Random trees

Thordur Jonsson, University of Iceland

June 2009

Cracow School of Theoretical Physics, XLIX Course and ENRAGE Topical School on: Non-perturbative Gravity and Quantum Chromodynamics

Outline

- Introduction Motivation: Physics, Mathematics, Biology, ...
- Principal questions
- Models
- Methods
- Results
- The vertex splitting model
- Some details on SVM

Random Walks

- Universal theoretical tool in the Sciences: diffusion, functional integrals, ...
- ► No intrinsic structure: properties come from imbedding into an ambient space, e.g. ℝ^d
- Strong universality results central limit theorem
- ▶ Rigorous continuum theory, Wiener integral, potential theory

Random geometry

- Intrinsic and extrinsic degrees of freedom
- Trees
- Surfaces: phase boundaries, membranes, string theory, 2-dimensional quantum gravity, ...
- Higher dimensional manifolds: gravity in dimensions \geq 3
- General graphs, networks

Random trees

Physical tree-like objects: branched polymers

 Surfaces and higher dimensional manifolds can have a phase where they degenerate into trees

Secondary structure of macromolecules, e.g. RNA

(borrowed from Scott K. Silverman scott@scs.uiuc.edu)

Problem: find the secondary (and the tertiary) structure from the base sequence

I. "kissing hairpins" & interlaced strands are rare (unfavored by kinematics & topology)

2. RNA can (to some extent) be considered as a **planar tree**

Phylogenetic trees

 Fragmentation and coagulation models, river networks, blood vessels, search and decision algorithms, citation networks, etc. etc.

Random surfaces and trees

There is a one to one mapping from trees to causal triangulations

Can be generalized to a mapping between planar quadrangulations and well-labelled trees - Schaeffer

- Extensive mathematics literature: branching processes etc.
- Theory of continuous trees Aldous et al.
- Has been used to construct a theory of continuous random surfaces – Le Gall et al.
- We consider discrete trees
- Rooted planar tree graphs

Two main approaches

1. Equilibrium statistical mechanics

 $\mathcal{T}=$ Set of graphs, μ a probability measure on \mathcal{T}

$$\mu(T)=Z^{-1}e^{-eta E(T)}$$

2. Growing trees $T_n \mapsto T_{n+1}$, time discrete

Stochastic growth rules induce a probability measure on T_t , the trees that can arise in t steps

- Sometimes (1) is more natural
- Sometimes (2) is more natural
- Sometimes (1) and (2) are known to be equivalent

Problems to study

- ▶ What are the prinicipal characteristics of the trees under consideration? How sensitive are they to *E* or the growth rules?
- Distribution of vertex degrees
- Correlations
- ► Fractal dimensions: Hausdorff, spectral, ...
- The "shape" of trees mass distribution
- Universality classes

Galton-Watson trees

• $p_n =$ probability of having n descendents,

$$\sum_n p_n = 1, \;\; m = \sum_n n p_n$$

- m < 1 subcritical, m > 1 supercritical, m = 1 critical
- n generations at time t = n 1 if no extinction
- Well understood

Preferential attachment trees

In each timestep one new edge is attached to a preexisting tree

• Probability of attaching to a vertex v of degree k

$$P_v=rac{w_k}{\sum_k n_k w_w}, \ \ w_k\geq 0,$$

 n_k = the number of vertices of degree k.

• Growth rule induces a probability measure on T_t .

Local trees

 \blacktriangleright Weight factor of a tree T

$$W(T) = \prod_{i \in T} w_{\sigma(i)}$$

 $\sigma(i)=$ degree of the vertex i

Partition functions

$$Z_N = \sum_{T:|T|=N} W(T), \quad Z = \sum_N \zeta^N Z_N, \; \; |\zeta| < \zeta_0$$

- Generating function $g(z) = \sum_n w_n z^{n-1}$, radius of convergence ho
- Main equation

Generic trees

Algebraically

$$Z(\zeta)=\zeta g(Z(\zeta))=\zeta\sum_{i=0}^\infty w_{i+1}Z^i(\zeta)$$

• Define
$$Z_0 = \lim_{\zeta \to \zeta_0} Z(\zeta)$$

• If $Z_0 < \rho$ then we say that the trees are *generic*.

$$\blacktriangleright \ Z(\zeta) - Z_0 \sim \sqrt{\zeta_0 - \zeta}$$

Here we have defined

$$h(Z)=rac{g(Z)}{Z}$$

and the weights have been scaled so that ho=1

Define

$$\mu(T) = Z_0^{-1} \zeta_0^{|T|} \prod_{i \in T} w_{\sigma(i)}$$

Probability measure

This measure is the same as the one obtained from a Galton-Watson process with

$$p_n = \zeta_0 w_{n+1} Z_0^{n-1}$$

$$\mu(T)=Z_0^{-1}\zeta_0^{|T|}\prod_{i\in T}w_{\sigma(i)}$$

Probability measure

 This measure is the same as the one obtained from a Galton-Watson process with

$$p_n = \zeta_0 w_{n+1} Z_0^{n-1}$$

Another equivalence

- Preferential attachment trees \approx Causal trees
- Weight proportional to the number of *causal labelings*

More branchings, more ways to grow

• Let $V_T(R)$ =volume of a ball of radius R centered on the root

 $\langle V_T(R)
angle \sim R^{d_H}, \ \ R
ightarrow \infty \ \ ext{defines} \ d_H$

Let p_T(t) = probability that a random walker is back at the root after t steps on T

$$\langle p_T(t)
angle \sim t^{-d_s/2}, \ t
ightarrow\infty$$
 defines d_s

$$K_t(x,y) = (2\pi t)^{-d/2} e^{-(x-y)^2/2t}$$

• Let $V_T(R)$ =volume of a ball of radius R centered on the root

 $\langle V_T(R)
angle \sim R^{d_H}, \;\; R o \infty \;\; {
m defines}\; d_H$

Let p_T(t) = probability that a random walker is back at the root after t steps on T

cf.

