Natural choice for P0(W ): heat-kernel, t ≥ 0

∂

∂t
P0(W ; t) ∝ ∇2

WP0(W ; t), P0(W ; 0) = δHaar(W,1)



P0(W ; t) =
∑
R

χR(W )e−
t

2NC2(R)

Product over one P0(W ) for all little loops ⇒
P (W ) for a big loop ⇒ class function

P (W ) =
∑
R

ΥR χR(W )

The ΥR have all information determining

〈χR1
(W )χR2

(W )....〉

3 Two dimensions

Tile area A of loop by small loops, λ = g2N ⇒

P (W ) = P0(W ; τ), τ = λA
(

1 +
1

N

)

Durhuus-Olesen non-analyticity at N =∞: “In-

finite N phase transition”



Exercise:

〈χR(W (τ))〉 = dRe
− τ

2NC2(R)

Exercise:

Generator of all antisymmetric irreps:

ψ(N)(z, τ) = 〈det(z −Wf(τ))〉

Define

φ(N)(z, τ) =
i

N

1

ψ(N)(z, τ)

[
z
∂

∂z
+
N

2

]
ψ(N)(z, τ)

Define

ϕ(N)(y, τ) = φ(N)(−ey, τ), y real



Exercise: Burgers’ equation

∂ϕ(N)(y, τ)

∂τ
+ϕ(N)(y, τ)

∂ϕ(N)(y, τ)

∂y
=

1

2N

∂2ϕ(N)(y, τ)

∂y2

Initial condition

ϕ(N)(y,0) = −
1

2
tanh

y

2

Exercise: Shock at y = 0 when τ reaches 4

Exercise: Explain figure below
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Let za be the zeros of ψ(N)(z, τ)

Exercise: Prove |za(τ)| = 1, a = 0, .., N − 1

Exercise: za(τ) = eiθa(τ); Prove

dθa

dτ
=

1

2N

∑
a6=b

cot
θa − θb

2

Exercise: The θa(τ) for τ � 1 are given by

θa(τ) = 2ηa

√
τ

N
; HN(ηa) = 0, a = 0,1, ..., N−1

Exercise: θa(τ) are paired in
[
N
2

]
pairs of op-

posite signs and for odd N there is one θ ≡ 0

Exercise: Show

θa(τ =∞) =
2π

N

(
a−

N − 1

2

)
≡ Θa



Exercise: The θa(τ) for τ � 1 are given by:

δθa(τ) ∼ −2e−
τ

2N (N−1) sin Θa

Exercise: N � 1. Show that the pair of zeros

closest to −1 at τ = 4 is

zM ∼ − exp

[
±

3.7i

N
3
4

]
Exercise: Let N � 1. Let τ

4 = 1 + α
Nν . Show

that for ν = 1/2 zM(τ) is a finite nontrivial

function of α at N =∞.

Critical exp. governing N →∞: 1/2 and 3/4.

Zeros za(τ) ∼ peaks of ev density of W

ρN(θ;W ) =
1

N

∑
a
〈δ2π(θ − γa(W ))〉



Exercise: Compute ρN(θ : W ). Hint: start

by expanding det(1 + uWf)/det(1 − vWf) in

characters, then take the average, and next

study the limit u → −v. Result can be ex-

pressed as a double sum or a double integral
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the positions of the phases of the zeros θa (ver-

tical blue lines) for τ < 4 (left) and τ > 4

(right), N = 10 (top), and N = 50 (bottom).



4 D > 2: Hypothesis: same large-N singularity

Need nonperturbative method. Use numerical

lattice simulations.

Need to define Wilson loops outside perturba-

tion theory, so that they have a finite limit.

Smearing:

Introduce extra dimension ρ ≥ 0

∂A
j
ν(x, ρ)

∂ρ
= [DµFµν(x, ρ)]j ; Ajµ(x,0) = Ajµ(x)

where Dµ is with respect to Ajµ(x, ρ) and F jµν(x, ρ) =

∂µA
j
ν(x, ρ)− ∂νAjµ(x, ρ) + CikjAiµ(x, ρ)Akν(x, ρ)

Smeared Wilson loops are

WR = P exp[
∮
dzµA

j
µ(z, ρ)T (R)j]



Smearing to lowest order

∂Ã
j
µ(k, ρ)

∂ρ
= −(k2δµν − kµkν)Ajν(k, ρ)

with

Ajµ(k,0) = Ajµ(k)

a
j
L remains ρ independent and

a⊥(k, ρ) = e−ρk
2
a⊥(k)

Curve not resolved beyond
√
ρ.

