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QCD:

I Theory of strong interactions.
I Non-Abelian gauge theory with SU(3) as the gauge group.
I No free parameters.

I Lattice gauge action has one bare parameter, namely, the
coupling constant, g.

I Quarks are massless.
I The bare coupling constant, g → 0, in the continuum limit

and all dimensionless quantities (like ratios of masses) are
uniquely determined.



Large N QCD:

I SU(3) → SU(N) with λ = g2N fixed as N →∞ and g → 0.
I λ→ 0 is the continuum limit.
I ’t Hooft limit: Number of quark flavors, Nf , is fixed and

finite.
I N2 gauge degrees of freedom.
I NNf quark degrees of freedom.
I Gauge fields dominate the dynamics.
I Quarks provide no back reaction.
I Quantum Yang-Mills theory with quark propagation in a

gauge kackground.
I d=2: ’t Hooft model – Serves as a good starting point to

understand d=3 and d=4.



Wilson gauge action:
I Z =

∫
[dU]eS(U).

I S(U) = 2bN
∑

p ReUp; b = 1
λ .

I Up = Tr Uµ(n)Uν(n + µ̂)U†
µ(n + ν̂)U†

ν(n).
I n is a point on a d-dimensional periodic lattice.
I Gauge fields obey periodic boundary conditions on all

directions.
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Symmetries:

The action has two symmetries:
I Local gauge symmetry:

Uµ(n) → g(n)Uµ(n)g†(n + µ̂).

I Global Z d
N (→ Ud(1) as N →∞) symmetry:

Uµ(n1, · · · ,nµ−1,Lµ,nµ+1, · · · ,nd)

→

ei 2πk
N Uµ(n1, · · · ,nµ−1,Lµ,nµ+1, · · · ,nd);

k = 0, · · · ,N − 1; µ = 1, · · · ,d .



Eguchi-Kawai reduction:

If the global Z d
N symmetries are not spontaneously broken on a

Ld lattice for a given b, then physical observables do not
depend on L.

I Write down the Schwinger-Dyson equations for Wilson
loops on an infinite lattice – These are equations that
relate expectation values of different Wilson loops.

I Use folded Wilson loops to write down the
Schwinger-Dyson equations for Wilson loops on Ld lattice.

I Show that the equations are the same if the Z d
N

symmetries are not broken.



What is folding?

Wilson loops with (blue) and without (red) folding



The plaquette operator:

The eigenvalues of the plaquette operator Up, eiθj
p , j = 1, · · · ,N

are gauge invariant with −π ≤ θj
p < π for all j .

I We expect all eigenvalues, θj
p, to be close to zero at weak

coupling (large b).
I We expect the eigenvalues, θj

p, to completely cover the
range [−π, π] at strong coupling (small b).

I The eigenvalue distribution, ρ(θp; b), for −π < θp ≤ π
exhibits behavior as a function of b in the large N limit.

I The eigenvalue distribution has a gap for b > bc (support
is in [−θ(b), θ(b)] with θ(b) < π) and it does not have a gap
for b < bc .



d = 2, 3, 4:

I The transition in the plaquette operator is a unphysical
transition in the lattice theory – The continuum theory is
always in the phase with a gap.

I It facilitates the lattice realization of gauge field topology –
The eigenvalue distribution of the interpolating field
between two lattice gauge fields with two different
topological charge, will not satisfy the condition of the gap
for some value of the interpolating parameter.

I It is known as the Gross-Witten transition in d = 2 and
occurs at b = 0.5. The analytical calculation shows that tt
is a third order transition.

I Numerical calculations in d = 3 suggest that it is possibly a
third order transition and it occurs aroung b ≈ 0.43.

I It is first order transition in d = 4 and it occurs around
b ≈ 0.36.



Large N QCD in two dimensions

I
√

b can be used to set the scale on the lattice.
I l1,2 =

L1,2√
b

kept fixed as L1,2 and b are taken to ∞.

I The two U(1) symmetries remain unbroken for all values of
b and L1,2.

I The problem reduces to a single site lattice with U1 and U2

being the two SU(N) degrees of freedom.
I Set b > 0.5 to be in the continuum side of the

Gross-Witten transition.
I The continumm theory only exists in the confined phase –

There is no deconfiment transition in two dimensional large
N QCD.



