New Horizons in Gravity: Dark Energy & Condensate Stars

The Trace Anomaly & Macroscopic Quantum Effects in Gravity

E. Mottola Los Alamos National Laboratory

w. P. O. Mazur

Proc. Natl. Acad. Sci., 101, 9545 (2004)

w. R. Vaulin, <u>Phys. Rev. D</u> 74, 064004 (2006)
w. P. Anderson & R. Vaulin, <u>Phys. Rev. D</u>, 76, 024018 (2007)
Review Article: w. I. Antoniadis & P. O. Mazur, <u>N. Jour. Phys</u>. 9, 11 (2007)
w. M. Giannotti, <u>Phys. Rev. D</u>, 79, 045014 (2009)
w. P. Anderson & C. Molina-Paris, LA-UR-09-01895 (2009)

Outline

- Classical Black Holes in General Relativity
- Quantum Effects -- Microscopic & Macroscopic
 - Entropy & the Second Law of Thermodynamics
 - Temperature & the 'Trans-Planckian Problem'
 - Negative Heat Capacity & the 'Information Paradox'
 - Vacuum Polarization & Backreaction Effects near the Horizon
- Cosmological Constant and the Energy of the 'Vacuum'
 - Quantum Effects in de Sitter space
 - Fluctuations in Hawking-de Sitter Temperature
- Effective Theory of Low Energy Gravity: Role of the Trace Anomaly
 - Massless Scalar Poles in Flat Space Amplitudes
 - General Form of Effective Action of the Anomaly
 - New Massless Scalar Degrees of Freedom in 2D and 4D
- The Trace Anomaly and the Dynamical Cosmological 'Constant'
 - Conformal Phase of 4D Gravity and Running of Λ
 - Possible Effects on Spectrum & Statistics of CMBR
 - Linear Response in de Sitter space & Cosmological Horizon Modes
- Gravitational Condensate Stars
 - Non-Singular Interior
 - Near Horizon Boundary Layer
 - Modest Heat Capacity
- A New Approach to Cosmological Dark Energy
 - Cosmological Dark Energy as a Dynamical Condensate in Finite Volume

Classical Black Holes

Schwarzschild Metric (1916)

$$ds^{2} = -dt^{2} f(r) + \frac{dr^{2}}{h(r)} + r^{2} \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right)$$
$$f(r) = 1 - \frac{2GM}{r} = h(r)$$

Classical Singularities:

- r = 0: Infinite Tidal Forces, Breakdown of Gen. Rel.
- $r \equiv R_s = 2GM$ (c = 1): Event Horizon, Infinite Blueshift, Change of sign of f, h

Trapping of light inside the horizon is what makes a black hole

BLACK

The $r=R_{S}$ singularity is purely kinematic, removable by a coordinate transformation $\label{eq:removable} \begin{array}{l} \text{iff } \hbar=0 \end{array}$