$$K_t(x,y) = (2\pi t)^{-d/2} e^{-(x-y)^2/2t}$$

• Let $V_T(R)$ =volume of a ball of radius R centered on the root

 $\langle V_T(R)
angle \sim R^{d_H}, \ \ R o \infty \ \ ext{defines} \ d_H$

Let p_T(t) = probability that a random walker is back at the root after t steps on T

$$\langle p_T(t)
angle\sim t^{-d_s/2},\ t o\infty\$$
 defines d_s

• Let $V_T(R)$ =volume of a ball of radius R centered on the root

 $\langle V_T(R)
angle \sim R^{d_H}, \ \ R o \infty \ \ ext{defines} \ d_H$

Let p_T(t) = probability that a random walker is back at the root after t steps on T

$$egin{aligned} &\langle p_T(t)
angle \sim t^{-d_s/2}, \ t o\infty \ ext{defines} \ d_s \ &K_t(x,y) = (2\pi t)^{-d/2} e^{-(x-y)^2/2t} \end{aligned}$$

• Let $V_T(R)$ =volume of a ball of radius R centered on the root

 $\langle V_T(R)
angle \sim R^{d_H}, \;\; R o \infty \;\; ext{defines}\; d_H$

Let p_T(t) = probability that a random walker is back at the root after t steps on T

$$\langle p_T(t)
angle \sim t^{-d_s/2}, \;\; t
ightarrow \infty$$
 defines d_s

cf.

$$K_t(x,y) = (2\pi t)^{-d/2} e^{-(x-y)^2/2t}$$

Averages taken w.r.t. a measure on infinite trees

$$u_N = Z_N^{-1} \prod_{i \in T} w_{\sigma(i)}$$

$${
u}_N o {
u}_\infty$$
 as $N o \infty$

Theorem.(B. Durhuus, J. Wheater and T.J.)

(i)
$$d_H = 2$$

(ii)
$$d_s = 4/3$$

- (iii) There is a unique infinite simple path whose outgrowths are critical GW-trees
- (iv) Vertex degrees are uncorrelated

Averages taken w.r.t. a measure on infinite trees

$$u_N = Z_N^{-1} \prod_{i \in T} w_{\sigma(i)}$$

$$u_N
ightarrow
u_\infty$$
 as $N
ightarrow \infty$

Theorem.(B. Durhuus, J. Wheater and T.J.)

(i)
$$d_H = 2$$

(ii)
$$d_s = 4/3$$

- (iii) There is a unique infinite simple path whose outgrowths are critical GW-trees
- (iv) Vertex degrees are uncorrelated

- One spine due to entropy
- \blacktriangleright The number of rooted planar trees with ℓ edges is

$$N(\ell) \sim \ell^{-3/2} C^\ell$$

$$\max\{N(\ell_1)N(\ell_2):\ell_1+\ell_2=\ell\}pprox N(\ell)$$

 Main tool for analysing the spectral dimension is the generating function

$$Q_T(x) = \sum_{t=0}^\infty p_T(t) (1-x)^{t/2}$$

and its ensemble average

$$egin{aligned} Q(x) &= \langle Q_T(x)
angle \ Q(x) &\sim x^{-1/3} \Longrightarrow d_s = 4/3 \end{aligned}$$

Non-generic trees

Critical exponents change

$$Z(\zeta)-Z_0\sim (\zeta_0-\zeta)^\gamma, \;\; \gamma
eq 1/2$$

- There can arise a vertex of infinite order in the thermodynamic limit (Bialas, Burda, Johnston)
- No infinite spine and outgrowths are subcritical GW trees
- Proven in a special case (S. Stefansson)

Preferential attachment trees

F. David, P. di Francesco, E. Guitter and T.J., J. Stat. Mech. (2007) P02011

- In general many infinite simple paths
- $d_H = \infty$ in many cases (all cases?)
- Can calculate vertex degree distribution and fluctuations. Independent of the initial tree.
- Broad distribution of sizes of subtrees, depends on the initial tree

Mass distribution

Consider trees with vertices of order 1, 2 and 3. Only one parameter: $x = 2w_2/w_1$.

What is the distribution of the size of the left tree as the total size of the tree gets large? We know the answer for generic trees.

Let T_L and T_R be the sizes of the left and right subtrees. If x = 1, then the growth process maps onto reinforced random walk and if we start from the one link tree, then

$$P(T_L,T_R)=rac{1}{T_L+T_R+1}.$$

More generally, defining $u_L = T_L/T$, $u_R = T_R/T$,

$$p(u_L,u_R) = rac{T!}{T_L^0!T_R^0!} u_L^{T_L^0} u_R^{T_R^0} \delta(u_L+u_R-1),$$

i.e. exponents depend on the initial tree. For arbitrary x we define the left exponent

$$p(u_L,u_R)\sim u_L^{eta_L}, \ \ u_L
ightarrow 0.$$

The right exponent β_R is defined similarly.
Let T_L and T_R be the sizes of the left and right subtrees. If x = 1, then the growth process maps onto reinforced random walk and if we start from the one link tree, then

$$P(T_L,T_R)=rac{1}{T_L+T_R+1}.$$

More generally, defining $u_L = T_L/T$, $u_R = T_R/T$,

$$p(u_L,u_R) = rac{T!}{T_L^0!T_R^0!} u_L^{T_L^0} u_R^{T_R^0} \delta(u_L+u_R-1),$$

i.e. exponents depend on the initial tree. For arbitrary x we define the left exponent

$$p(u_L,u_R)\sim u_L^{eta_L}, \ \ u_L
ightarrow 0.$$

The right exponent β_R is defined similarly.