Wilson loops in the continuum phase

I The rectangular folded Wilson loop operator of size n ×m
is given by W (n,m) = Un

1 Um
2

(
Um

2 Un
1

)†.
I Let t = 4πnm

b be the parameter that characterizes the
dimensional area. Consider a continuum Wilson loop of a
fixed area by taking b →∞, nm →∞ while keeping t fixed.

I Area law is exact: TrW (t) = e−
t
2 .

I Let f (z, t) =
∑∞

n=1
〈TrW n(t)〉

zn be the generating function for
〈TrW n(t)〉 where z is a complex variable.



f (z, t):

I f (z, t) satisfies

zf (z, t) = (1 + f (z, t))e−t(f (z,t)+ 1
2)

I The expectation value of powers of Wilson loops are

〈TrW n(t)〉 =
1
n

L(1)
n−1(nt)e−

nt
2

I The expectation value of the distribution of the
eigenvalues, eiθ, of W is given by

ρ(θ, t) = −1
π

Re

(
f (eiθ, t) +

1
2

)



Critical behavior of Wilson loops as a function of area

I The expectation value of arbitrary powers of Wilson loops,
〈TrW n(t)〉, are analytic functions of t .

I The eigenvalue distribution, ρ(θ, t), exhibits non-analytic
behavior as a function of t :

I t = 4 is critical: Distribution has a gap for t < 4 and does
not have a gap for t > 4.

I This transition in Wilson loops as a function of area from
weak coupling (t < 4) to strong coupling (t > 4) is the
Durhuus-Olesen transition.



Double scaling limit of the Durhuus-Olesen transition

I Let

QN(ey ,a) = 〈det(ey + W)〉 ; a =
4− t

4t
I The double scaling limit is defined by

y =

[
4

3N3

] 1
4

ξ; a =
1

4
√

3N
α

y ,a → 0 and N →∞, such that ξ and α are fixed.
I QN(ey ,a) is proportional to

f (ξ, α) =

∫ ∞

−∞
due−u4−αu2+ξu

in the double scaling limit.



Fermions:

I Fermions are naturally quenched in the large N limit.
I The background gauge field is a constant gauge field on

the infinite lattice, U1 and U2.
I Consider any lattice fermions operator in momentum

space.
I The fermion operator on the single site lattice coupled to

U1eip1 and U2eip2 with (p1,p2) being the fermion
momentum.

I Strictly speaking, p1 and p2 should take only values of the
form 2πk1

N and 2πk2
N with 0 ≤ k1, k2 ≤ N − 1 and becoming

continuous as N →∞.



Chiral condensate:

Let Gij
αβ(U1,U2; p1,p2; mq) be the quark propagator computed

on the lattice using some fermion discretization.
I i , j are the color indices.
I α, β are the spin indices.
I U1,U2 is the gauge field background on the single site

lattice at the lattice coupling, b.
I (p1,p2) is the quark momentum and mq is the bare quark

mass.

χ(b,mq) = 〈 1
N

N∑
i=1

2∑
α=1

Gii
αα(U1,U2; p1,p2; mq)〉

〈O〉 =

∫
[dU1][dU2]e

2bNRe Tr
h
U1U2U†

1 U†
2

i
O∫

[dU1][dU2]e
2bNRe Tr

h
U1U2U†

1 U†
2

i



χ(b, mq):

χ(b,mq) does not depend on p1 or p2 – This is because the Z 2
N

symmetries are not broken.
The chiral condensate at a fixed lattice coupling is

Σ(b) = lim
mq→0

lim
N→∞

χ(b,mq).

Chiral symmetry breaking in the continuum implies

σ = lim
b→∞

Σ(b)b

is finite and non-zero.



Mesons:

Meson propagator:

GΓ(U1,U2; p1,p2,q1,q2; m1,m2)

=
N∑

i,j=1

2∑
α,β,γ,δ=1

Gij
αβ(U1,U2; q1,q2; m1)Γβγ

Gji
γδ(U1,U2; p1,p2; m2)Γ

†
δα

〈GΓ(U1,U2; p1,p2,q1,q2; m1,m2)〉 = ḠΓ((p − q)2; m1,m2)

I No disconnected diagrams – Quarks have different flavors.
I Result only depends upon the difference of the quark

momenta since the Z 2
N symmetries are not broken.



Large N QCD in three dimensions

I Set b > 0.43 to be in the continuum side of the bulk
transition.

