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Random Walks

» Universal theoretical tool in the Sciences: diffusion, functional
integrals, ...

» No intrinsic structure: properties come from imbedding into
an ambient space, e.g. R?

» Strong universality results - central limit theorem

» Rigorous continuum theory, Wiener integral, potential theory
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Random geometry

v

Intrinsic and extrinsic degrees of freedom

Trees

v

v

Surfaces: phase boundaries, membranes, string theory,
2-dimensional quantum gravity, ...

v

Higher dimensional manifolds: gravity in dimensions > 3

v

General graphs, networks
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Random trees

» Physical tree-like objects: branched polymers
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» Surfaces and higher dimensional manifolds can have a phase
where they degenerate into trees

A4
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» Secondary structure of macromolecules, e.g. RNA

2° structure 3° structure
Mg2*
form 2° form 3°
structure structure
_N_ 0 HN N NHy--ee
;Nr_Z/ e,m ...... ,?/_\3 L Neeey. N
N= N LY
NHg-----0 % g -
6-C base pair A-U base pair

(borrowed from Scott K. Silverman scott@scs.uiuc.edu)
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Problem: find the secondary (and the tertiary) structure from the base
sequence

GCCUUAAUGCACAUGGGCAAGCCCACGUAGCUAGUCGCGCGACACCAGUCCCAAAUAAUGUUCACCCAACUCGCCUGACCGUCCCGCAGUA
‘GCUAUACUACCGACUCCUACGCGGUUGAAACUAGACUUUUCUAGCGAGCUGUCAUAGGUAUGGUGCACUGUCUUUAAUUUUGUAUUGGGCC
AGGCACGAAAGGCUUGGAAGUAAGGCCCCGCUUGACCCGAGAGGUGACAAUAGCGGCCAGGUGUAACGAUACGCGGGUGGCACGUACCCCA
AACAAUUAAUCACACUGCCCGGGCUCACAUUAAUCAUGCCAUUCGUUGCCGAUCCGACCCAUAUAGGAUGUGUAUGCCUCAUUCCCGGUCG
GGGCGGCGACUGUUAACGCAUGAGAACUGAUUAGAUCUCGUGGUAGUGCUUGUCAAAUAGAAUGAGGCCAUUCCACAGACAUAGCGUUUCC
CAUGAGCUAGGGGUCCCAUGUCCAGGUCCCCUAAAUAAAAGAGUC

I. “kissing hairpins” & interlaced strands are
rare (unfavored by kinematics & topology)

2. RNA can (to some extent) be considered
as a planar tree



Thermus thermophilus
large subunit ribosomal RNA
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» Family trees




» Phylogenetic trees

Imrunodeficieny virus (POL polyproteing

» Fragmentation and coagulation models, river networks, blood
vessels, search and decision algorithms, citation networks, etc.
etc.

01

0.2

03

0.4

05

06

< Shmon G r
1 SMhoest L'Hoest monk
- ShsmSL82h Sooty Man
1 SMMM238 Simian maca
7 ShMM251 Macague

1 HY-2UCT (voryCoast)
= HIWZ-MCH13

- HI¥-2 (Senegal)

4 SIMAGM3 Green monkey
1 SMAGMET7A Green mor
1 SNmnd5440 Mandrillug
4 SMCpzTANT Chimpanze
1 HI¥1-NDK (Zaire)

4 HIv-1 (Zaire)

- Cl¥cpzl)S Chimpanzee
- shcpz Chimpanzees Cz
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Random surfaces and trees

There is a one to one mapping from trees to causal triangulations

Can be generalized to a mapping between planar quadrangulations

rees - Schaeffer

—+

and well-labelled



v

v

v

v

v

Extensive mathematics literature: branching processes etc.
Theory of continuous trees —

Has been used to construct a theory of continuous random
surfaces —

We consider discrete trees

Rooted planar tree graphs
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Two main approaches

1. Equilibrium statistical mechanics

T = Set of graphs, u a probability measure on T

W(T) = 7 e PED
2. Growing trees T, — T 11, time discrete
Stochastic growth rules induce a probability measure on 7,

the trees that can arise in t steps

» Sometimes (1) is more natural
» Sometimes (2) is more natural

» Sometimes (1) and (2) are known to be equivalent
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Problems to study

vV v.v v VY

What are the prinicipal characteristics of the trees under
consideration? How sensitive are they to E or the growth
rules?

