Large N phase transitions under scaling and their uses.

H. Neuberger

Department of Physics and Astronomy, Rutgers University

Collaborators:

R. Lohmayer, R. Narayanan, T. Wettig Main contributions to subject: B. Durhuus and P. Olesen J-P. Blaizot and M. Nowak

1. Abelian Wilson loop operators

Free abelian gauge theory

$$
\begin{gathered}
Z\left[J_{\mu}\right]=\int e^{-\frac{1}{4 g^{2}} \int d^{d} x F_{\mu \nu}^{2}+i \int d^{d} x J_{\mu} A_{\mu}} \\
\int e^{-\frac{1}{2 g^{2}} \int \tilde{A}_{\mu}(k)\left[\delta_{\mu \nu} k^{2}-k_{\mu} k_{\nu}\right] \tilde{A}_{\nu}(-k)} e^{i \int \tilde{J}_{\mu}(-k) \tilde{A}_{\mu}(k)}
\end{gathered}
$$

Current conservation: s.p. cond. has solution

$$
\partial_{\mu} F_{\mu \nu}=g^{2} J_{\nu} \Rightarrow \partial_{\mu} J_{\mu}=0
$$

Decouple vector indices in mom. space

$$
\tilde{A}_{\mu}(k)=\frac{k_{\mu}}{|k|} a_{L}(k)+\epsilon_{\mu}^{i}(k) a_{\perp}^{i}(k)
$$

No a_{L} in action

Current associated with a closed contour

$$
J_{\mu}(x)=\int_{0}^{l} d \tau \delta^{d}(x-z(\tau)) \frac{d z_{\mu}}{d \tau}
$$

Closed contour \Rightarrow current conserved

Fix parametrization by

$$
\left(\frac{d z_{\mu}}{d \tau}\right)^{2}=1
$$

$l=$ perimeter of loop

Wilson loop operator

$$
W[A]=e^{i \int d^{d} x J_{\mu} A_{\mu}}=e^{i \oint d z_{\mu} A_{\mu}(z)}
$$

Problems in evaluating $\langle W[A]\rangle$

- No weight for $\tilde{A}_{\mu}(0) ; \widetilde{J}_{\mu}(0)=0 ;$ Wilson loops appear to be "infrared safe".
- $a_{L}(k)$ integral unbounded; fix by extra weight

$$
e^{-\frac{1}{2 a_{0} g^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} k^{2} a_{L}(k) a_{L}(-k)}
$$

Current conservation $\Rightarrow a_{0}$-independence

- Product of integrals over modes diverges; solved by ultraviolet cutoff \wedge with

$$
k^{2}<\Lambda^{2}
$$

- $J_{\mu}(x)$ is a distribution and cannot be squared

$$
e^{-\frac{1}{2} \int d^{d} x d^{d} y J_{\mu}(x) J_{\nu}(y) G_{\mu \nu}(x-y)}
$$

Solved by setting

$$
\begin{gathered}
\tilde{J}_{\mu}(k)=0 \text { for } k^{2}>\Lambda^{2} \\
J_{\mu}^{\wedge}(x)=\int_{k^{2}<\Lambda^{2}} \frac{d^{d} k}{(2 \pi)^{d}} e^{-i k x} \int_{0}^{l} d \tau \frac{d z_{\mu}}{d \tau} e^{i k z(\tau)}
\end{gathered}
$$

is conserved, but no longer localized.