I The tadpole improved coupling bI = b〈Plaquette〉 can be
used to set the scale.

I Consider a symmetric three torus with the physical size
l = L

bI
kept fixed as L and bI are taken to ∞.

I The continuum theory exists in many phases:
I 0c: l1 < l – None of the three U(1) symmetries are broken –

Confined phase.
I 1c: l2 < l < l1 – One of the three U(1) symmetries are

broken – Deconfined phase.
I 2c: l3 < l < l2 – Two of the three U(1) symmetries are

broken – QCD in a small box at low temperatures.
I 3c: l < l3 – All three U(1) symmetries are broken – QCD in

a small box at high temperatures.



0c phase – Computation of the string tension:
I Consider a L3 lattice at a coupling b such that L

bI
> l1.

I Consider unfolded and folded rectangular Wilson loops,
W (K ,T ).

I k = K
bI

is the length of the string.
I t = T

bI
is the separation between strings.

I Smear in the plane perpendicular to T to have good overlap
with the ground state.

I Fit ln W (k , t) = −a−m(k)t to extract the energy of the
string, m(k), as a function of its length, k .

I Fit m(k) = αk + β + γ
k .

I γ: This should approach a constant in the continuum limit
and describes the short distance behavior of the string.

I α = σb2
I : This should approach a constant in the continuum

limit and σ is the string tension.
I β: This is expected to logarithmically diverge in the

continuum limit. Links in the T direction have not been
smeared and the perimeter divergence has not been
tamed.



Extraction of m(k):
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Extraction of the string tension:
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1c phase – Spatial string tension

I The string tension does not depend on the temperature in
the confined phase due to continuum reduction.

I Since there are two directions where the U(1) symmetry is
not broken in the 1c phase, there will be a string tension
associated with loops in the unbroken (spatial) directions.

I The spatial string tension will depend on the temperature
in the deconfined phase.

Question: How does the spatial string depend on the
temperature in the deconfined phase?



Computation of the spatial string tension

I Pick the coupling b on a L3 lattice such that one is in the 1c
phase. bI

L sets the temperature in the deconfined phase.
I Let the “1” direction be broken.
I Consider the spatial Wilson loops, W (L2,L3) and proceed

in the same manner as in 0c to extract the string tension:
I Fit ln W (L2,L3) = −A− V (L2)L3 for a fixed L2 to extract the

energy, V (L2), for a string of length L2.
I Fit V (L2) = ΣL2 + C0 + C1

L2
to extract the string tension, Σ.

I b2 = bL is the effective two dimensional coupling.
I If the spatial string tension, Σ in the deconfined phase is

equal to the string tension in the two dimensional theory,
then

Σ =
1

4b2
=

1
4bL



Spatial string tension:
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Large N QCD in four dimensions

I The bulk transition at b = 0.36 is strongly first order.
I One can approach from the continuum side and stay in a

metastable 0c phase as low as b = 0.348.
I The tadpole improved coupling, bI , along with two-loop

perturbation theory can be used to set the scale: Keep

l = L(b)

[
48π2bI

11

] 51
121

e−
24π2bI

11

fixed with L(b) →∞ as b →∞.



Extraction of the deconfining temperature:

Fix the lattice size L and find the coupling bc(L) where one or
more of the Ud(1) symmetries break when Nc →∞.

Lc(b) = (0.260± 0.015)

[
11

48π2bI

] 51
121

e
24π2bI

11



Scaling behavior:
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Chiral condensate in finite volume:

I Compute the spectrum of the Dirac operator on a L4 torus
at a coupling b such that L > Lc(b).

I The level spacing at the low end of the spectrum has to
scale like 1

N if chiral symmetry is spontaneously broken.
I The size of the Dirac operator scales with N at a fixed

volume and chiral symmetry is broken by level repulsion:
We are essentially look at N eigenvalues of a N × N
random matrix.



Strategy for computing the chiral condensate
I Pick some L and choose b < bc(L).
I No finite volume effects.
I Keep b close to bc(L) to minimize finite spacing effects.
I Use the overlap Dirac operator that respects exact chiral

symmetry on the lattice. Let A(µ) denote the massive
overlap Dirac operator with µ being the bare mass on the
lattice.