Let T_L and T_R be the sizes of the left and right subtrees. If x = 1, then the growth process maps onto reinforced random walk and if we start from the one link tree, then

$$P(T_L,T_R)=rac{1}{T_L+T_R+1}.$$

More generally, defining $u_L = T_L/T$, $u_R = T_R/T$,

$$p(u_L,u_R) = rac{T!}{T_L^0!T_R^0!} u_L^{T_L^0} u_R^{T_R^0} \delta(u_L+u_R-1),$$

i.e. exponents depend on the initial tree. For arbitrary x we define the left exponent

$$p(u_L,u_R)\sim u_L^{eta_L}, \ \ u_L
ightarrow 0.$$

The right exponent β_R is defined similarly.

One can show, using a MFT assumption - small fluctuations in the vertex degree distribution,

$$\beta_{\rm L} = -1 + \frac{x + \sqrt{x(8+x)}}{8x} (4n_{1,\rm L}^0 + (x+2-|x-2|)n_{2,\rm L}^0)$$

where $n_{i,L}^0$ is the number of vertices of degree i in the left initial left tree.

Numerical simulations

Figure 7. Measured distribution $P(u_L)$ for the initial tree \mathcal{T}^0 drawn on the left. For x = 1, we have also indicated the exact distribution.

Figure 8. Measured distribution $P(u_{\rm L})$ for the initial tree \mathcal{T}^0 drawn on the left.

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech. (2009) P04009

- ▶ Degree of vertices is bounded by an integer d (we also discuss the case d = ∞)
- ▶ Nonnegative splitting weights w_1, w_2, \ldots, w_d
- n_j(T) = the number of vertices of degree j in a tree T
 p_j = Probability of choosing a vertex v ∈ T of degree j

$$p_j = rac{w_j}{\sum_i w_i n_i(T)}$$

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech. (2009) P04009

- ▶ Degree of vertices is bounded by an integer d (we also discuss the case d = ∞)
- ▶ Nonnegative splitting weights w_1, w_2, \ldots, w_d
- n_j(T) = the number of vertices of degree j in a tree T
 p_j = Probability of choosing a vertex v ∈ T of degree j

$$p_j = rac{w_j}{\sum_i w_i n_i(T)}$$

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech. (2009) P04009

- ▶ Degree of vertices is bounded by an integer d (we also discuss the case d = ∞)
- ▶ Nonnegative splitting weights w_1, w_2, \ldots, w_d
- n_j(T) = the number of vertices of degree j in a tree T
 p_j = Probability of choosing a vertex v ∈ T of degree j

$$p_j = rac{w_j}{\sum_i w_i n_i(T)}$$

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech. (2009) P04009

- ▶ Degree of vertices is bounded by an integer d (we also discuss the case d = ∞)
- ▶ Nonnegative splitting weights w_1, w_2, \ldots, w_d
- *n_j*(*T*) = the number of vertices of degree *j* in a tree *T p_j* = Probability of choosing a vertex *v* ∈ *T* of degree *j*

$$p_j = rac{w_j}{\sum_i w_i n_i(T)}$$

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech. (2009) P04009

- ▶ Degree of vertices is bounded by an integer d (we also discuss the case d = ∞)
- ▶ Nonnegative splitting weights w_1, w_2, \ldots, w_d
- ▶ $n_j(T)$ = the number of vertices of degree j in a tree T p_j = Probability of choosing a vertex $v \in T$ of degree j

$$p_j = rac{w_j}{\sum_i w_i n_i(T)}$$

Splitting rules

The parameters of the model are

0	$w_{1,2}$	$w_{1,3}$	•••	$w_{1,d-1}$	$w_{1,d}$
$w_{2,1}$	$w_{2,2}$	$w_{2,3}$	• • •	$w_{2,d-1}$	$w_{2,d}$
$w_{3,1}$	$w_{3,2}$	$w_{3,3}$	• • •	$w_{3,d-1}$	0
$w_{4,1}$	$w_{4,2}$	$w_{4,3}$		0	0
÷	÷	÷	. · ·	÷	÷
$w_{d,1}$	$w_{d,2}$	0	• • •	0	0

a symmetric matrix of non-negative partitioning weights

- Split a vertex of degree i into vertices of degree k and i + 2 − k with probability w_{k,i+2−k}/w_i − all such splittings equally probable
- ► The splitting weights w₁, w₂,..., w_d are related to the partitioning weights by

$$w_i = rac{i}{2} \sum_{j=1}^{i+1} w_{j,i+2-j}.$$

Splitting rules

The parameters of the model are

[()	$w_{1,2}$	$w_{1,3}$	•••	$w_{1,d-1}$	$w_{1,d}$
w_{i}	2,1	$w_{2,2}$	$w_{2,3}$	• • •	$w_{2,d-1}$	$w_{2,d}$
w_{z}	3,1	$w_{3,2}$	$w_{3,3}$	• • •	$w_{3,d-1}$	0
w.	1 ,1	$w_{4,2}$	$w_{4,3}$		0	0
		÷	÷	. · ·	÷	÷
$\lfloor w_{i}$	l,1	$w_{d,2}$	0	• • •	0	0

a symmetric matrix of non-negative partitioning weights

- Split a vertex of degree i into vertices of degree k and i + 2 − k with probability w_{k,i+2−k}/w_i − all such splittings equally probable
- ► The splitting weights w₁, w₂,..., w_d are related to the partitioning weights by

$$w_i = rac{i}{2} \sum_{j=1}^{i+1} w_{j,i+2-j}.$$

A tree

- A tree growth process which is equivalent to a simplified model for RNA secondary structures F. David, C. Hagendorf, K. J. Wiese
- When w_{i,j} = 0 unless j = 1 or i = 1 it reduces to the preferential attachment model R. Albert and A. L. Barabasi et al.
- For d = 3, in a certain limit, it reduces to Ford's alpha model for phylogenetic trees