Distribution of vertex degrees

Correlations

Fractal dimensions: Hausdorff, spectral, ...
The “shape” of trees — mass distribution

Universality classes .........
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Galton-Watson trees

> pn = probability of having n descendents,

an =1, m= ann
n n

» m < 1 subcritical, m > 1 supercritical, m = 1 critical
» n generations at time ¢t = n — 1 if no extinction
» Well understood

16
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Preferential attachment trees

» In each timestep one new edge is attached to a preexisting tree

~d

» Probability of attaching to a vertex v of degree &

W

P =—-—"
Y ankww,

’wkZO:

ng = the number of vertices of degree k.

» Growth rule induces a probability measure on 7.
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Local trees
» Weight factor of a tree T’
W(T) =[] wors)
1T
o(1) = degree of the vertex ¢
» Partition functions

Zn= Y, W(T), Z=) "2y, [{|<(o
N

T:|T|=N

» Generating function g(z) = 3,, w,2" "1, radius of
convergence p

» Main equation

N NP

4 )
( ) T S/
0. FAL

18 /78



Generic trees

\’/J\‘ Ve
™ N (

T-1r-

» Algebraically

N

W,
w3+-“

2(0) = ¢o(2(0)) = ¢ > win Z°(¢)
1=0

> Define Zy = lim¢_,¢, Z(¢)
» If Zg < p then we say that the trees are generic.

> Z(¢) — Zo ~$o— ¢
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h(Z)

Here we have defined

h(Z)

and the weights have been scaled so that p =1

h(Z)

Z():p:1 Z
©)
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» Define

_ T
WT) = Zo 6" [ wogs)
1CT

Probability measure
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» Define

_ T
WT) = Zo 6" [ wogs)
1CT

Probability measure

» This measure is the same as the one obtained from a
Galton-Watson process with

n—1
Dn = CO’wnJrl Zo
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Another equivalence

» Preferential attachment trees ~ Causal trees

» Weight proportional to the number of causal labelings

0

» More branchings, more ways to grow



Some results about generic trees

» Let Vp(R)=volume of a ball of radius R centered on the root
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Some results about generic trees

» Let Vr(R)=volume of a ball of radius R centered on the root

(Vr(R)) ~ R R — oo defines dy

> Let pr(t) = probability that a random walker is back at the
root after ¢ steps on T'
(pp(t)) ~t%/2 t — 0o defines d,

cf.
Ki(z,y) = (2mt)~%2e(2-9)*/2t

23 /78



> Averages taken w.r.t. a measure on infinite trees

UN = Z;,l H Wo (1)
€T

VN 2 Vs a8 N — o0
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> Averages taken w.r.t. a measure on infinite trees

UN = Z;,l H Wo (1)
€T

VN 2 Vs a8 N — o0

» Theorem.( )
(i) dg =2
(i) dy =4/3

(iii) There is a unique infinite simple path whose outgrowths are
critical GW-trees
(iv) Vertex degrees are uncorrelated
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» One spine due to entropy

» The number of rooted planar trees with £ edges is
N(£) ~ £73/2¢C*

max{N({1)N(€s) : &1 + &> = £} ~ N(¢)
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» Main tool for analysing the spectral dimension is the
generating function
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Non-generic trees

» Critical exponents change

Z(¢) —Zo~ (b =€), 7#1/2

» There can arise a vertex of infinite order in the
thermodynamic limit ( )
» No infinite spine and outgrowths are subcritical GW trees

» Proven in a special case ( )
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Preferential attachment trees

F. David, P. di Francesco, E. Guitter and T.J., J. Stat. Mech.
(2007) P02011

» In general many infinite simple paths

» dy = 00 in many cases (all cases?)