I

Σ = lim
µ→0

lim
N→∞

1
L4N

〈TrA−1(µ)〉N,L

I The first step is to the take the large N limit.
I The second step is to take the massless limit.

I Absence of finite volume effects means that Σ does not
depend on L at the given gauge coupling.

I Continuum limit is obtained by increasing b and suitably
changing L such that one is always in the 0c phase.



Quenched pathologies at finite N

I Quenched theory at finite N is an ill-defined field theory.
I Anomalies are not taken into account.
I Chiral condensate suffers from unphysical divergences:

The chiral condensate Σ̄(L) defined in finite volume using
chiral RMT diverges as L goes to infinity.

I Such pathologies are suppressed by 1
N – fermions are

naturally quenched in the large N limit.
I It is important to take the large N limit before one takes the

large volume limit if one wants to work with the quenched
theory on the lattice.



Chiral Random Matrix Theory:

I Let ±iλi with λ1 ≤ λ2 ≤ · · · ≤ λ2NL4 be the eigenvalues of
A(0).

I Consider the scales variables zk = λkΣNL4.
I Extensive work in the area of chiral RMT has shown that

the probability distributions, p(zk ), are universal functions
as L →∞ at fixed N.

I Explicit formula are available for p(zk ).
I Chiral RMT should work even better for fixed L and N goes

to infinity since we have N2 degrees of freedom in the
underlying field theory and we are asking for the behavior
of only N observables.

I Compute the two lowest eigenvalues λ1 and λ2.
I Check if the ratio r = λ1

λ2
obeys the universal function

dictated by chiral RMT.
I Find the common Σ that converts λ1 and λ2 into z1 and z2.



Behavior of the ratio:
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Lowest eigenvalue:
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Second lowest eigenvalue:
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Main result for the chiral condensate

I The critical size lc is close to 1/Tc .

I If we use Tc ≈ 0.6
√
σ ≈ 264MeV we get Σ

1/3
R,cont≈ 155MeV.

I Using perturbative tadpole improved esimates for ZS in the
MS scheme, we get 1

N 〈ψ̄ψ〉
MS(2GeV) ≈ (174MeV)3

I Assuming N = 3 is large enough, we get
〈ψ̄ψ〉MS(2GeV) ≈ (251MeV)3for SU(3).



Restoration of chiral symmetry in the 1c phase
I Fermions do matter in the 1c phase even in the ’t Hooft

limit.
I Fermion determinant will depend on the momentum in the

broken direction.
I In other words, boundary conditions in the temperature

direction matters.
I Let θ be the phase associated with the U(1) that defines

the boundary condition with respect to the phase of the
Polyakov loop in the broken direction. Let θ = 0 define
anti-periodic boundary conditions.

I The fermion determinant will depend on θ and one expects
that fermions will pick θ = 0.

I Consider the lowest eigenvalue of the overlap Dirac
operator as a measure of the fermion determinant and look
at this as a function of θ.

I The data shows a gap in the spectrum for all θ as long as
T > Tc . This shows strong interaction in the color space.

I The gap is the biggest for θ = 0.
I The gap is linear in θ indicating free-field like behavior and

the effect of the interactions in color space is to lower the
effective temperature.
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Gap in the 1c phase
I Fermions are not quenched in the 1c phase but all we have

to do is fix the boundary conditions to be anti-periodic with
respect to the Polyakov loop.

I Fermions do not provide any other form of back reaction.
I Define the gap, G, to the average of the lowest eigenvalue

of the overlap Dirac operator.
I Work on a L3 × L4 lattice for several couplings b such that

they are all in the 1c phase.
I Use Lc(b) to define a dimensionless gap, g = GLc(b), and

a dimensionless temperature, t = L4Lc(b).
I A plot of g vs t shows that the data fall on a universal curve

for small lattice spacing.
I The data fits 1.76

√
t − 0.93 for 1 < t < 1.5.

I There is clear numerical evidence for a first order phase
transition in the fermionic sector.

I If we could supercool in the 1c phase below t = 1, we
would find T chiral

c < T deconfined
c
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Pion propagator

I Propagator is evaluated for several momenta and quark
masses with the same gauge background.

I Both the scalar and the pseudoscalar meson propagator
can be represented as a sum over infinite number of poles
since all mesons are stable in the large N limit.

I The higher masses in the scalar and pseudoscalar meson
sector are close to each other.

