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1. Abelian Wilson loop operators

Free abelian gauge theory
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Current conservation: s.p. cond. has solution
Decouple vector indices in mom. space

_ ku

= 1o + € (Ral ()

NO ay, in action

ay, Not coupled to a conserved current



Current associated with a closed contour

Ju(z) = / dré%(z — z(T))dZM

Closed contour = current conserved

Fix parametrization by
d 2
(ﬁ) —1
dT

[ = perimeter of loop

Wilson loop operator
W[A] = eifdda:JluAu — eifdzluAu(z)
Problems in evaluating (W[A])

e No weight for A,(0); J.(0) = 0; Wilson
loops appear to be “infrared safe’ .



e ay (k) integral unbounded; fix by extra weight

1 d ;.2 _

Current conservation = ag-independence

e Product of integrals over modes diverges;
solved by ultraviolet cutoff A with

k2 < N2

e J,(x) is a distribution and cannot be squared
6_% fddxddyJM(a:)Jy(y)Guy(a:—y)
Solved by setting

Ju(k) =0 for k2> A2

d
I (x) = / Ok ik / ' e B k()
H k2<A2 (27)d 0 dr

IS conserved, but no longer localized.



Circular loop; d =4

Exercise: Show

(W) = 92 (AR)? [ dlog ETZ(RAVE) /2

Exercise: Show

Exponent is linearly divergent

~ cg (AR) + lower orders

Exercise: Show

Can make (W) finite by JN — JN with A’ kept
finite as A — oo

In d = 3 only log divergence

In d = 2 no divergence



Holonomy

e (x) = ¢(z + a)

= for a closed curve

et Vu0jiap(z) = ()

Minimal substitution
ef dzu[aﬁ—iAM(Z)]w(x> — W*¢($>

W is phase factor = holonomy

Small loops

Holonomy determines action.



2 Nonabelian holonomy

G = su(N); Au(z) — Al(z), j=1,..,N2—1

R: Irreps. ; Generators Tgf)j, a,b=1,..,dp,;

Tr TR o 50 [T(R)i’ T(R)j] — Ok (R)k
Covariant derivative acting on wéR)(:c)
[Dytla(e) = (056 — Ty AL (@)1 (x)
Parallel transport zpéR)(x) round a closed curve
Wi(z) = Pet § 4T

Under gauge transformation g(x)

Wr(x) — g (@) Wr(2)g! ™ ()
Gauge invariant content of holonomy is z-indep.

xp(W) =Tr Wgr(x) VR



Equivalently, eigenvalues of matrix We(x)

N-1
et q=0,.N—1, 3(\) =0, 11 elta =
a=0

We(z) = PeifdzﬂA‘ZL(z)T(f)j, (f) = fundamental

Wilson loop probability density P(W)

Action determined by Py(W), with

Natural choice for Py(W): heat-kernel, t > 0

o0
aPO(I/V; t) V%/PO(W; t), Po(W,;0) = dyaar(W, 1)



R

Product over one Py(W) for all little loops =
P(W) for a big loop = class function

P(W)=> Tr xr(W)
R

The T r have all information determining

(xry (W)xr,(W)....)

3 Two dimensions

Tile area A of loop by small loops, \ = gQN =

P(W) = Po(W:7), 7=AA (1 n %)

Durhuus-Olesen non-analyticity at N = oco: “In-
finite NV phase transition”



Exercise:

(xp(W (7)) = dpe 2n2(F)

Exercise:

Generator of all antisymmetric irreps:

oM (2, 7) = (det(z — Wi(1)))

Define

(N) _ ) 1 [ 0 N] (N)

s = Juma Fas T2 v e
Define

oM (y, 1) = ¢V (=¥, 7), y real



Exercise: Burgers' equation

0N (y,
oy T)—l—so(N)(y,T)

oM (y,7) _ 1 82N (y,T)

oT Oy 2N Oy

Initial condition

(N)(y,0) = —~tanh ¥
e (y,0) 5 5
Exercise: Shock at y = 0 when 7 reaches 4

Exercise: Explain figure below

Shock Formati on

0.5




Let z, be the zeros of (N (z, 1)
Exercise: Prove |zq(7)|=1, a=0,..,N -1

Exercise: zq(1) = e?a(7): Prove

dea, 1 00, - Hb
— = — cot
dt 2N b

Exercise: The 0,(7) for 7 < 1 are given by

0o (T) = znm/%; Hyx(na) =0, a=0,1,..,N—1

Exercise: 0q,(7) are paired in [%} pairs of op-

posite signs and for odd N there is one 6 =0

Exercise: Show

2 N —1
Qa(7'=oo)=§<a— >E@a




Exercise: The 6,(7) for 7 > 1 are given by:

Exercise: N > 1. Show that the pair of zeros
closest to —1 at T =4 is

3.71
2N~ — exp [j: 31

N7
Exercise: Let N> 1. Let 7 =1+ x». Show
that for v = 1/2 z;;(7) is a finite nontrivial

function of o« at N = .
Critical exp. governing N — oo: 1/2 and 3/4.