Circular loop; $d=4$

Exercise: Show

$$
\langle W\rangle=e^{g^{2}(\wedge R)^{2} \int_{0}^{1} d \xi \log \xi \mathcal{J}_{1}^{2}(R \wedge \sqrt{\xi}) / 2}
$$

Exercise: Show

Exponent is linearly divergent

$$
\sim c_{0}(\wedge R)+\text { lower orders }
$$

Exercise: Show
Can make $\langle W\rangle$ finite by $J^{\wedge} \rightarrow J^{\Lambda^{\prime}}$ with Λ^{\prime} kept finite as $\wedge \rightarrow \infty$

In $d=3$ only log divergence

In $d=2$ no divergence

Holonomy

$$
e^{a_{\mu} \partial_{\mu}^{x}} \psi(x)=\psi(x+a)
$$

\Rightarrow for a closed curve

$$
e^{\oint d z_{\mu} \partial_{\mu}^{x}} \psi(x)=\psi(x)
$$

Minimal substitution

$$
e^{\oint d z_{\mu}\left[\partial_{\mu}^{x}-i A_{\mu}(z)\right]} \psi(x)=W^{*} \psi(x)
$$

W is phase factor = holonomy

Small loops

$$
W \approx 1+i \delta \sigma_{\mu \nu} F_{\mu \nu}
$$

Holonomy determines action.

2 Nonabelian holonomy

$\mathcal{G}=\operatorname{su}(N) ; A_{\mu}(x) \rightarrow A_{\mu}^{j}(x), j=1, \ldots, N^{2}-1$
R : Irreps. ; Generators $T_{a, b}^{(R) j}, a, b=1, . ., d_{R}$;
$\operatorname{Tr} T^{(R) i} T^{(R) j} \propto \delta^{i j}, \quad\left[T^{(R) i}, T^{(R) j}\right]=i C^{i j k} T^{(R) k}$
Covariant derivative acting on $\psi_{a}^{(R)}(x)$

$$
\left[D_{\mu} \psi\right]_{a}(x)=\left[\partial_{\mu}^{x} \delta_{a b}-i T_{a b}^{(R) j} A_{\mu}^{j}(x)\right] \psi_{b}(x)
$$

Parallel transport $\psi_{a}^{(R)}(x)$ round a closed curve

$$
W_{R}(x)=P e^{i \oint d z_{\mu} A_{\mu}^{j}(z) T^{(R) j}}
$$

Under gauge transformation $g(x)$

$$
W_{R}(x) \rightarrow g^{(R)}(x) W_{R}(x) g^{(R) \dagger}(x)
$$

Gauge invariant content of holonomy is x-indep.

$$
\chi_{R}(W)=\operatorname{Tr} W_{R}(x) \quad \forall R
$$

Equivalently, eigenvalues of matrix $W_{f}(x)$

$$
\begin{aligned}
& e^{i \lambda_{a}}, \quad a=0, \ldots N-1, \quad \Im\left(\lambda_{a}\right)=0, \prod_{a=0}^{N-1} e^{i \lambda_{a}}=1 \\
& W_{f}(x)=P e^{i \oint d z_{\mu} A_{\mu}^{j}(z) T^{(f) j}},(f)=\text { fundamental }
\end{aligned}
$$

Wilson loop probability density $P(W)$

Action determined by $P_{0}(W)$, with

$$
W_{f} \sim 1+\delta \sigma_{\mu \nu} F_{\mu \nu}^{j} T^{(f) j}
$$

Natural choice for $P_{0}(W)$: heat-kernel, $t \geq 0$
$\frac{\partial}{\partial t} P_{0}(W ; t) \propto \nabla_{W}^{2} P_{0}(W ; t), \quad P_{0}(W ; 0)=\delta_{\text {Haar }}(W, 1)$

$$
P_{0}(W ; t)=\sum_{R} \chi_{R}(W) e^{-\frac{t}{2 N} C_{2}(R)}
$$

Product over one $P_{0}(W)$ for all little loops \Rightarrow $P(W)$ for a big loop \Rightarrow class function

$$
P(W)=\sum_{R} \Upsilon_{R} \chi_{R}(W)
$$

The Υ_{R} have all information determining

$$
\left\langle\chi_{R_{1}}(W) \chi_{R_{2}}(W) \ldots\right\rangle
$$

3 Two dimensions

Tile area \mathcal{A} of loop by small loops, $\lambda=g^{2} N \Rightarrow$

$$
P(W)=P_{0}(W ; \tau), \quad \tau=\lambda \mathcal{A}\left(1+\frac{1}{N}\right)
$$