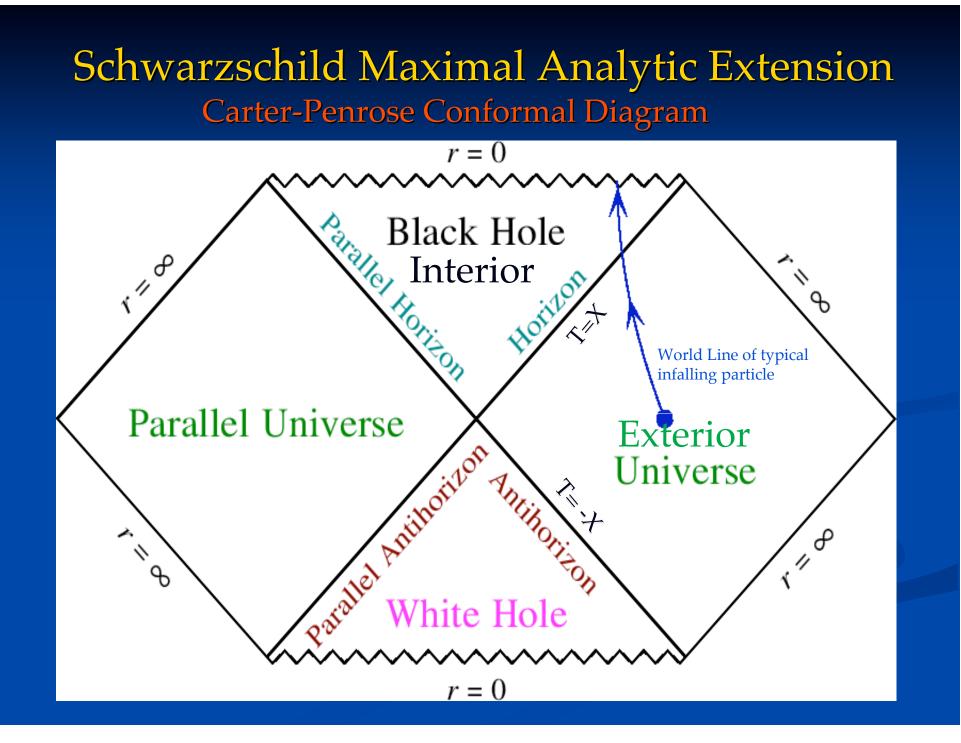
The Event Horizon & Analytic Extension

Classical Matter reaches the Horizon in Finite Proper Time
The Local Riemann Tensor & its Contractions remain Finite
Kruskal-Szekeres Coordinates (1960) (G/c² = 1)

 $ds^2 = (32M^3/r) e^{-r/2M} (-dT^2 + dX^2) + r^2 d\Omega^2$

 $(r/2M - 1) e^{r/2M} = X^{2} - T^{2}$ $t = 4M \ tanh^{-1} (T/X)$ For r > 2M: $X = (r/2M - 1)^{1/2} e^{r/4M} \ cosh \ (t/4M)$ $T = (r/2M - 1)^{1/2} e^{r/4M} \ sinh \ (t/4M)$

Future / Past Horizon at r = 2GM/c² is T = ± X Regular
It is possible to use Kruskal coordinates to <u>analytically</u> continue inside r < 2GM/c² all the way to r = 0 singularity
Necessarily involves <u>complexifying</u> the metric of spacetime



Black Holes & Classical Irreversibility

- Schwarzschild soln. is time *reversible* (white hole as well as black hole) But Classical Matter falls into the black hole *irreversibly*
- Rotating Black Hole Soln. found by Kerr (1963)
 More complicated analytic extension (and more unphysical: multiple asymptotic regions, closed timelike curves)
- All Gen. Rel. Black Holes specified by M, J, Q (no "hair")
- Irreducible Mass M_{irr} increases monotonically (Christodoulou, 1972) $M^2 = (M_{irr} + Q/4M_{irr})^2 + J^2/4M_{irr}^2$

 $M_{irr}^2 = (Area)/16\pi G$

 $\Delta M_{\rm irr}^2 \ge 0$

Black Holes and Entropy

- A fixed classical solution usually has no entropy : (What is the "entropy" of the Coulomb potential Φ = Q/r ?) ... But if matter/radiation disappears into the black hole, what happens to its entropy? (Only M, J, Q remain)
 Maybe M_{irr}² (which always increases) is a kind of "entropy"? To get units of entropy need to divide Area, A by (length)² ... But there is no fixed length scale in classical Gen. Rel.
- Planck length $\ell_{Pl}^2 = \hbar G/c^3$ involves \hbar
- Bekenstein suggested $S_{BH} = \gamma k_B A / \ell_{Pl}^2$ with $\gamma \sim O(1)$
- Hawking (1974) argued black holes emit thermal radiation at

$$T_{H} = \frac{\hbar c^{3}}{8\pi G k_{B} M}$$

Apparently then the first law, $dE = T_H dS_{BH}$ fixes $\gamma = 1/4$ *Great ! But ...*

A few problems remained ...