» Can calculate vertex degree distribution - and fluctuations.
Independent of the initial tree.

» Broad distribution of sizes of subtrees, depends on the initial
tree
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Mass distribution

Consider trees with vertices of order 1,2 and 3. Only one
parameter: £ = 2wy /w;.

Root

What is the distribution of the size of the left tree as the total size
of the tree gets large? We know the answer for generic trees.

29/78



Let T, and Tr be the sizes of the left and right subtrees. If £ =1,

then the growth process maps onto reinforced random walk and if
we start from the one link tree, then

1
AT = o T
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Let T, and Tr be the sizes of the left and right subtrees. If £ =1,
then the growth process maps onto reinforced random walk and if
we start from the one link tree, then

1
P TR = g et

More generally, defining up, = T1/T, ugr = Tr/T,

T

U 4 Tgé( 1)
7T2!T1%!UL Ugolur +ur — 1),

p(uL) UR) =

i.e. exponents depend on the initial tree.
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Let T, and Tr be the sizes of the left and right subtrees. If £ =1,

then the growth process maps onto reinforced random walk and if
we start from the one link tree, then

1
P TR = g et

More generally, defining up, = T1/T, ugr = Tr/T,

T

U 4 Tgé( 1)
7T2!T1%!UL Ugolur +ur — 1),

p(uL) UR) =

i.e. exponents depend on the initial tree.
For arbitrary & we define the left exponent

p(ur, ur) ~ us®, ug — 0.

The right exponent Bg is defined similarily.
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One can show, using a MFT assumption - small fluctuations in the
vertex degree distribution,

B=—1+

(8 + x)
8x

(), + (z +2— |z — 2|)n5 )

where n?L is the number of vertices of degree 7 in the left initial

left tree.

Br

1
0.75
0.5
0.25

-0.25
-0.5
-0.75
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Numerical simulations

W

(o8]

Figure 7. Measured distribution P(uy,) for the initial tree 7° drawn on the left.
For x = 1, we have also indicated the exact distribution.
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(9%}
(9%}

Figure 8. Measured distribution P(uy,) for the initial tree 7° drawn on the left.
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The vertex splitting model

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech.
(2009) P04009

» A model of randomly growing rooted, planar trees
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The vertex splitting model

» A model of randomly growing rooted, planar trees

» Degree of vertices is bounded by an integer d (we also discuss
the case d = )

» Nonnegative splitting weights wq, wa, ..., Wy

> n;(T) = the number of vertices of degree j in a tree T
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The vertex splitting model

» A model of randomly growing rooted, planar trees

» Degree of vertices is bounded by an integer d (we also discuss

the case d = )
» Nonnegative splitting weights wq, wa, ..., Wy
> n;(T) = the number of vertices of degree j in a tree T

p; = Probability of choosing a vertex v € T' of degree 7

W
D= =
22 wini(T)
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Splitting rules

» The parameters of the model are

0
W21
W31
Wq 1

| Wd,1

a symmetric matrix of non—negative partitioning weights

W12
W2 2
w32
Wy 2

Wq,2

Wi,3
W2,3
W3, 3
Wa,3

0

Wi,d-1
W2,d—1
W3 d-1

0

Wi,d
Wa,d

0
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Splitting rules

» The parameters of the model are

0
Wa,1
W31
Wa,1

| Wd,1

W12
W2 2
w32
Wy 2

Wq,2

Wi,3
W2,3
W3, 3
Wa,3

0

Wi,d-1
W2,d—1
W3,d—1

0

Wi,d
Wa,d

0

a symmetric matrix of non—negative partitioning weights
» Split a vertex of degree ¢ into vertices of degree k and
1+ 2 — k with probability wg ;12 %/w; — all such splittings

equally probable

» The splitting weights w1, wo, ..