- A tree growth process which is equivalent to a simplified model for RNA secondary structures F. David, C. Hagendorf, K. J. Wiese
- When w_{i,j} = 0 unless j = 1 or i = 1 it reduces to the preferential attachment model R. Albert and A. L. Barabasi et al.
- For d = 3, in a certain limit, it reduces to Ford's alpha model for phylogenetic trees

- A tree growth process which is equivalent to a simplified model for RNA secondary structures F. David, C. Hagendorf, K. J. Wiese
- When w_{i,j} = 0 unless j = 1 or i = 1 it reduces to the preferential attachment model R. Albert and A. L. Barabasi et al.
- For d = 3, in a certain limit, it reduces to Ford's alpha model for phylogenetic trees

- A tree growth process which is equivalent to a simplified model for RNA secondary structures F. David, C. Hagendorf, K. J. Wiese
- When w_{i,j} = 0 unless j = 1 or i = 1 it reduces to the preferential attachment model R. Albert and A. L. Barabasi et al.
- For d = 3, in a certain limit, it reduces to Ford's alpha model for phylogenetic trees

Main results

- Distribution of vertex degrees in a large tree
- Correlations between the degrees of vertices
- "Shape" of trees Hausdorff dimension

If we consider linear splitting weights

 $w_i = ai + b$.

the analysis simplifies due to the Euler relation for trees

$$\sum_{i=1}^d n_i(T) = |T|, \quad \sum_{i=1}^d i n_i(T) = 2(|T|-1).$$

The normalization factor $\sum_i w_i n_i(T)$ depends only on the size of the tree T.

Recurrence for generating functions

Let $p_t(n_1, \ldots, n_d)$ be the probability that the tree T at time t has $(n_1(T), \ldots, n_d(T)) = (n_1, \ldots, n_d)$. The probability genereting function

$$\mathcal{H}_t(\mathbf{x}) = \sum_{n_1 + \cdots n_d = t} p_t(n_1, \ldots, n_d) x_1^{n_1} \cdots x_d^{n_d}$$

satisfies the recurrence

$$\mathcal{H}_{t+1}(\mathbf{x}) = \sum_{n_1+\dots+n_d=t} rac{p_t(n_1,\dots,n_d)}{\sum_{i=1}^d n_i w_i} \, \mathrm{c}(\mathbf{x}) \cdot
abla(x_1^{n_1}\cdots x_d^{n_d}),$$

where $\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), c_2(\mathbf{x}), \dots, c_d(\mathbf{x}))$ with

$$c_i(\mathbf{x}) = rac{i}{2}\sum_{j=1}^{i+1} w_{j,i+2-j} x_j x_{i+2-j} \quad ext{ and } \quad
abla = \Big(\partial/\partial x_1, \dots, \partial/\partial x_d \Big).$$

Vertex degree distribution

- Begin with a tree T₀ at time 0
- At time t > 0 we have a tree T_t with n_i(T_t) vertices of degree i
- Let $\bar{n}_{t,i}$ denote the average of $n_i(T)$ over all trees that can arise at time t, i.e.

$$\overline{n}_{t,k} = \sum_{n_1+\ldots+n_d=t} p_t(n_1,\ldots,n_d)n_k = \partial_k \mathcal{H}_t(\mathbf{x})|_{\mathbf{x}=\mathbf{1}},$$

Define

$$ho_{t,i} = rac{ar{n}_{t,i}}{t}$$

and we will use the notation

$$ho(t)=(
ho_{t,1},\ldots,
ho_{t,d})$$

Vertex degree distribution

- Begin with a tree T₀ at time 0
- At time t > 0 we have a tree T_t with n_i(T_t) vertices of degree i
- Let $\bar{n}_{t,i}$ denote the average of $n_i(T)$ over all trees that can arise at time t, i.e.

$$\overline{n}_{t,k} = \sum_{n_1+\ldots+n_d=t} p_t(n_1,\ldots,n_d)n_k = \partial_k \mathcal{H}_t(\mathbf{x})|_{\mathbf{x}=\mathbf{1}},$$

Define

$$ho_{t,i} = rac{ar{n}_{t,i}}{t}$$

and we will use the notation

$$ho(t)=(
ho_{t,1},\ldots,
ho_{t,d})$$

• The recurrence for \mathcal{H}_t gives rise to a recurrence for $\rho(t)$.

$$\mathcal{H}_{t+1}(\mathbf{x}) = \frac{1}{\mathcal{W}(t)} \mathbf{c}(\mathbf{x}) \cdot \nabla \mathcal{H}_t(\mathbf{x}).$$

$$\implies \rho_{t+1,k} = \frac{t}{\mathcal{W}(t)} \left(-w_k \rho_{t,k} + \sum_{i=k-1}^d i w_{k,i+2-k} \rho_{t,i} \right) + t(\rho_{t,k} - \rho_{t+1,k}).$$

• Under mild conditions on the $w_{i,j}$ the limits

$$\lim_{t o\infty}
ho_{t,i}=
ho_i$$

exist and are the unique positive solution to the linear equations

$$ho_k=-rac{w_k}{w_2}
ho_k+\sum_{i=k-1}^d irac{w_{k,i+2-k}}{w_2}
ho_i.$$

► These values are independent of the initial tree.