- Hawking Temperature requires trans-Planckian frequencies
- $S_{BH} \propto A$ is non-extensive and HUGE !
- In the classical limit $T_H \rightarrow 0 \pmod{\text{but } S_{BH}} \rightarrow \infty$ (?!)
- $E \propto T^{-1}$ implies <u>negative</u> heat capacity

 $\frac{dE}{dT} \ll 0 \implies \text{highly unstable}$

Equilibrium Thermodynamics cannot be applied
Information Paradox: Where does the information go? (Pure states → Mixed States? Unitarity ?)
What is the statistical interpretation of S_{BH} ? Boltzman asks: S = k_B ln W??

Statistical Entropy of a Relativistic Star

- $S = k_B \ln W(E)$ (microcanonical) is equivalent to $S = -k_B Tr (\rho \ln \rho)$
- Maximized by canonical thermal distribution Eg. Blackbody Radiation $E \sim V T^4$, $S \sim V T^3$ $S \sim V^{1/4} E^{3/4} \sim R^{3/4} E^{3/4}$

For a fully collapsed relativistic star E = M, $R \sim 2GM$, so $S \sim k_B (M/M_{Pl})^{3/2} \leftarrow note 3/2 \ power$

S_{BH} ~ M² is a factor (M/M_{Pl})^{1/2} larger or 10¹⁹ for M = M_o
There is *no way* to get S_{BH} ~ M² by any standard statistical thermodynamic counting of states

Horizon in Quantum Theory

<u>Infinite</u> Blueshift Surface

 $\omega_{local} = \omega_{\infty} (1 - 2GM/r)^{-1/2}$ No problem classically, but in quantum theory, $E_{local} = \hbar \omega_{local} = \hbar \omega_{\infty} (1 - 2GM/r)^{-1/2} \rightarrow \infty$ $\hbar \rightarrow 0$ and $r \rightarrow 2GM$ limits do not commute ! (\Rightarrow <u>non</u>-analyticity) *Singular* coordinate transformations need not be harmless (e.g. Vortices) Energies becoming trans-Planckian should call into doubt the semi-classical fixed metric approximation Large local energies must be felt by the gravitational field Large local energy densities/stresses are generic near the horizon $\langle T_{a}^{b} \rangle \sim \hbar \omega_{local}^{4} \sim \hbar M^{-4} (1 - 2GM/r)^{-2}$ The geometry does not remain unchanged down to r = 2GM

Quantum Backreaction is important

Wave Eq. in Schwarzschild Geometry

$$\begin{split} -\Box \Phi &= 0\\ \Phi &= e^{-i\omega t} Y_{lm}(\theta,\phi) \frac{\psi_{\omega l}(r^*)}{r}\\ dr^* &= \frac{dr}{1 - \frac{2GM}{r}}\\ r^* &= r + 2GM \ln\left(\frac{r}{2GM} - 1\right)\\ \left[-\frac{d^2}{dr^{*2}} + V_l(r^*)\right] \psi_{\omega l} &= \omega^2 \psi_{\omega l}\\ \end{split}$$
'Potential' $V_l &= \left(1 - \frac{2GM}{r}\right) \left(\frac{l(l+1)}{r^2} + \frac{2GM}{r^3}\right)\\ \text{vanishes as } r \to 2GM, \ r^* \to -\infty \end{split}$

- Free Waves at the horizon
- Horizon is null Cauchy Surface of the Wave Eq.
- Boundary Conditions on horizon determine the behavior of the stress energy tensor expectation value $\langle T_a^b \rangle$ as $r \to 2GM$.

Boulware Vacuum (Free b. c. on horizon)

$$\overrightarrow{a}_{\omega lm} |B\rangle = \overleftarrow{a}_{\omega lm} |B\rangle = 0$$

Renormalized Stress Tensor Expectation Value

$$\langle B|T_a^b|B\rangle \to -\frac{\pi^2}{90} \frac{(k_B T_{loc})^4}{(\hbar c)^3} \operatorname{diag}(-3, 1, 1, 1)$$

near the horizon is the negative of the stress tensor of radiation at the local blueshifted temperature,

$$T_{loc} = T_H \left(1 - \frac{2GM}{r}\right)^{-\frac{1}{2}} \qquad (\text{ Tolman})$$

Coherent modes with wavelength $\lambda \sim R_{_S}$ and frequency $\omega \sim \frac{1}{GM}$ dominate the mode sum.