partitioning weights by

1
Wi o= o) Wi
7=1

., Wq are related to the
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A tree
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules

w23
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Vertex splitting rules

42 /78



Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Vertex splitting rules
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Relation to other models

» Ergodic moves in Monte Carlo simulations of triangulations in
2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.
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Relation to other models

» Ergodic moves in Monte Carlo simulations of triangulations in
2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

» A tree growth process which is equivalent to a simplified
model for RNA secondary structures F. David, C. Hagendorf, K.
J. Wiese

» When w; ; =0 unless j =1 or 2 = 1 it reduces to the
preferential attachment model R. Albert and A. L. Barabasi et al.

» For d = 3, in a certain limit, it reduces to Ford’s alpha model
for phylogenetic trees

48 /78



Main results

» Distribution of vertex degrees in a large tree
» Correlations between the degrees of vertices

» "Shape” of trees — Hausdorff dimension

If we consider linear splitting weights
w; = at + b.

the analysis simplifies due to the Euler relation for trees

d

> ni(T) =1|T|, Zznz ) =2(|T| - 1).

=1

The normalization factor ), w;n;(T") depends only on the size of
the tree T
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Recurrence for generating functions

Let p:(n1,...,n4) be the probability that the tree T at time ¢t has
(n(T),...,nq(T)) = (n1,...,m4) .
The probability genereting function

Hi(x) = Z p(n, ..., ng)ztt -zl

nyteng=t

satisfies the recurrence

Ni,...,N " "
Ht+1(x) = Z M c(x) . v(;z;ll "':de)i
ni+-4ng=t Ei:l n,w;
where ¢(x) = (c1(x), ca(x), . . ., cd(x)) with
i i+1

ci(x) = 5 ij,i+2,j:njmi+2,j and V = (8/8:1:1, .. .,8/8md).

i=1
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Vertex degree distribution

» Begin with a tree Ty at time 0
> At time £ > 0 we have a tree T; with n;(T}) vertices of degree
1
> Let 7i¢; denote the average of n;(T") over all trees that can
arise at time ¢, i.e.
Ny = Z pe(na, ..., ng)ng = OHi(X)|x=1,
ni+...+ng=t
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Vertex degree distribution

» Begin with a tree Ty at time 0

> At time £ > 0 we have a tree T; with n;(T}) vertices of degree
7

> Let 7i¢; denote the average of n;(T") over all trees that can
arise at time ¢, i.e.

Tk = > pi(na,ona)ng = OH(X)|x=1,
ni+...+ng=t
» Define _
L
Pt = n

and we will use the notation

p(t) = (pe,1,-- -, Pt,a)
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» The recurrence for H; gives rise to a recurrence for p(t).

Hiv1(x) = c(x) - VHy(x).

1
W(t)

t d .
Ptk = W — WPtk + Z Wk iro—kPti | + Pk — Prs1k)-

i=k—1



» Under mild conditions on the w; ; the limits
lim p:; = p;
t—o0

exist and are the unique positive solution to the linear
equations

d
We WEk,i42—k
Pr = ——pPr + § 1 p;.
w2 i—ko1 W2
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Under mild conditions on the w;,; the limits
lim p:; = p;
t—o0

exist and are the unique positive solution to the linear
equations

d
W Wk i4+2—k
P = —— Pk + § '577%'
Wao k1 Wo

These values are independent of the initial tree.
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» Under mild conditions on the w; ; the limits
lim p:; = p;
t—o0

exist and are the unique positive solution to the linear
equations

d
We WEk,i42—k
Pr = ——pPr + § 1 p;.
w2 i—ko1 W2

» These values are independent of the initial tree.

» The proof uses the Perron—Frobenius theorem for " positive”
matrices.
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Perron-Frobenius

Theorem. Let A be a matrix with nonnegative matrix elements
such that all the matrix elements of AP are positive (A primitive)
for some integer p. Then the eigenvalue of A with the largest
absolute value is positive and simple. The corresponding
eigenvector can be taken to have positive entries.