 The proof uses the Perron–Frobenius theorem for "positive" matrices. • Under mild conditions on the $w_{i,j}$ the limits

$$\lim_{t o\infty}
ho_{t,i}=
ho_i$$

exist and are the unique positive solution to the linear equations

$$ho_k=-rac{w_k}{w_2}
ho_k+\sum_{i=k-1}^d irac{w_{k,i+2-k}}{w_2}
ho_i.$$

- These values are independent of the initial tree.
- The proof uses the Perron–Frobenius theorem for "positive" matrices.

• Under mild conditions on the $w_{i,j}$ the limits

$$\lim_{t o\infty}
ho_{t,\,i}=
ho_i$$

exist and are the unique positive solution to the linear equations

$$ho_k=-rac{w_k}{w_2}
ho_k+\sum_{i=k-1}^d irac{w_{k,i+2-k}}{w_2}
ho_i.$$

- These values are independent of the initial tree.
- The proof uses the Perron–Frobenius theorem for "positive" matrices.
Perron-Frobenius

Theorem. Let A be a matrix with nonnegative matrix elements such that all the matrix elements of A^p are positive (A primitive) for some integer p. Then the eigenvalue of A with the largest absolute value is positive and simple. The corresponding eigenvector can be taken to have positive entries.

Iterating the recurrence equation for $\rho(t)$ we find

$$ho(t)=rac{1}{t}\prod_{i=1}^{t-1}\left(1+rac{1}{(2a+b)i-2a}B
ight)
ho_0$$

where *B* is a matrix with nonnegative entries except on the diagonal. If *B* is primitive and diagonalizable, then $\rho(t)$ converges to the normalized Perron-Frobenius eigenvector of *B*.

Examples

• d = 3 The matrix B is diagonalizable and

$$ho_1=
ho_3=2/7,\ \
ho_2=3/7$$

if the partitioning weights are chosen to be uniform, i.e.

$$w_{i,j} = w_{i+j-2} rac{2}{(i+j-2)(i+j-1)}.$$

- d = 4 Can again solve explicitly with uniform partitioning weights and get ρ_i's which vary with a and b.
- ▶ $d = \infty$ Do not have a proof of convergence but can solve the equation for the ρ_i 's

$$ho_k \sim rac{1}{k!} 2^{k-1} k^{-1-x}, \quad x=b/a$$
 $ho_k = rac{1}{e(k-1)!}, \quad a=0.$

Examples

• d = 3 The matrix B is diagonalizable and

$$ho_1=
ho_3=2/7,\ \
ho_2=3/7$$

if the partitioning weights are chosen to be uniform, i.e.

$$w_{i,j} = w_{i+j-2} rac{2}{(i+j-2)(i+j-1)}$$

- d = 4 Can again solve explicitly with uniform partitioning weights and get ρ_i's which vary with a and b.
- ▶ $d = \infty$ Do not have a proof of convergence but can solve the equation for the ρ_i 's

$$egin{aligned} &
ho_k \sim rac{1}{k!} 2^{k-1} k^{-1-x}, \quad x=b/a \ &
ho_k = rac{1}{e(k-1)!}, \quad a=0. \end{aligned}$$

Examples

• d = 3 The matrix B is diagonalizable and

$$ho_1=
ho_3=2/7,\ \
ho_2=3/7$$

if the partitioning weights are chosen to be uniform, i.e.

$$w_{i,j} = w_{i+j-2} rac{2}{(i+j-2)(i+j-1)}$$

- d = 4 Can again solve explicitly with uniform partitioning weights and get ρ_i's which vary with a and b.
- $d = \infty$ Do not have a proof of convergence but can solve the equation for the ρ_i 's

$$egin{aligned} &
ho_k \sim rac{1}{k!} 2^{k-1} k^{-1-x}, & x = b/a \ &
ho_k = rac{1}{e(k-1)!}, & a = 0. \end{aligned}$$

General splitting weights

• Use mean field theory for the normalization factor $\sum_{i} n_i(T)w_i \rightarrow t \sum_{i} \rho_i w_i.$

Equation for a steady state vertex distribution

$$ho_k = -rac{w_k}{w}
ho_k + \sum_{i=k-1}^d irac{w_{k,i+2-k}}{w}
ho_i,$$

subject to the constraints

$$ho_1+\ldots+
ho_d=1, \hspace{0.2cm} w_1
ho_1+\ldots+w_d
ho_d=w.$$

- There is a unique positive solution by the Perron-Frobenius theorem.
- For d = 3 and uniform partitioning weights we find

$$ho_3 \hspace{2mm} = \hspace{2mm} rac{7lpha-\sqrt{lpha\left(lpha+24\,eta+24
ight)}}{6(2lpha-eta-1)}$$

where $lpha=w_2/w_1$ and $eta=w_3/w_1.$

Comparison with simulations

FIGURE 4. The value of ρ_3 as given in (2.45) compared to results from simulations. Each point is calculated from 20 trees on 10000 vertices.

A comparison of the theoretical prediction with simulations in the case d=3 and uniform partitioning weights.

$$lpha=rac{w_2}{w_1}, \quad eta=rac{w_3}{w_1}$$

In a typical infinite tree, what is the proportion of edges whose endpoints have degrees j and $k \ ?$

Let $n_{j,k} =$ number of such edges in a finite tree of size t, where the vertex of degree j is closer to the root

Let
$$ho_{j,k} = \lim_{t o\infty} rac{n_{j,k}}{t}.$$
 Then (for linear splitting weights)

$$egin{array}{rcl}
ho_{jk} &=& -rac{w_j+w_k}{w_2}
ho_{jk}+(j-1)rac{w_{j,k}}{w_2}
ho_{j+k-2} \ &+(j-1)\sum\limits_{i=j-1}^drac{w_{j,i+2-j}}{w_2}
ho_{ik}+(k-1)\sum\limits_{i=k-1}^drac{w_{k,i+2-k}}{w_2}
ho_{ji}. \end{array}$$

In a typical infinite tree, what is the proportion of edges whose endpoints have degrees j and k ?