Durhuus-Olesen non-analyticity at $N=\infty$: "Infinite N phase transition"

Exercise:

$$
\left\langle\chi_{R}(W(\tau))\right\rangle=d_{R} e^{-\frac{\tau}{2 N} C_{2}(R)}
$$

Exercise:

Generator of all antisymmetric irreps:

$$
\psi^{(N)}(z, \tau)=\left\langle\operatorname{det}\left(z-W_{f}(\tau)\right)\right\rangle
$$

Define

$$
\phi^{(N)}(z, \tau)=\frac{i}{N} \frac{1}{\psi^{(N)}(z, \tau)}\left[z \frac{\partial}{\partial z}+\frac{N}{2}\right] \psi^{(N)}(z, \tau)
$$

Define

$$
\varphi^{(N)}(y, \tau)=\phi^{(N)}\left(-e^{y}, \tau\right), \quad y \text { real }
$$

Exercise: Burgers' equation

$$
\frac{\partial \varphi^{(N)}(y, \tau)}{\partial \tau}+\varphi^{(N)}(y, \tau) \frac{\partial \varphi^{(N)}(y, \tau)}{\partial y}=\frac{1}{2 N} \frac{\partial^{2} \varphi^{(N)}(y, \tau)}{\partial y^{2}}
$$

Initial condition

$$
\varphi^{(N)}(y, 0)=-\frac{1}{2} \tanh \frac{y}{2}
$$

Exercise: Shock at $y=0$ when τ reaches 4

Exercise: Explain figure below

Let z_{a} be the zeros of $\psi^{(N)}(z, \tau)$

Exercise: Prove $\left|z_{a}(\tau)\right|=1, a=0, . ., N-1$
Exercise: $z_{a}(\tau)=e^{i \theta_{a}(\tau)}$; Prove

$$
\frac{d \theta_{a}}{d \tau}=\frac{1}{2 N} \sum_{a \neq b} \cot \frac{\theta_{a}-\theta_{b}}{2}
$$

Exercise: The $\theta_{a}(\tau)$ for $\tau \ll 1$ are given by

$$
\theta_{a}(\tau)=2 \eta_{a} \sqrt{\frac{\tau}{N}} ; \quad H_{N}\left(\eta_{a}\right)=0, \quad a=0,1, \ldots, N-1
$$

Exercise: $\theta_{a}(\tau)$ are paired in $\left[\frac{N}{2}\right]$ pairs of opposite signs and for odd N there is one $\theta \equiv 0$

Exercise: Show

$$
\theta_{a}(\tau=\infty)=\frac{2 \pi}{N}\left(a-\frac{N-1}{2}\right) \equiv \Theta_{a}
$$

Exercise: The $\theta_{a}(\tau)$ for $\tau \gg 1$ are given by:

$$
\delta \theta_{a}(\tau) \sim-2 e^{-\frac{\tau}{2 N}(N-1)} \sin \Theta_{a}
$$

Exercise: $N \gg 1$. Show that the pair of zeros closest to -1 at $\tau=4$ is

$$
z_{M} \sim-\exp \left[\pm \frac{3.7 i}{N^{\frac{3}{4}}}\right]
$$

Exercise: Let $N \gg 1$. Let $\frac{\tau}{4}=1+\frac{\alpha}{N^{\nu}}$. Show that for $\nu=1 / 2 z_{M}(\tau)$ is a finite nontrivial function of α at $N=\infty$.

Critical exp. governing $N \rightarrow \infty: 1 / 2$ and $3 / 4$.