Choose

ρ =
l2

[lΛ′]2 + c
; c ∼ 20

Continuum limit: For large L

log〈Wf(L)〉 ∼ −Σ(b,N)L2



Σ(b,N)L2 = [La(b)]2


√

Σ(b,N)

a(b)


2

Keep both [] factors finite as b→∞.

Procedure:

1. Select l and N .

2. Select pairs b, L(b)’s at l = L(b)a(b) held fixed

3. For (b, L(b)) find ρN
(
θ;Wf [L(b), ρ(L(b), b)]

)
4. Extrapolate b→∞ ⇒ ρN(θ, l).

5. Repeat at same l, increasing N

6. Take N =∞ ⇒ ρ∞(θ, l).

7. Repeat varying l ⇒ lc



lc ∼ finite ⇒ DO transition ∃ for d > 2

Want to test also for DO universality for d > 2

On the lattice:

ON(b, L, ρ(L, b)) = 〈det
(
e
y
2 + e−

y
2Wf(L)

)
〉

Focus on: y ∼ 0, N � 1, l ∼ lc; Assume:

can reverse order of b→∞, N →∞.

ON(y, b) = C0(b,N)+C1(b,N)y2+C2(b,N)y4+...

Ω = C2C0
C2

1
. Vary b at fixed L,N to find bc(L)

Ω(bc(L,N), N) =
Γ(5

4)Γ(1
4)

6Γ2(3
4)

=
Γ4(1

4)

48π2
= 0.36474



Exercise: Calculate Ω(b = bc,∞) in d = 2

Invert bc(L) to Lc(b)

Same lc as in orig b→∞, N →∞ limit order

lc = lim
b→∞

Lc(b)a(b)

Define

ŷ =
(

4

3N3

)1
4 ξ

a1(L)
b̂ = bc(L)

[
1 +

α√
3Na2(L)

]

Universality: limN→∞N (b,N, L)ON(ŷ, b̂) = ζ(ξ, α)

ζ(ξ, α) =
∫ ∞
−∞

due−u
4−αu2+ξu

Exercise: Verify the above in d = 2.

Exercise: Calculate Ω(α) in d = 2.



Exercise: Show

dΩ(b,N)

dα

∣∣∣∣∣
α=0

=
Γ2(1

4)

6
√

2π

Γ4(1
4)

16π2
− 1

 = 0.04646

Verification of critical large N exponents

Define a2(L,N) by

dΩ(b,N)

dα

∣∣∣∣∣
α=0

=
1

a2(L,N)
√

3N

dΩ

db

∣∣∣∣∣
b=bc(L,N)

Exponent 1/2 ⇒ ∃ limit a2(L,∞) = a2(L)

Exercise: Show that in d = 2√
4

3N3

1

a2
1(L,N)

C1(bc(L,N), N)

C0(bc(L,N), N)
=

π
√

2Γ2(1
4)

= 0.169

Define a1(L,N) from above formula in d > 2.

Exponent 3/4 ⇒ ∃ limit a1(L,∞) = a1(L)



Finally: Check ∃ limb→∞ a1,2(Lc(b)) = a1,2

What we know now:

• d = 3 works

• d = 4 lc works, large N univ not done yet

This checks consistency of critical exponents

To determine numerically exponents ∼ 1/2,3/4

is hard – need N ∼ 100 – not done yet

Better analysis methods now available from

new exact results in 2d

Obligatory conclusion:

NEED MORE COMPUTER POWER



5 The bigger picture

Objective: Analytically calculate string tension

for N � 1 in terms of ΛSU(N)

• Use perturbation theory for small loops

• Use large N universality to parametrize loops

with l ∼ lc

• Use an effective string theory to parametrize

large loops

• Sew together the three regimes by asymp-

totic matching

STILL A DREAM