Let $n_{j,k} =$ number of such edges in a finite tree of size t, where the vertex of degree j is closer to the root

Let
$$ho_{j,k} = \lim_{t \to \infty} \frac{n_{j,k}}{t}$$
. Then (for linear splitting weights)
 $ho_{jk} = -\frac{w_j + w_k}{w_2}
ho_{jk} + (j-1) \frac{w_{j,k}}{w_2}
ho_{j+k-2}$
 $+(j-1) \sum_{i=j-1}^d \frac{w_{j,i+2-j}}{w_2}
ho_{ik} + (k-1) \sum_{i=k-1}^d \frac{w_{k,i+2-k}}{w_2}
ho_{ji}.$

In a typical infinite tree, what is the proportion of edges whose endpoints have degrees j and k ?

Let $n_{j,k} =$ number of such edges in a finite tree of size t, where the vertex of degree j is closer to the root

Let
$$\rho_{j,k} = \lim_{t \to \infty} \frac{n_{j,k}}{t}$$
. Then (for linear splitting weights)
 $\rho_{jk} = -\frac{w_j + w_k}{w_2} \rho_{jk} + (j-1) \frac{w_{j,k}}{w_2} \rho_{j+k-2} + (j-1) \sum_{i=j-1}^d \frac{w_{j,i+2-j}}{w_2} \rho_{ik} + (k-1) \sum_{i=k-1}^d \frac{w_{k,i+2-k}}{w_2} \rho_{ji}.$

In a typical infinite tree, what is the proportion of edges whose endpoints have degrees j and k ?

Let $n_{j,k} =$ number of such edges in a finite tree of size t, where the vertex of degree j is closer to the root

Let
$$ho_{j,k} = \lim_{t o \infty} rac{n_{j,k}}{t}$$
. Then (for linear splitting weights)

$$egin{array}{rcl}
ho_{jk} &=& -rac{w_j+w_k}{w_2}
ho_{jk}+(j-1)rac{w_{j,k}}{w_2}
ho_{j+k-2} \ &+(j-1)\sum\limits_{i=j-1}^drac{w_{j,i+2-j}}{w_2}
ho_{ik}+(k-1)\sum\limits_{i=k-1}^drac{w_{k,i+2-k}}{w_2}
ho_{ji}. \end{array}$$

Explicit solutions

Can solve in simple cases and find nontrivial correlations

$$ho_{jk}
eq rac{
ho_j
ho_k}{1-
ho_1}.$$

Take d = 3, linear splitting weights and uniform partitioning weights. Then $\rho_1 = \rho_3 = 2/7$ and $\rho_2 = 3/7$. Let $y = w_3/w_2$. Then the solutions to the correlation equation are

$$egin{array}{rll}
ho_{21}&=&rac{4(3-y)}{7(11-2y)},&
ho_{31}&=&rac{10}{7(11-2y)},&
ho_{31}&=&rac{10}{7(11-2y)},&
ho_{32}&=&rac{2(-8y^2+18y+63)}{7(2y+7)(11-2y)},&
ho_{32}&=&rac{2(-8y^2+18y+63)}{7(2y+7)(11-2y)},&
ho_{33}&=&rac{8(3y-14)}{7(2y+7)(2y-11)}.&
ho_{33}&=&rac{8(3y-14)}{7(2y+7)(2y-11)}.&
ho_{33}&=&rac{10}{7(2y+7)(2y-11)}.&
ho_{33}&=&rac{10}{7(2y+7)(2y-1)}.&
ho_{33}&=&rac{10}{7(2y+7)(2y-1)}.&
ho_{33}&=&
ho_{33}&
ho_{33}&=&
ho_{33}&
ho_{33$$

Explicit solutions

Can solve in simple cases and find nontrivial correlations

$$ho_{jk}
eq rac{
ho_j
ho_k}{1-
ho_1}.$$

Take d = 3, linear splitting weights and uniform partitioning weights. Then $\rho_1 = \rho_3 = 2/7$ and $\rho_2 = 3/7$. Let $y = w_3/w_2$. Then the solutions to the correlation equation are

Sum rules

The following sum rules hold:

These relations show that there are only two independent link densities, e.g. ρ_{21} and ρ_{22} .

Comparison with simulations

Nonlinear splitting weights

Taking d = 3 and general nonlinear splitting weights

$$ho_{21}=rac{1}{3}\,rac{\left(3+eta
ight)\left(7\,lpha-\gamma
ight)}{\left(2\,lpha-eta-1
ight)\left(3\,lpha+2\,eta+\gamma+6
ight)}$$

where $lpha=w_2/w_1$, $eta=w_3/w_1$ and $\gamma=\sqrt{lpha\left(lpha+24\,eta+24
ight)}.$

Comparison with simulations

FIGURE 17. The solution (5.5) for the density ρ_{22} plotted as a function of β for a few values of α . Each datapoint is calculated from simulations of 100 trees on 10000 vertices.