Iterating the recurrence equation for p(¢) we find

1t—1

1
0= 11+ Grrgizaa®) »

=1

where B is a matrix with nonnegative entries except on the
diagonal. If B is primitive and diagonalizable, then p(t) converges
to the normalized Perron-Frobenius eigenvector of B.
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Examples

» d = 3 The matrix B is diagonalizable and

pr=p3=2/T, p2=3/7

if the partitioning weights are chosen to be uniform, i.e.

2
it —2(+g—1)

Wi,; = ’wi+j—2(
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» d = 4 Can again solve explicitly with uniform partitioning
weights and get p;'s which vary with a and b.
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Examples
» d = 3 The matrix B is diagonalizable and
pr=p3=2/T, p2=3/7
if the partitioning weights are chosen to be uniform, i.e.

2
it —2(+g—1)

Wi,; = ’wi+j—2(

» d = 4 Can again solve explicitly with uniform partitioning
weights and get p;'s which vary with a and b.

» d = 0o Do not have a proof of convergence but can solve the
equation for the p;'s

1
Ok ~ y2k’1k’l’$, z="b/a
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General splitting weights

» Use mean field theory for the normalization factor

Suni(TYw; =ty piw;.
Equation for a steady state vertex distribution

d
W Wk 42—k
Pk =—"—""Prt+ Z P
w i=k—1 w

subject to the constraints
pr+...+pa=1 wip1+...+wepq =w.

» There is a unique positive solution by the Perron-Frobenius
theorem.
» For d = 3 and uniform partitioning weights we find

_ Ta—+/a(a+24p+ 24)
Ps = 6(2c — f— 1)

where o = wy/wy and B = w3 /ws.

56
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Comparison with simulations

05 T T

f = 1000

o1 L.

£=10000

0 20 40 60 80 a

FIGURE 4. The value of p3 as given in (2.45) compared to
results from simulations. Each point is calculated from 20
trees on 10000 vertices.

A comparison of the theoretical prediction with simulations in the
case d=3 and uniform partitioning weights.
_ W2 w3

a=—, ﬂzi

wh w1
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Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?
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Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?

Let m;x = number of such edges in a finite tree of size £, where
the vertex of degree j is closer to the root
ik

t

Let p;r = lim; o0
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Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?

Let m;x = number of such edges in a finite tree of size £, where
the vertex of degree j is closer to the root

Let p;r = lim; o0 Mk Then (for linear splitting weights)
W; + Wk . Wjk
e = ———p; —1)—"p;
Pik Wo Pik + (7 ) Wo Pj+k—2

d d
. Wjiio—; Wit2—k
+G -1 D J;i;mk +(k-1) ) ;TPji-
i=j—1 i=k—1

assuming the existence of the limit.

58 /78



Explicit solutions
Can solve in simple cases and find nontrivial correlations
P; Pk

Pik # 1—p
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Explicit solutions
Can solve in simple cases and find nontrivial correlations
P; Pk
k-
Pj 1— o1
Take d = 3, linear splitting weights and uniform partitioning
weights. Then p; = p3 =2/7 and p» = 3/7. Let y = w3/ wo.
Then the solutions to the correlation equation are

4(3 —y) _ 10
P21 77(11 “2y)’ P31 = 77(11 “2y)’
4% —12y+105 _ 2(—8y? + 18y +63)
P2 = woyrni—2y) P2 T eyl -2y)’
2(—4y? + 20y + 21) 8(3y — 14)
P23 = P33 =

72y + 7)(11 —2y)’ 72y + 7)(2y — 11)°

59 /78



Sum rules

The following sum rules hold:

P21 + P31
P22 + P32
P23 + p33
P21+ p22 + p23
p31 + p32 + p33

P1
P2
p3
P2
2p3

These relations show that there are only two

densities, e.g. p21 and pas.