The local frequency of these modes,

$$\omega_{loc} = \omega \left(1 - \frac{2GM}{r} \right)^{-\frac{1}{2}} \sim \frac{1}{GM} \left(1 - \frac{2GM}{r} \right)^{-\frac{1}{2}}$$

becomes trans-Planckian as $r \to R_s$.

The same trans-Planckian kinematics appears in Hawking's derivation of black hole radiance, since the same near horizon modes are the important ones at late retarded times, $u = t - r^* \gg R_s$.

Backreaction

• Because of the unbounded blueshifting of waves near the horizon, these Planckian effects can appear at finite values of ω in Schwarzschild spacetime.

• The fluctuations give the perturbed stress tensor Boulware components, hence unbounded growth near $r = R_s$, even if not present in the unperturbed $\langle T_a^b \rangle$.

• This implies that the backreaction of the quantum stress tensor on the geometry is large near $r = R_s$.

In fact, the Riemann tensor component,

$$R^{tr}_{\ tr} = \frac{h}{4} \left(\frac{f'^2}{f^2} - \frac{2f''}{f} - \frac{h'f'}{hf} \right) \to -\frac{f''}{2}$$

is of order M^{-2} and small only if h = f.

But by the Einstein eqs.,

$$\frac{d}{dr}\left(\frac{h}{f}\right) = -8\pi G(\rho + p_r)\frac{r}{f}$$

so $h \neq f$ if $\rho + p_r \neq 0$, $R^{tr}_{tr} \sim (M^2 f)^{-1}$ and even the Riemann tensor can become large near R_s .

• In fact, the quantum backreaction already significantly alters the classical geometry when $\langle T_a^b \rangle \sim \frac{1}{M^4 f^2} \sim \frac{1}{M^2}$ or at $\left(1 - \frac{2GM}{r}\right)^{-1} \sim M$ well before the Planckian regime is reached.

• Coherent quantum wave amplitudes over the scale of R_s (non-local on this scale!) can alter the local stress tensor and local geometry near $r = R_s$, which is a 'breakdown' of the Strong Equivalence Principle embodied in classical GR, but only in the mildest sense required by Quantum Mechanics.

In a self-consistent solution of the semiclassical Einstein eqs. the horizon singularity and trans-Planckian divergences are removed.

Strong Equivalence Principle (Strict Locality of All Physics)

vs.

Quantum Correlations (Non-locality of Entanglement, EPR, Macroscopic Coherence)

- QM is about matter waves not point particles.
- Waves satisfy wave eqs. whose solns. depend upon boundary conditions.
- Macroscopic Quantum Cohererence, BEC, Cooper pairing in Superconductors, Bohm-Aharonov Effect, Entanglement are not strictly local because of this.
- Local Casimir 'vacuum' stresses depend on boundary conditions (but G = 0 causes no problems).
- Strict locality (SEP) cannot be maintained when both $\hbar \neq 0$ and $G \neq 0$.

A Second Problem of Some Gravity

The 'Cosmological Constant' Problem

The Classical Einstein's Equations,

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 8\pi G T_{ab}$$

relate

- Curvature of Spacetime, R_{ab} to
- Energy-Momentum of Matter, T_{ab}

Metric: g_{ab} fixes lengths, $ds^2 = g_{ab}dx^a dx^b$ Flat spacetime: $g_{ab} = \text{diag}(-1, +1, +1, +1)$

Λ is equivalent to

Constant Vacuum Energy Everywhere:

$$T_{ab}^{(vac)} = -\frac{\Lambda}{8\pi G} g_{ab} \quad \text{or} \\ p_{\Lambda} = -\rho_{\Lambda} \\ \underline{\text{Negative Pressure}}$$

Classically, Λ may be set to zero but ...