Zeros $z_{a}(\tau) \sim$ peaks of ev density of W

$$
\rho_{N}(\theta ; W)=\frac{1}{N} \sum_{a}\left\langle\delta_{2 \pi}\left(\theta-\gamma_{a}(W)\right)\right\rangle
$$

Exercise: Compute $\rho_{N}(\theta: W)$. Hint: start by expanding $\operatorname{det}\left(1+u W_{f}\right) / \operatorname{det}\left(1-v W_{f}\right)$ in characters, then take the average, and next study the limit $u \rightarrow-v$. Result can be expressed as a double sum or a double integral

The density $\rho_{N}(\theta)$ (oscillatory red curve) and the positions of the phases of the zeros θ_{a} (vertical blue lines) for $\tau<4$ (left) and $\tau>4$ (right), $N=10$ (top), and $N=50$ (bottom).
$4 D>2$: Hypothesis: same large- N singularity

Need nonperturbative method. Use numerical lattice simulations.

Need to define Wilson loops outside perturbation theory, so that they have a finite limit.

Smearing:

Introduce extra dimension $\rho \geq 0$

$$
\frac{\partial A_{\nu}^{j}(x, \rho)}{\partial \rho}=\left[D_{\mu} F_{\mu \nu}(x, \rho)\right]^{j} ; \quad A_{\mu}^{j}(x, 0)=A_{\mu}^{j}(x)
$$

where D_{μ} is with respect to $A_{\mu}^{j}(x, \rho)$ and $F_{\mu \nu}^{j}(x, \rho)=$

$$
\partial_{\mu} A_{\nu}^{j}(x, \rho)-\partial_{\nu} A_{\mu}^{j}(x, \rho)+C^{i k j} A_{\mu}^{i}(x, \rho) A_{\nu}^{k}(x, \rho)
$$

Smeared Wilson loops are

$$
W_{R}=P \exp \left[\oint d z_{\mu} A_{\mu}^{j}(z, \rho) T^{(R) j}\right]
$$

Smearing to lowest order

$$
\frac{\partial \widetilde{A}_{\mu}^{j}(k, \rho)}{\partial \rho}=-\left(k^{2} \delta_{\mu \nu}-k_{\mu} k_{\nu}\right) A_{\nu}^{j}(k, \rho)
$$

with

$$
A_{\mu}^{j}(k, 0)=A_{\mu}^{j}(k)
$$

a_{L}^{j} remains ρ independent and

$$
a_{\perp}(k, \rho)=e^{-\rho k^{2}} a_{\perp}(k)
$$

Curve not resolved beyond $\sqrt{\rho}$.
Choose

$$
\rho=\frac{l^{2}}{\left[l \Lambda^{\prime}\right]^{2}+c} ; \quad c \sim 20
$$

Continuum limit: For large L

$$
\log \left\langle W_{f}(L)\right\rangle \sim-\Sigma(b, N) L^{2}
$$

$$
\Sigma(b, N) L^{2}=[L a(b)]^{2}\left[\frac{\sqrt{\Sigma(b, N)}}{a(b)}\right]^{2}
$$

Keep both [] factors finite as $b \rightarrow \infty$. Procedure:

1. Select l and N.
2. Select pairs $b, L(b)$'s at $l=L(b) a(b)$ held fixed
3. For $(b, L(b))$ find $\rho_{N}\left(\theta ; W_{f}[L(b), \rho(L(b), b)]\right)$
4. Extrapolate $b \rightarrow \infty \Rightarrow \rho_{N}(\theta, l)$.
5. Repeat at same l, increasing N
6. Take $N=\infty \Rightarrow \rho_{\infty}(\theta, l)$.
7. Repeat varying $l \Rightarrow l_{c}$
$l_{c} \sim$ finite \Rightarrow DO transition \exists for $d>2$

Want to test also for DO universality for $d>2$

On the lattice:

$$
O_{N}(b, L, \rho(L, b))=\left\langle\operatorname{det}\left(e^{\frac{y}{2}}+e^{-\frac{y}{2}} W_{f}(L)\right)\right\rangle
$$

Focus on: $y \sim 0, N \gg 1, l \sim l_{c}$; Assume:
can reverse order of $b \rightarrow \infty, N \rightarrow \infty$.