2/7
3/7
2/1,
3/7
4/7.

independent link
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Comparison with simulations

L L L L
0 0.5 1 15 2
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Nonlinear splitting weights

Taking d = 3 and general nonlinear splitting weights

_1 3+8)(Ta—1)
L= 3 2a—B-1)(3at28+7+6)

where a = wo/wy, B = wz/wy and v = \Ja (o + 24 8 + 24).




Comparison

P22

with simulations

22

=100

FIGURE 17. The solution (5.5) for the density pss plotted
as a function of 3 for a few values of a. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.

- ? (284 a?8"y — 17705 By + 3564 03 + 18 % + 161a B>y — 873 + 11979 0233
—2259a° — 3988 — 207 a® + 6516 a2 81 — 5205 a° 3 — 1419 a* By + 996 o 3°
—5994 o — 892 3%y + 1543 8% — 18 a7 — 668’ 8" 4 3240y + 909 a8y
—2600a®4% — 9750° 3% + 222 8% — 1533 a® 3%y 4 10206 o232 — 11799 a* 3
—5300 3% — 1521 a® By + 1899 0252y + 105907 33 + 1269 0° 52 + 324002 B
+756 a8 + 4860 a® B + 6 3% — 11703 a? 3% + 172802 By — 162 o’y + 486a 52y
+18 8% + 1530 a3 + 6240 B4y — 7720383y — 9.0 + 24 ﬂ‘w)/( (Ba+28+7+6)

X (110% + 2508 + 50y +3 6y + 120+ 40%) (~a+9) (1 - 20+ 6) Ta +26+7)* )
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Subtree probabilities

Label vertices in the tree by their time of creation

» Use linear weights

» Derive expressions for the probabilistic structure of the tree as

vV v v Y

seen from the vertex created at a given time
Average over the creation time

Introduce a scaling assumption

Extract the Hausdorff dimension

Get results which agree with simulations
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» Begin with a tree consisting of a single vertex at time ¢t = 0

> In a tree of size £ let pr(¥; s) be the probability that the
vertex created at time s < £ is the root

» We find

1

pr(é;s) = mw(e —Dpr(l—1s), s<!

1 -1
pR(Z,Z) = m%’lﬂl])}%(f — 1,3), s=1{

W(¢) = (2a + b){ — a is a normalization factor.
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(6 —1)
w (71+u| s
-1
(6 —1) +u|§wl

Let px (41,42, .. .,4Lk; s) be the probability that the vertex v created
at time s has degree k, the root subtree has £; links and the other
subtrees incident on v have size £, ..., £. Denote the sum of the
£;'sby £. Thenfork =1and s <{

1 o,
@—@ - U'(/—l)+uv1(u([71)

41 N
. s \
+ E Wiy1,1 ® [ IRNO) )
i=1 Ot li=-1 H / s
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and for k > 1 and s < ¢

K 1 .
= —— | Op20, )
; ”'([*1)+wl(k”‘m G

d

+ Z(l +1 k) wgigie

i=k Ot bl =01
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Finally £ > 1 and s =¢

®

—1 k

d—1

1
= mzz Z Wk, i—k+2

s=0 j=2 i—k—1

>

Gty g =t 1
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We average over s to get simpler recursions:

pr(C+1) = %PR(Z)~
pi(l+1) (3.11)
= %m [W(Z)pl(f) + giwwm 4;“; pilth, -, 6) + 25@01111]-
Z
pr(lr, .o lk)
_ ﬁ%m [Srade1wipr(0) +§W(@ )l — 1 b))

d
+Z(i7k+1)wk,i—k+2 Z pi([,ly-~~~,4+17)¢~,€27~~-’[k) (3.12)
i=k

, "
Ot g

=01—1

i=

kood
+Z Z Whiekt2 Z Pi([h-~~,Zj71,f/17-~~»4+1—k74j+1~~,fk)]