Zeros zq(7) ~ peaks of ev density of W

pN(O; W) = — > (02:(0 — va(W)))

1
N



Exercise. Compute pn(6 : W). Hint: start
by expanding det(1 + uWy)/det(1 — vWy) in
characters, then take the average, and next
study the limit v — —v. Result can be ex-
pressed as a double sum or a double integral
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The density pn(6) (oscillatory red curve) and
the positions of the phases of the zeros 6, (ver-
tical blue lines) for < 4 (left) and 7 > 4
(right), N =10 (top), and N =50 (bottom).



4 D > 2: Hypothesis: same large-N singularity

Need nonperturbative method. Use numerical
lattice simulations.

Need to define Wilson loops outside perturba-
tion theory, so that they have a finite limit.

Smearing:

Introduce extra dimension p > 0

dAL(x, p)
dp

where D, is with respect to A{,J(x, p) and szu(w, p) =

oAl (2, p) — A (, p) + CM A} (2, p) A (=, p)

= [DpFu (o, )l ; Al(z,0) = Al ()

Smeared Wilson loops are

Wgp = Pexp[]{ dzMA{L(z, p)T(R)j]



Smearing to lowest order

oA (k, -
u@(p ) — —(k25,uv - k',uky)A‘,?/(k,p)

with
A{L(k, 0) = A{L(k)

a]L remains p independent and

. 2
a| (k,p) =e P (k)

Curve not resolved beyond ,/p.

Choose
l2

N2+ ¢ €

I

Continuum limit: For large L

log(W (L)) ~ —=(b, N)L?



/=, N)
a(b)

Keep both [] factors finite as b — .

> (b, N)L? = [La(b)]?

Procedure:

1. Select [ and N.

2. Select pairs b, L(b)'satl = L(b)a(b) held fixed
3. For (b, L(b)) find py (9; W [L(b), p(L(b), b)])
4. Extrapolate b — oo = pn(6,1).

5. Repeat at same [, increasing N

6. Take N = 0o = poo(6,1).

7. Repeat varying | = [,



lc ~ finite = DO transition 9 for d > 2
Want to test also for DO universality for d > 2

On the lattice:

On(b, L, p(L,b)) = (det <e% + e—%wf(L)>>

Focus on: y~0O,N > 1,[ ~ [l.; Assume:

can reverse order of b — oo, N — 0.

On(y,b) = Co(b, N)+C1 (b, N)y*+Co(b, N)y*+...

Q= % Vary b at fixed L, N to find be(L)
1

rr@ 4@

= = 0.36474
6r2(3) 4872

2(be(L,N),N) =



Exercise: Calculate Q(b = bq, ) in d =2
Invert b.(L) to L.(b)
Same [, as in orig b — co, N — oo limit order

le = b”—>m Lc(b)a(d)

Define

@=( * f : szC(L)[H-

3N3) ay(L) \/3Tva2(L)]

Universality: limy_ . N (b, N, L)ON(7,b) = ¢(§, )

(€ a) = /OO dye— 0t —ou+Eu

— 00

Exercise: Verify the above in d = 2.

Exercise: Calculate Q(«) in d = 2.



Exercise: Show

2y (r4@d
— (3) (z) _ 1] = 0.04646
=0 627 \ 1672

d2(b, N)
do

Verification of critical large N exponents

Define a>(L, N) by

d2(b, N)
do

B 1 dQ
o ao(L,N)v3N db

b=be(L,N)
Exponent 1/2 = 3 limit a>(L,00) = a>(L)

Exercise: Show that in d =2
4 1 C]_(bc(L,N)aN) _ T _O 169
V3N3a3(L, N) Co(be(L, N), N) — v2r2(l)y —

Define a1(L, N) from above formula in d > 2.

Exponent 3/4 = 3 limit a1(L,00) = a1(L)



Finally: Check 3 limy_ o a1 2(Le(b)) = a1 2

What we know now:

e d = 3 works

e d =4 [, works, large N univ not done yet

This checks consistency of critical exponents

To determine numerically exponents ~ 1/2,3/4
IS hard — need N ~ 100 — not done yet

Better analysis methods now available from
new exact results in 2d

Obligatory conclusion:

NEED MORE COMPUTER POWER



5 The bigger picture

Objective: Analytically calculate string tension
for N> 1 in terms of Agy )

e Use perturbation theory for small loops

e Use large N universality to parametrize loops
with [ ~ [,

e Use an effective string theory to parametrize
large loops

e Sew together the three regimes by asymp-
totic matching

STILL A DREAM