I We take the difference of the pseudoscalar and scalar
mesons to isolate the contribution from the lowest
pseudoscalar.

I We use smeared source and sink to further enhance the
overlap on to the lowest pseudoscalar.

I The resulting propagator as a function of momentum at a
fixed quark mass is fitted to r0

p2+m2
π

.



Extraction of pion decay constant

I The result of the numerical analysis is the pion mass, mπ

as a function of the quark mass mo.
I Quark mass is not physical and we convert it to a physical

quantity by forming moΣ where Σ is the chiral condensate
on the lattice.

I In order to take the continuum limit, we form dimensionless
quantities, mπLc(b) and m0ΣL4

c(b). using the critical size lc
on the lattice.

I The parameter Λπ gives fπ = 1√
2Λπ lc

. Using,
1/lc = Tc = 264 MeV, we get fπ = 71 MeV. This translates
to fπ = 123 MeV for SU(3).
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SU(N) X SU(N) Principal Chiral Model
I Similar to four dimensional SU(N) gauge theory in many

respects.
I

S =
N
T

∫
d2xTr∂µg(x)∂µg†(x)

g(x) ∈ SU(N).
I The global symmetry group SU(N)L× SU(N)R reduces

down to a single SU(N) “diagonal subgroup” if we make a
translation breaking “gauge choice”, g(0) = 1.

I Model is asymptotically free and there are N − 1 particle
states with masses

MR = M
sin(Rπ

N )

sin( π
N )

, 1 ≤ R ≤ N − 1.

The states corresponding to the R-th mass are a multiplet
transforming as an R component antisymmetric tensor of
the diagonal symmetry group.



Connection to multiplicative matrix model
I W = g(0)g†(x) plays the role of Wilson loop with the

separation x playing the role of area.
I One expects

GR(x) = 〈χR(g(0)g†(x))〉 ∼ CR

(
N
R

)
e−MR |x |

where χR is the trace in the R-antisymmetric
representation.

I Comparison with the multiplicative matrix model suggests
that M|x | plays the role of the dimensionless area.

I Numerical measurement of the correlation length using the
lattice action

SL = −2Nb
∑
x ,µ

<Tr [g(x)g†(x + µ)]

and

ξ2
G =

1
4

∑
x x2G1(x)∑

x G1(x)

yields MξG = 0.991(1).



Setting the scale

I ξG will be used to set the scale and it is well described by

ξG = 0.991

[
e

2−π
4

16π

]
√

E exp
( π

E

)
in the range 11 ≤ ξG ≤ 20 with

E = 1− 1
N
<〈Tr [g(0)g†(1̂)]〉

=
1

8b
+

1
256b2 +

0.000545
b3 − 0.00095

b4 +
0.00043

b5

The above equations will be used to find a b for a given ξ.



Smeared SU(N) matrices
One needs to smear to defined well defined operators.

I Start with g(x) ≡ g0(x).
I One smearing step takes us from gt(x) to gt+1(x).
I Define Zt+1(x) by:

Zt+1(x) =
∑
±µ

[g†t (x)gt(x + µ)− 1]

I Construct antihermitian traceless SU(N) matrices At+1(x)

At+1(x) = Zt+1(x)−Z †
t+1(x)− 1

N
Tr(Zt+1(x)−Z†t+1(x)) ≡ −A†

t+1(x)

I Set
Lt+1(x) = exp[fAt+1(x)]

I gt+1(x) is defined in terms of Lt+1(x) by:

gt+1(x) = gt(x)Lt+1(x)



Numerical details

I We need L/ξG > 7 to minimize finite volume effects.
I Since we want 11 ≤ ξG ≤ 20, we chose L = 150.
I We used a combination of Metropolis and over-relaxation

at east site x for our updates. The full SU(N) group was
explored.

I 200-250 passes of the whole lattices was sufficient to
thermalize starting from g(x) ≡ 1.

I 50 passes were enough to equilibriate if ξG was increased
in steps of 1.



Test of the universality hypothesis

The test of the universality hypothesis proceeds in the same
manner as for three D large N gauge theory.
Given an N and a ξ, we find the the dc the makes the Binder
cumulant Ω(dc ,N) = 0.364739936.
We look at dc as a function of ξ for a given N. This gives us the
continuum value of dc/ξ for that N.
We then take the large N limit and it gives us

dc

ξG
|N=∞ = 0.885(3)
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