— . , "
Jj=2i=k—1 CR s
:ijfl
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Finally we define the "two point functions” that are needed to
calculate the Hausdorff dimension:

qki(elie2) = Z Z pk( g.:"'i ;Cf’ii {I.I:"'iegl)y

lll +'“+4c—i:l1 llll-‘r...-l—%/:lz

which is the probability that 7 trees of total volume £1, none of
which contains the root, are attached to a vertex of order k in a
tree of total volume £ = £; + £5. There are d(d — 1)/2 such
functions, 1 <7<k —1.
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The two point functions satisfy the recursion relation

{+1 1

Qki(£17€2) = mm{

d
> wk,j+2—k((j —i)qji(lr — 1,02) +iq; j— (ki) (b1, b2 — 1))
j=k—1

(Wl = 1)+ (k=i = 1) (w2 — ws) ai(ly — 1,2)
+(W(ZQ — ].) + (Z — 1)(7,02 — w;;))qki((l,fz — ].)

+Okabe1wipr(l2) + 6adpnwry > pea(f, a%—ﬁ}
Ot o+l =l

An almost closed system of linear equations.
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Hausdorff dimension

> Let T be a tree with £ edges and v, w vertices of T'.

This definition is different from the one we wrote down earlier for
infinite trees but is expected to be equivalent.
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Hausdorff dimension

> Let T be a tree with £ edges and v, w vertices of T'.
» Denote the graph distance between v and w by dr(v, w).

» We define the radius of T' as

R = (21[) UEZTdT(T: ’U) 0'('U),

» We define the Hausdorff dimension of the tree, dg, by the
scaling law for large trees
(Rp) ~ €% {5 0

This definition is different from the one we wrote down earlier for
infinite trees but is expected to be equivalent.



Combinatorics

» Cutting the tree at an edge ¢ we get two subtrees of size £;

and 52
» One can prove the following identity:

ZdT('v,'w)cr(w) = Z(Zeg(v;i) +1)

7

valid for any vertex v. We use it for v = r.
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» The identity implies:

(Rr) = %ZP 22227"1)4—1)

(+1 & d
=7 Y (20 + 1)) qrp—1(L — £2; 42)
£2=0 k=1
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» We use a scaling assumptions about the ¢ functions
i (€1, € — £1) = £ Pwii(€1/€) + O(£P ')

» Inserting into the recurrence equation for gx; keeping leading
order terms in £71 gives

d

_ 1 N L Wi, _

(2—pwri = Wy Z Wk, j+2— k( J— )W + ij,jf(kfi)) L
j=k—1 2

» This is a Perron-Frobenius type equation. Gives p in principle.

» Can solve in simple cases and prove some bounds in more
general cases.
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Hausdorff dimension

Linear weights and d = 3

g 3(1 4+ /1 + 16v)
H pu—
8y

) y:’UJ3/'lU2

FIGURE 13. Equation (4.25) compared to simulations. The
Hausdorff dimension, dy, is plotted against y = w;/ws. The
leftmost datapoint is calculated from 50 trees on 50000 ver-
tices and the others are calculated from 50 trees on 10000
vertices.
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Hausdorff dimension
General solution ford = 3

dy =

(wa2 —2ws31) + \/(wz,z — 2w31)? + 8ws 1 (w21 + 3ws,2)

(w2 —2ws 1) + \/(’wz,z —2w31)? + 16ws 1ws3 2

ws 2 = w3/3

Ws,1 = Wa,2 = wa/3

dy

wy; =1

L L L L L
[ 20 40 60 80 100
W2
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Conclusions and problems

» Random trees are a universal mathematical tool in science
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Conclusions and problems

» Random trees are a universal mathematical tool in science

» It remains to understand in detail what types of behaviour can
occur - what constitutes a universality class?

» What classes of continuum trees exist?

» Many concrete problems: equilibrium description of splitting
vertex trees, spectral properties, etc.

» Knowing the properties of the trees which arise in a physical
system (or in some other context) may shed light on the
mechanisms that produce the trees

» Export techniques and results from trees to graphs with loops
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