Gravity weighs **Everything** even Quantum Vacuum Fluctuations:

$$\rho_{\Lambda} = N \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\hbar \omega_k}{2} \rightarrow \frac{N \hbar c}{16 \pi^2} L_{min}^{-4} = -p_{\Lambda}$$

Quartic Dependence on $L_{min} \to 0$

With any "reasonable" L_{min} , ρ_{Λ} is HUGE:

The "natural" scale would seem to be $\Lambda \simeq \frac{c^3}{\hbar G} = L_{Pl}^{-2} \simeq \left(\frac{1}{10^{-33} \text{cm}}\right)^2$

The Universe would be curled up then to a radius of 10^{-33} cm. (!)

Since the observable Universe is of order 10^{28} cm (Hubble scale),

$\Lambda < 10^{-121} \frac{c^3}{\hbar G}$

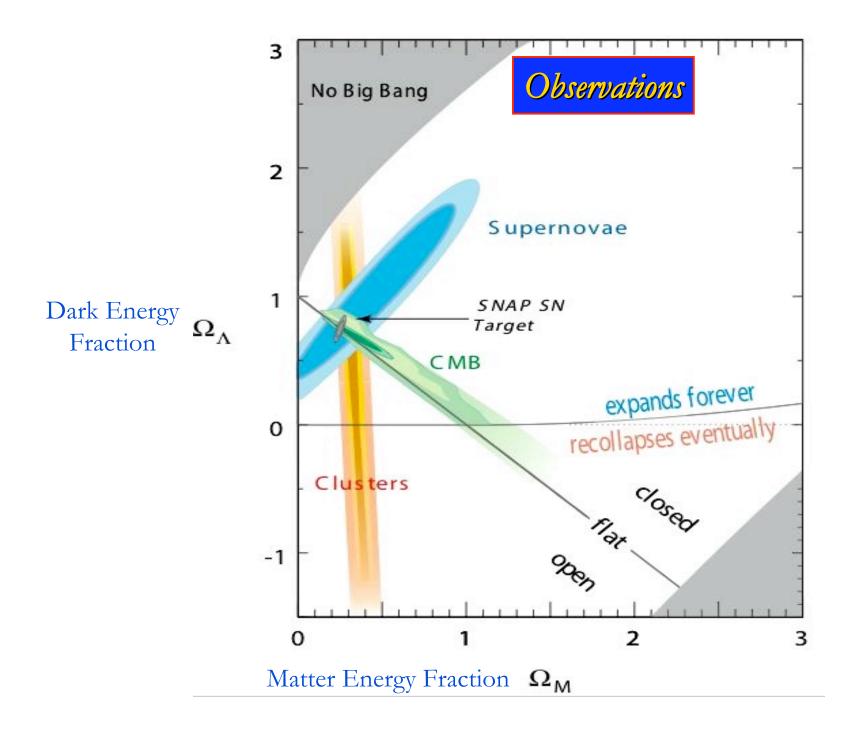
our estimate is wrong by some 121 orders of magnitude (!)

Requires <u>both</u> *h* and *G* different from zero <u>Macroscopic</u> Quantum Gravity

emil@lanl.gov

Quantum Effects: Macroscopic or Microscopic ?

- We deal with UV divergences by **Renormalization**, and now understand most (all?) QFT's as *Effective* Theories
- *A* is a free parameter of the Low Energy Effective Theory
 "Just because something is infinite does not necessarily mean that it is zero." –W. Pauli
- The Standard Model has Spontaneous Symmetry Breaking When the ground state changes, so does its energy – so we should expect generically ∧ ≠ 0 now.
- More Symmetries at Very High Energy (UV) Cannot Help
- This is a problem of fixing the *infrared* Quantum Vacuum State of Macroscopic Gravity



The New Cosmology

• Non-Luminous (Dark) Matter, presumed Non-Baryonic is 25-30% of the Universe • Relativistic Dark Energy with *negative* pressure, $p \approx -\rho < 0$ is 70-75% of all the energy in the observable universe • Ordinary Baryonic Matter is only a few percent • Since $\rho + 3p < 0$, the expansion is *accelerating* • <u>Tiniest</u> pure number in Nature: (note involves h and G) $\hbar G \Lambda_{obs} / c^3 \cong 3.6 \times 10^{-122}$ We live in a de Sitter-like Universe dominated by Vacuum Dark Energy \rightarrow Something is clearly missing in the Standard Model