$$
\begin{aligned}
& O_{N}(y, b)=C_{0}(b, N)+C_{1}(b, N) y^{2}+C_{2}(b, N) y^{4}+\ldots \\
& \Omega=\frac{C_{2} C_{0}}{C_{1}^{2}} . \text { Vary } b \text { at fixed } L, N \text { to find } b_{c}(L) \\
& \Omega\left(b_{c}(L, N), N\right)=\frac{\Gamma\left(\frac{5}{4}\right) \Gamma\left(\frac{1}{4}\right)}{6 \Gamma^{2}\left(\frac{3}{4}\right)}=\frac{\Gamma^{4}\left(\frac{1}{4}\right)}{48 \pi^{2}}=0.36474
\end{aligned}
$$

Exercise: Calculate $\Omega\left(b=b_{c}, \infty\right)$ in $d=2$

Invert $b_{c}(L)$ to $L_{c}(b)$

Same l_{c} as in orig $b \rightarrow \infty, N \rightarrow \infty$ limit order

$$
l_{c}=\lim _{b \rightarrow \infty} L_{c}(b) a(b)
$$

Define
$\widehat{y}=\left(\frac{4}{3 N^{3}}\right)^{\frac{1}{4}} \frac{\xi}{a_{1}(L)} \quad \hat{b}=b_{c}(L)\left[1+\frac{\alpha}{\sqrt{3 N} a_{2}(L)}\right]$

Universality: $\lim _{N \rightarrow \infty} \mathcal{N}(b, N, L) O_{N}(\widehat{y}, \widehat{b})=\zeta(\xi, \alpha)$

$$
\zeta(\xi, \alpha)=\int_{-\infty}^{\infty} d u e^{-u^{4}-\alpha u^{2}+\xi u}
$$

Exercise: Verify the above in $d=2$.

Exercise: Calculate $\Omega(\alpha)$ in $d=2$.

Exercise: Show $\left.\frac{d \Omega(b, N)}{d \alpha}\right|_{\alpha=0}=\frac{\Gamma^{2}\left(\frac{1}{4}\right)}{6 \sqrt{2} \pi}\left(\frac{\Gamma^{4}\left(\frac{1}{4}\right)}{16 \pi^{2}}-1\right)=0.04646$

Verification of critical large N exponents
Define $a_{2}(L, N)$ by

$$
\left.\frac{d \Omega(b, N)}{d \alpha}\right|_{\alpha=0}=\left.\frac{1}{a_{2}(L, N) \sqrt{3 N}} \frac{d \Omega}{d b}\right|_{b=b_{c}(L, N)}
$$

Exponent $1 / 2 \Rightarrow \exists$ limit $a_{2}(L, \infty)=a_{2}(L)$

Exercise: Show that in $d=2$
$\sqrt{\frac{4}{3 N^{3}}} \frac{1}{a_{1}^{2}(L, N)} \frac{C_{1}\left(b_{c}(L, N), N\right)}{C_{0}\left(b_{c}(L, N), N\right)}=\frac{\pi}{\sqrt{2} \Gamma^{2}\left(\frac{1}{4}\right)}=0.169$

Define $a_{1}(L, N)$ from above formula in $d>2$.
Exponent $3 / 4 \Rightarrow \exists$ limit $a_{1}(L, \infty)=a_{1}(L)$

Finally: Check $\exists \lim _{b \rightarrow \infty} a_{1,2}\left(L_{c}(b)\right)=a_{1,2}$

What we know now:

- $d=3$ works
- $d=4 l_{c}$ works, large N univ not done yet

This checks consistency of critical exponents

To determine numerically exponents $\sim 1 / 2,3 / 4$ is hard - need $N \sim 100-$ not done yet

Better analysis methods now available from new exact results in 2d

Obligatory conclusion:

NEED MORE COMPUTER POWER

5 The bigger picture

Objective: Analytically calculate string tension for $N \gg 1$ in terms of $\wedge_{S U(N)}$

- Use perturbation theory for small loops
- Use large N universality to parametrize loops with $l \sim l_{c}$
- Use an effective string theory to parametrize large loops
- Sew together the three regimes by asymptotic matching

STILL A DREAM