$$\begin{split} \rho_{22} &= \frac{16}{3} \Big(284 \alpha^2 \beta^4 \gamma - 177 \, \alpha^5 \beta \gamma + 3564 \, \alpha^3 + 18 \, \alpha^6 \gamma + 161 \alpha \, \beta^5 \gamma - 873 \, \gamma + 11979 \, \alpha^2 \beta^3 \\ &\quad -2259 \, \alpha^5 - 39 \, \alpha^6 \beta - 207 \, \alpha^5 \gamma + 6516 \, \alpha^2 \beta^4 - 5205 \, \alpha^5 \beta - 1419 \, \alpha^4 \beta \gamma + 996 \, \alpha \beta^5 \\ &\quad -5994 \, \alpha^4 - 892 \, \alpha^4 \beta^2 \gamma + 1543 \, \alpha^2 \beta^5 - 18 \, \alpha^7 - 668 \, \alpha^3 \beta^4 + 324 \, \alpha^2 \gamma + 909 \, \alpha \beta^3 \gamma \\ &\quad -2600 \, \alpha^5 \beta^2 - 975 \, \alpha^3 \beta^3 + 222 \, \alpha \beta^6 - 1533 \, \alpha^3 \beta^2 \gamma + 10206 \, \alpha^2 \beta^2 - 11799 \, \alpha^4 \beta \\ &\quad -5300 \, \alpha^4 \beta^3 - 1521 \, \alpha^3 \beta \gamma + 1899 \, \alpha^2 \beta^2 \gamma + 1059 \alpha^2 \beta^3 \gamma + 1269 \, \alpha^3 \beta^2 + 3240 \alpha^2 \beta \\ &\quad +756 \, \alpha \beta^3 + 4860 \, \alpha^3 \beta + 6 \, \beta^6 \gamma - 11703 \, \alpha^4 \beta^2 + 1728 \alpha^2 \beta \gamma - 162 \, \alpha^3 \gamma + 486 \alpha \, \beta^2 \gamma \\ &\quad +18 \, \beta^4 \gamma + 1530 \, \alpha \beta^4 + 624 \alpha \, \beta^4 \gamma - 772 \, \alpha^3 \beta^3 \gamma - 9 \, \alpha^6 + 24 \, \beta^5 \gamma \Big) \Big/ \Big(\left(3 \, \alpha + 2 \, \beta + \gamma + 6 \right) \\ &\quad \times \left(11 \, \alpha^2 + 25 \, \alpha \beta + 5 \, \alpha \gamma + 3 \, \beta \gamma + 12 \, \alpha + 4 \, \beta^2 \right) (-\alpha + \gamma) \left(1 - 2 \, \alpha + \beta \right) \left(7 \, \alpha + 2\beta + \gamma \right)^2 \Big) \Big) \Big) \Big|_{\mathcal{O}}$$

Subtree probabilities

- Label vertices in the tree by their time of creation
- Use linear weights
- Derive expressions for the probabilistic structure of the tree as seen from the vertex created at a given time
- Average over the creation time
- Introduce a scaling assumption
- Extract the Hausdorff dimension
- Get results which agree with simulations

- ▶ Begin with a tree consisting of a single vertex at time t = 0
- In a tree of size ℓ let p_R(ℓ; s) be the probability that the vertex created at time s ≤ ℓ is the root
- We find

$$p_R(\ell;s) = rac{1}{W(\ell-1)+w_1} W(\ell-1) p_R(\ell-1;s), \;\; s < \ell$$

$$p_R(\ell;\ell) = rac{1}{W(\ell-1)+w_1} \sum_{s=0}^{\ell-1} w_1 p_R(\ell-1;s), \;\; s=\ell$$

 $W(\ell) = (2a + b)\ell - a$ is a normalization factor.

$$\begin{array}{cccc}
 & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

Let $p_k(\ell_1, \ell_2, \ldots, \ell_k; s)$ be the probability that the vertex v created at time s has degree k, the root subtree has ℓ_1 links and the other subtrees incident on v have size ℓ_2, \ldots, ℓ_k . Denote the sum of the ℓ_i 's by ℓ . Then for k = 1 and $s < \ell$

and for k > 1 and $s < \ell$

Finally k > 1 and $s = \ell$

We average over *s* to get simpler recursions:

$$p_R(\ell+1) = \frac{\ell+1}{\ell+2} p_R(\ell).$$

$$p_{1}(\ell+1)$$

$$= \frac{\ell+1}{\ell+2} \frac{1}{W(\ell)+w_{1}} \Big[W(\ell)p_{1}(\ell) + \sum_{i=1}^{d-1} iw_{i+1,1} \sum_{\substack{\ell'_{1}+\dots+\ell'_{i}\\=\ell'}} p_{i}(\ell'_{1},\dots,\ell'_{i}) + 2\delta_{\ell 0}w_{1} \Big].$$
(3.11)

$$p_{k}(\ell_{1},\ldots,\ell_{k}) = \frac{\ell+1}{\ell+2} \frac{1}{W(\ell)+w_{1}} \Big[\delta_{k2} \delta_{\ell_{1}1} w_{1} p_{R}(\ell) + \sum_{i=1}^{k} W(\ell_{i}-1) p_{k}(\ell_{1},\ldots,\ell_{i}-1,\ldots,\ell_{k}) \\ + \sum_{i=k}^{d} (i-k+1) w_{k,i-k+2} \sum_{\substack{\ell'_{1}+\ldots+\ell'_{i+1-k}\\ =\ell_{1}-1}} p_{i}(\ell'_{1},\ldots,\ell'_{i+1-k},\ell_{2},\ldots,\ell_{k}) \\ + \sum_{j=2}^{k} \sum_{i=k-1}^{d} w_{k,i-k+2} \sum_{\substack{\ell'_{1}+\ldots+\ell'_{i+1-k}\\ =\ell_{j}-1}} p_{i}(\ell_{1},\ldots,\ell_{j-1},\ell'_{1},\ldots,\ell'_{i+1-k},\ell_{j+1},\ldots,\ell_{k}) \Big]$$

Finally we define the "two point functions" that are needed to calculate the Hausdorff dimension:

$$q_{k\,i}(\ell_1,\ell_2) = \sum_{\ell_1'+...+\ell_{k-i}'=\ell_1}\sum_{\ell_1''+...+\ell_i''=\ell_2}p_k(\ell_1',\ldots,\ell_{k-i}',\ell_1'',\ldots,\ell_i''),$$

which is the probability that *i* trees of total volume ℓ_1 , none of which contains the root, are attached to a vertex of order *k* in a tree of total volume $\ell = \ell_1 + \ell_2$. There are d(d-1)/2 such functions, $1 \le i \le k-1$.

The two point functions satisfy the recursion relation

$$\begin{aligned} q_{ki}(\ell_1, \ell_2) &= \frac{\ell+1}{\ell+2} \frac{1}{W(\ell) + w_1} \Big[\\ &\sum_{j=k-1}^d w_{k,j+2-k} \Big((j-i)q_{ji}(\ell_1 - 1, \ell_2) + iq_{j,j-(k-i)}(\ell_1, \ell_2 - 1) \Big) \\ &+ \Big(W(\ell_1 - 1) + (k - i - 1)(w_2 - w_3) \Big) q_{ki}(\ell_1 - 1, \ell_2) \\ &+ \Big(W(\ell_2 - 1) + (i - 1)(w_2 - w_3) \Big) q_{ki}(\ell_1, \ell_2 - 1) \\ &+ \delta_{k2} \delta_{\ell_1 1} w_1 p_R(\ell_2) + \delta_{i1} \delta_{\ell_2 1} w_{k,1} \sum_{\substack{\ell_1' + \dots + \ell_{k-1}' = \ell_1}} p_{k-1}(\ell_1', \dots, \ell_{k-1}') \Big] \end{aligned}$$

An almost closed system of linear equations.

- Let T be a tree with ℓ edges and v, w vertices of T.
- Denote the graph distance between v and w by $d_T(v, w)$.
- We define the radius of T as

$$R_T = rac{1}{(2\ell)}\sum_{v \in T} d_T(r,v)\,\sigma(v),$$

▶ We define the Hausdorff dimension of the tree, d_H, by the scaling law for large trees

$$\langle R_T
angle ~~ \ell^{1/d_H} ~~ \ell
ightarrow \infty$$

- Let T be a tree with ℓ edges and v, w vertices of T.
- Denote the graph distance between v and w by $d_T(v, w)$.

We define the radius of T as

$$R_T = rac{1}{(2\ell)}\sum_{v \in T} d_T(r,v)\,\sigma(v),$$

▶ We define the Hausdorff dimension of the tree, d_H, by the scaling law for large trees

$$\langle R_T
angle \ \sim \ \ell^{1/d_H} \qquad \ell
ightarrow \infty$$

- Let T be a tree with ℓ edges and v, w vertices of T.
- Denote the graph distance between v and w by $d_T(v, w)$.
- We define the radius of T as

$$R_T = rac{1}{(2\ell)}\sum_{v \in T} d_T(r,v)\,\sigma(v),$$

▶ We define the Hausdorff dimension of the tree, d_H, by the scaling law for large trees

$$\langle R_T
angle ~~ \ell^{1/d_H} ~~ \ell
ightarrow \infty$$

- Let T be a tree with ℓ edges and v, w vertices of T.
- Denote the graph distance between v and w by $d_T(v, w)$.
- We define the radius of T as

$$R_T = rac{1}{(2\ell)}\sum_{v \in T} d_T(r,v)\,\sigma(v),$$

► We define the Hausdorff dimension of the tree, d_H, by the scaling law for large trees

$$\langle R_T
angle \ \sim \ \ell^{1/d_H} \qquad \ell
ightarrow \infty$$

Combinatorics

- Cutting the tree at an edge i we get two subtrees of size l₁ and l₂
- One can prove the following identity:

$$\sum_w d_T(v,w)\sigma(w) = \sum_i (2\ell_2(v;i)+1)$$

valid for any vertex v. We use it for v = r.

► The identity implies:

$$egin{aligned} R_T
angle &= rac{1}{2 \ell} \sum_T P(T) \sum_i (2 \ell_2(r;i)+1) \ &= rac{\ell+1}{2 \ell} \sum_{\ell_2=0}^\infty (2 \ell_2+1) \sum_{k=1}^d q_{k,k-1} (\ell-\ell_2;\ell_2) \end{aligned}$$

We use a scaling assumptions about the q functions

$$q_{ki}(\ell_1,\ell-\ell_1)=\ell^{-
ho}\omega_{ki}(\ell_1/\ell)+O(\ell^{
ho+1})$$

► Inserting into the recurrence equation for q_{ki} keeping leading order terms in ℓ⁻¹ gives

$$(2-\rho)\overline{\omega}_{ki} = \frac{1}{w_2} \sum_{j=k-1}^d w_{k,j+2-k} \left((j-i)\overline{\omega}_{ji} + i\overline{\omega}_{j,j-(k-i)} \right) - \frac{w_k}{w_2} \overline{\omega}_{ki}.$$

- This is a Perron-Frobenius type equation. Gives ρ in principle.
- Can solve in simple cases and prove some bounds in more general cases.

Linear weights and d = 3

$$d_{H} = \frac{3(1 + \sqrt{1 + 16y})}{8y}, \quad y = w_{3}/w_{2}$$

FIGURE 13. Equation (4.25) compared to simulations. The Hausdorff dimension, d_{H} , is plotted against $y = w_3/w_2$. The leftmost datapoint is calculated from 50 trees on 50000 vertices and the others are calculated from 50 trees on 10000 vertices.

General solution for d = 3

$$d_{H} = rac{(w_{2,2}-2w_{3,1})+\sqrt{(w_{2,2}-2w_{3,1})^2+8w_{3,1}(w_{2,1}+3w_{3,2})}}{(w_{2,2}-2w_{3,1})+\sqrt{(w_{2,2}-2w_{3,1})^2+16w_{3,1}w_{3,2}}}.$$

Conclusions and problems

▶ Random trees are a universal mathematical tool in science

- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops

Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops

Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops
Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops

Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops