Random trees

Thordur Jonsson, University of Iceland

June 2009

Cracow School of Theoretical Physics, XLIX Course and
ENRAGE Topical School on: Non-perturbative Gravity and Quantum Chromodynamics

Outline

- Introduction - Motivation: Physics, Mathematics, Biology, ...
- Principal questions
- Models
- Methods
- Results
- The vertex splitting model
- Some details on SVM

Random Walks

- Universal theoretical tool in the Sciences: diffusion, functional integrals, ...
- No intrinsic structure: properties come from imbedding into an ambient space, e.g. \mathbb{R}^{d}
- Strong universality results - central limit theorem
- Rigorous continuum theory, Wiener integral, potential theory

Random geometry

- Intrinsic and extrinsic degrees of freedom
- Trees
- Surfaces: phase boundaries, membranes, string theory, 2-dimensional quantum gravity, ...
- Higher dimensional manifolds: gravity in dimensions ≥ 3
- General graphs, networks

Random trees

- Physical tree-like objects: branched polymers

- Surfaces and higher dimensional manifolds can have a phase where they degenerate into trees

- Secondary structure of macromolecules, e.g. RNA
1° structure

2° structure

3° structure

(borrowed from Scott K. Silverman scott@scs.uiuc.edu)

Problem: find the secondary (and the tertiary) structure from the base sequence

GCCUUAAUGCACAUGGGCAAGCCCACGUAGCUAGUCGCGCGACACCAGUCCCAAAUAAUGUUCACCCAACUCGCCUGACCGUCCCGCAGUA GCUAUACUACCGACUCCUACGCGGUUGAAACUAGACUUUUCUAGCGAGCUGUCAUAGGUAUGGUGCACUGUCUUUAAUUUUGUAUUGGGCC AGGCACGAAAGGCUUGGAAGUAAGGCCCCGCUUGACCCGAGAGGUGACAAUAGCGGCCAGGUGUAACGAUACGCGGGUGGCACGUACCCCA AACAAUUAAUCACACUGCCCGGGCUCACAUUAAUCAUGCCAUUCGUUGCCGAUCCGACCCAUAUAGGAUGUGUAUGCCUCAUUCCCGGUCG GGGCGGCGACUGUUAACGCAUGAGAACUGAUUAGAUCUCGUGGUAGUGCUUGUCAAAUAGAAUGAGGCCAUUCCACAGACAUAGCGUUUCC CAUGAGCUAGGGGUCCCAUGUCCAGGUCCCCUAAAUAAAAGAGUC

I. "kissing hairpins" \& interlaced strands are rare (unfavored by kinematics \& topology)
2. RNA can (to some extent) be considered
 as a planar tree

- Family trees

- Phylogenetic trees

- Fragmentation and coagulation models, river networks, blood vessels, search and decision algorithms, citation networks, etc. etc.

Random surfaces and trees

There is a one to one mapping from trees to causal triangulations

Can be generalized to a mapping between planar quadrangulations and well-labelled trees - Schaeffer

- Extensive mathematics literature: branching processes etc.
- Theory of continuous trees - Aldous et al.
- Has been used to construct a theory of continuous random surfaces - Le Gall et al.
- We consider discrete trees
- Rooted planar tree graphs

Two main approaches

1. Equilibrium statistical mechanics
$\mathcal{T}=$ Set of graphs, μ a probability measure on \mathcal{T}

$$
\mu(T)=Z^{-1} e^{-\beta E(T)}
$$

2. Growing trees $T_{n} \mapsto T_{n+1}$, time discrete

Stochastic growth rules induce a probability measure on \mathcal{T}_{t}, the trees that can arise in t steps

- Sometimes (1) is more natural
- Sometimes (2) is more natural
- Sometimes (1) and (2) are known to be equivalent

Problems to study

- What are the prinicipal characteristics of the trees under consideration? How sensitive are they to E or the growth rules?
- Distribution of vertex degrees
- Correlations
- Fractal dimensions: Hausdorff, spectral, ...
- The "shape" of trees - mass distribution
- Universality classes

Galton-Watson trees

- $p_{n}=$ probability of having n descendents,

$$
\sum_{n} p_{n}=1, \quad m=\sum_{n} n p_{n}
$$

- $m<1$ subcritical, $m>1$ supercritical, $m=1$ critical
- n generations at time $t=n-1$ if no extinction
- Well understood

Preferential attachment trees

- In each timestep one new edge is attached to a preexisting tree

- Probability of attaching to a vertex v of degree k

$$
P_{v}=\frac{w_{k}}{\sum_{k} n_{k} w_{w}}, \quad w_{k} \geq 0
$$

$n_{k}=$ the number of vertices of degree k.

- Growth rule induces a probability measure on \mathcal{T}_{t}.

Local trees

- Weight factor of a tree T

$$
W(T)=\prod_{i \in T} w_{\sigma(i)}
$$

$\sigma(i)=$ degree of the vertex i

- Partition functions

$$
Z_{N}=\sum_{T:|T|=N} W(T), \quad Z=\sum_{N} \zeta^{N} Z_{N}, \quad|\zeta|<\zeta_{0}
$$

- Generating function $g(z)=\sum_{n} w_{n} z^{n-1}$, radius of convergence ρ
- Main equation

Generic trees

- Algebraically

$$
Z(\zeta)=\zeta g(Z(\zeta))=\zeta \sum_{i=0}^{\infty} w_{i+1} Z^{i}(\zeta)
$$

- Define $Z_{0}=\lim _{\zeta \rightarrow \zeta_{0}} Z(\zeta)$
- If $Z_{0}<\rho$ then we say that the trees are generic.
- $Z(\zeta)-Z_{0} \sim \sqrt{\zeta_{0}-\zeta}$

Here we have defined

$$
h(Z)=\frac{g(Z)}{Z}
$$

and the weights have been scaled so that $\rho=1$

- Define

$$
\mu(T)=Z_{0}^{-1} \zeta_{0}^{|T|} \prod_{i \in T} w_{\sigma(i)}
$$

Probability measure

- This measure is the same as the one obtained from a Galton-Watson process with

$$
p_{n}=\zeta_{0} w_{n+1} Z_{0}^{n-1}
$$

- Define

$$
\mu(T)=Z_{0}^{-1} \zeta_{0}^{|T|} \prod_{i \in T} w_{\sigma(i)}
$$

Probability measure

- This measure is the same as the one obtained from a Galton-Watson process with

$$
p_{n}=\zeta_{0} w_{n+1} Z_{0}^{n-1}
$$

Another equivalence

- Preferential attachment trees \approx Causal trees
- Weight proportional to the number of causal labelings

- More branchings, more ways to grow

Some results about generic trees

- Let $V_{T}(R)=$ volume of a ball of radius R centered on the root

$$
\left\langle V_{T}(R)\right\rangle \sim R^{d_{H}}, \quad R \rightarrow \infty \text { defines } d_{H}
$$

- Let $p_{T}(t)=$ probability that a random walker is back at the root after t steps on T

$$
\left\langle p_{T}(t)\right\rangle \sim t^{-d_{s} / 2}, \quad t \rightarrow \infty \text { defines } d_{s}
$$

$$
K_{t}(x, y)=(2 \pi t)^{-d / 2} e^{-(x-y)^{2} / 2 t}
$$

Some results about generic trees

- Let $V_{T}(R)=$ volume of a ball of radius R centered on the root

$$
\left\langle V_{T}(R)\right\rangle \sim R^{d_{H}}, \quad R \rightarrow \infty \text { defines } d_{H}
$$

Let $p_{T}(t)=$ probability that a random walker is back at the root after t steps on T

$$
\left\langle p_{T}(t)\right\rangle \sim t^{-d_{s} / 2}, \quad t \rightarrow \infty \text { defines } d_{s}
$$

$$
K_{t}(x, y)=(2 \pi t)^{-d / 2} e^{-(x-y)^{2} / 2 t}
$$

Some results about generic trees

- Let $V_{T}(R)=$ volume of a ball of radius R centered on the root

$$
\left\langle V_{T}(R)\right\rangle \sim R^{d_{H}}, \quad R \rightarrow \infty \text { defines } d_{H}
$$

- Let $p_{T}(t)=$ probability that a random walker is back at the root after t steps on T

$$
K_{t}(x, y)=(2 \pi t)^{-d / 2} e^{-(x-y)^{2} / 2 t}
$$

Some results about generic trees

- Let $V_{T}(R)=$ volume of a ball of radius R centered on the root

$$
\left\langle V_{T}(R)\right\rangle \sim R^{d_{H}}, \quad R \rightarrow \infty \text { defines } d_{H}
$$

- Let $p_{T}(t)=$ probability that a random walker is back at the root after t steps on T

$$
\left\langle p_{T}(t)\right\rangle \sim t^{-d_{s} / 2}, \quad t \rightarrow \infty \text { defines } d_{s}
$$

$$
K_{t}(x, y)=(2 \pi t)^{-d / 2} e^{-(x-y)^{2} / 2 t}
$$

Some results about generic trees

- Let $V_{T}(R)=$ volume of a ball of radius R centered on the root

$$
\left\langle V_{T}(R)\right\rangle \sim R^{d_{H}}, \quad R \rightarrow \infty \text { defines } d_{H}
$$

- Let $p_{T}(t)=$ probability that a random walker is back at the root after t steps on T

$$
\left\langle p_{T}(t)\right\rangle \sim t^{-d_{s} / 2}, \quad t \rightarrow \infty \text { defines } d_{s}
$$

cf.

$$
K_{t}(x, y)=(2 \pi t)^{-d / 2} e^{-(x-y)^{2} / 2 t}
$$

- Averages taken w.r.t. a measure on infinite trees

$$
\begin{gathered}
\nu_{N}=Z_{N}^{-1} \prod_{i \in T} w_{\sigma(i)} \\
\nu_{N} \rightarrow \nu_{\infty} \text { as } N \rightarrow \infty
\end{gathered}
$$

- Theorem.(B. Durhuus, J. Wheater and T.J.)
(i) $d_{H}=2$
(ii) $d_{s}=4 / 3$
(iii) There is a unique infinite simple path whose outgrowths are critical GW-trees
(iv) Vertex degrees are uncorrelated
- Averages taken w.r.t. a measure on infinite trees

$$
\begin{gathered}
\nu_{N}=Z_{N}^{-1} \prod_{i \in T} w_{\sigma(i)} \\
\nu_{N} \rightarrow \nu_{\infty} \text { as } N \rightarrow \infty
\end{gathered}
$$

- Theorem.(B. Durhuus, J. Wheater and T.J.)
(i) $d_{H}=2$
(ii) $d_{s}=4 / 3$
(iii) There is a unique infinite simple path whose outgrowths are critical GW-trees
(iv) Vertex degrees are uncorrelated

- One spine due to entropy
- The number of rooted planar trees with ℓ edges is

$$
\begin{gathered}
N(\ell) \sim \ell^{-3 / 2} C^{\ell} \\
\max \left\{N\left(\ell_{1}\right) N\left(\ell_{2}\right): \ell_{1}+\ell_{2}=\ell\right\} \approx N(\ell)
\end{gathered}
$$

- Main tool for analysing the spectral dimension is the generating function

$$
Q_{T}(x)=\sum_{t=0}^{\infty} p_{T}(t)(1-x)^{t / 2}
$$

and its ensemble average

$$
\begin{gathered}
Q(x)=\left\langle Q_{T}(x)\right\rangle \\
Q(x) \sim x^{-1 / 3} \Longrightarrow d_{s}=4 / 3
\end{gathered}
$$

Non-generic trees

- Critical exponents change

$$
Z(\zeta)-Z_{0} \sim\left(\zeta_{0}-\zeta\right)^{\gamma}, \quad \gamma \neq 1 / 2
$$

- There can arise a vertex of infinite order in the thermodynamic limit (Bialas, Burda, Johnston)
- No infinite spine and outgrowths are subcritical GW trees
- Proven in a special case (S. Stefansson)

Preferential attachment trees

F. David, P. di Francesco, E. Guitter and T.J., J. Stat. Mech.
(2007) P02011

- In general many infinite simple paths
- $d_{H}=\infty$ in many cases (all cases?)
- Can calculate vertex degree distribution - and fluctuations. Independent of the initial tree.
- Broad distribution of sizes of subtrees, depends on the initial tree

Mass distribution

Consider trees with vertices of order 1,2 and 3 . Only one parameter: $x=2 w_{2} / w_{1}$.

What is the distribution of the size of the left tree as the total size of the tree gets large? We know the answer for generic trees.

Let T_{L} and T_{R} be the sizes of the left and right subtrees. If $x=1$, then the growth process maps onto reinforced random walk and if we start from the one link tree, then

$$
P\left(T_{L}, T_{R}\right)=\frac{1}{T_{L}+T_{R}+1}
$$

More generally, defining $u_{L}=T_{L} / T, u_{R}=T_{R} / T$, $p\left(u_{L}, u_{R}\right)=\frac{T!}{T_{L}^{0}!T_{R}^{0}!} u_{L}^{T_{L}^{0}} u_{R}^{T_{R}^{0}} \delta\left(u_{L}+u_{R}-1\right)$,
i.e. exponents depend on the initial tree.

For arbitrary x we define the left exponent

$$
p\left(u_{L}, u_{R}\right) \sim u_{L}^{\beta_{L}}, \quad u_{L} \rightarrow 0
$$

The right exponent β_{R} is defined similarily.

Let T_{L} and T_{R} be the sizes of the left and right subtrees. If $x=1$, then the growth process maps onto reinforced random walk and if we start from the one link tree, then

$$
P\left(T_{L}, T_{R}\right)=\frac{1}{T_{L}+T_{R}+1}
$$

More generally, defining $u_{L}=T_{L} / T, u_{R}=T_{R} / T$,

$$
p\left(u_{L}, u_{R}\right)=\frac{T!}{T_{L}^{0}!T_{R}^{0}!} u_{L}^{T_{L}^{0}} u_{R}^{T_{R}^{0}} \delta\left(u_{L}+u_{R}-1\right)
$$

i.e. exponents depend on the initial tree.

The right exponent β_{R} is defined similarily.

Let T_{L} and T_{R} be the sizes of the left and right subtrees. If $x=1$, then the growth process maps onto reinforced random walk and if we start from the one link tree, then

$$
P\left(T_{L}, T_{R}\right)=\frac{1}{T_{L}+T_{R}+1}
$$

More generally, defining $u_{L}=T_{L} / T, u_{R}=T_{R} / T$,

$$
p\left(u_{L}, u_{R}\right)=\frac{T!}{T_{L}^{0}!T_{R}^{0}!} u_{L}^{T_{L}^{0}} u_{R}^{T_{R}^{0}} \delta\left(u_{L}+u_{R}-1\right)
$$

i.e. exponents depend on the initial tree.

For arbitrary x we define the left exponent

$$
p\left(u_{L}, u_{R}\right) \sim u_{L}^{\beta_{L}}, \quad u_{L} \rightarrow 0
$$

The right exponent β_{R} is defined similarily.

One can show, using a MFT assumption - small fluctuations in the vertex degree distribution,

$$
\beta_{\mathrm{L}}=-1+\frac{x+\sqrt{x(8+x)}}{8 x}\left(4 n_{1, \mathrm{~L}}^{0}+(x+2-|x-2|) n_{2, \mathrm{~L}}^{0}\right)
$$

where $n_{i, L}^{0}$ is the number of vertices of degree i in the left initial left tree.

Numerical simulations

Figure 7. Measured distribution $P\left(u_{\mathrm{L}}\right)$ for the initial tree \mathcal{T}^{0} drawn on the left.
For $x=1$, we have also indicated the exact distribution.

Figure 8. Measured distribution $P\left(u_{\mathrm{L}}\right)$ for the initial tree \mathcal{T}^{0} drawn on the left.

The vertex splitting model

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech.
(2009) P04009

- A model of randomly growing rooted, planar trees

- Degree of vertices is bounded by an integer d (we also discuss the case $d=\infty$)
\Rightarrow Nonnegative splitting weights $w_{1}, w_{2}, \ldots, w_{d}$
$\Rightarrow n_{j}(T)=$ the number of vertices of degree j in a tree T $p_{j}=$ Probability of choosing a vertex $v \in T$ of degree j

$$
p_{j}=\frac{w_{j}}{\sum_{i} w_{i} n_{i}(T)}
$$

The vertex splitting model

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech.

(2009) P04009

- A model of randomly growing rooted, planar trees

- Degree of vertices is bounded by an integer d (we also discuss the case $d=\infty$)
- Nonnegative splitting weights $w_{1}, w_{2}, \ldots, w_{d}$
- $n_{j}(T)=$ the number of vertices of degree j in a tree T $p_{j}=$ Probability of choosing a vertex $v \in T$ of degree j

The vertex splitting model

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech.

(2009) P04009

- A model of randomly growing rooted, planar trees

- Degree of vertices is bounded by an integer d (we also discuss the case $d=\infty$)
- Nonnegative splitting weights $w_{1}, w_{2}, \ldots, w_{d}$
- $n_{j}(T)=$ the number of vertices of degree j in a tree T $p_{j}=$ Probability of choosing a vertex $v \in T$ of degree j

The vertex splitting model

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech.

(2009) P04009

- A model of randomly growing rooted, planar trees

- Degree of vertices is bounded by an integer d (we also discuss the case $d=\infty$)
- Nonnegative splitting weights $w_{1}, w_{2}, \ldots, w_{d}$
- $n_{j}(T)=$ the number of vertices of degree j in a tree T $p_{j}=$ Probability of choosing a vertex $v \in T$ of degree j

The vertex splitting model

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech.

(2009) P04009

- A model of randomly growing rooted, planar trees

- Degree of vertices is bounded by an integer d (we also discuss the case $d=\infty$)
- Nonnegative splitting weights $w_{1}, w_{2}, \ldots, w_{d}$
- $n_{j}(T)=$ the number of vertices of degree j in a tree T $p_{j}=$ Probability of choosing a vertex $v \in T$ of degree j

$$
p_{j}=\frac{w_{j}}{\sum_{i} w_{i} n_{i}(T)}
$$

Splitting rules

- The parameters of the model are

$$
\left[\begin{array}{cccccc}
0 & w_{1,2} & w_{1,3} & \cdots & w_{1, d-1} & w_{1, d} \\
w_{2,1} & w_{2,2} & w_{2,3} & \cdots & w_{2, d-1} & w_{2, d} \\
w_{3,1} & w_{3,2} & w_{3,3} & \cdots & w_{3, d-1} & 0 \\
w_{4,1} & w_{4,2} & w_{4,3} & & 0 & 0 \\
\vdots & \vdots & \vdots & . & \vdots & \vdots \\
w_{d, 1} & w_{d, 2} & 0 & \cdots & 0 & 0
\end{array}\right]
$$

a symmetric matrix of non-negative partitioning weights

- Split a vertex of degree i into vertices of degree k and
$i+2-k$ with probability $w_{k, i+2-k} / w_{i}-$ all such splittings
equally probable
- The splitting weights $w_{1}, w_{2}, \ldots, w_{d}$ are related to the partitioning weights by

Splitting rules

- The parameters of the model are

$$
\left[\begin{array}{cccccc}
0 & w_{1,2} & w_{1,3} & \cdots & w_{1, d-1} & w_{1, d} \\
w_{2,1} & w_{2,2} & w_{2,3} & \cdots & w_{2, d-1} & w_{2, d} \\
w_{3,1} & w_{3,2} & w_{3,3} & \cdots & w_{3, d-1} & 0 \\
w_{4,1} & w_{4,2} & w_{4,3} & & 0 & 0 \\
\vdots & \vdots & \vdots & . & \vdots & \vdots \\
w_{d, 1} & w_{d, 2} & 0 & \cdots & 0 & 0
\end{array}\right]
$$

a symmetric matrix of non-negative partitioning weights

- Split a vertex of degree i into vertices of degree k and $i+2-k$ with probability $w_{k, i+2-k} / w_{i}-$ all such splittings equally probable
- The splitting weights $w_{1}, w_{2}, \ldots, w_{d}$ are related to the partitioning weights by

$$
w_{i}=\frac{i}{2} \sum_{j=1}^{i+1} w_{j, i+2-j}
$$

A tree

Vertex splitting rules

Relation to other models

- Ergodic moves in Monte Carlo simulations of triangulations in 2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

- A tree growth process which is equivalent to a simplified model for RNA secondary structures F David C Hagendorf K.
J. Wiese
\rightarrow When $w_{i, j}=0$ unless $j=1$ or $i=1$ it reduces to the preferential attachment model R. Albert and A. L. Barabasi et al.
\rightarrow For $d=3$, in a certain limit, it reduces to Ford's alpha mode

Relation to other models

- Ergodic moves in Monte Carlo simulations of triangulations in 2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

- A tree growth process which is equivalent to a simplified model for RNA secondary structures F. David, C. Hagendorf, K. J. Wiese
- When $w_{i, j}=0$ unless $j=1$ or $i=1$ it reduces to the preferential attachment model R. Albert and A. L. Barabasi et al.
- For $d=3$, in a certain limit, it reduces to Ford's alpha model

Relation to other models

- Ergodic moves in Monte Carlo simulations of triangulations in 2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

- A tree growth process which is equivalent to a simplified model for RNA secondary structures F. David, C. Hagendorf, K. J. Wiese
- When $w_{i, j}=0$ unless $j=1$ or $i=1$ it reduces to the preferential attachment model R. Albert and A. L. Barabasi et al.
- For $d=3$, in a certain limit, it reduces to

Relation to other models

- Ergodic moves in Monte Carlo simulations of triangulations in 2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

- A tree growth process which is equivalent to a simplified model for RNA secondary structures F. David, C. Hagendorf, K. J. Wiese
- When $w_{i, j}=0$ unless $j=1$ or $i=1$ it reduces to the preferential attachment model R. Albert and A. L. Barabasi et al.
- For $d=3$, in a certain limit, it reduces to Ford's alpha model for phylogenetic trees

Main results

- Distribution of vertex degrees in a large tree
- Correlations between the degrees of vertices
- "Shape" of trees - Hausdorff dimension

If we consider linear splitting weights

$$
w_{i}=a i+b
$$

the analysis simplifies due to the Euler relation for trees

$$
\sum_{i=1}^{d} n_{i}(T)=|T|, \quad \sum_{i=1}^{d} i n_{i}(T)=2(|T|-1)
$$

The normalization factor $\sum_{i} w_{i} n_{i}(T)$ depends only on the size of the tree T.

Recurrence for generating functions

Let $p_{t}\left(n_{1}, \ldots, n_{d}\right)$ be the probability that the tree T at time t has $\left(n_{1}(T), \ldots, n_{d}(T)\right)=\left(n_{1}, \ldots, n_{d}\right)$.
The probability genereting function

$$
\mathcal{H}_{t}(\mathrm{x})=\sum_{n_{1}+\cdots n_{d}=t} p_{t}\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

satisfies the recurrence

$$
\mathcal{H}_{t+1}(\mathbf{x})=\sum_{n_{1}+\cdots+n_{d}=t} \frac{p_{t}\left(n_{1}, \ldots, n_{d}\right)}{\sum_{i=1}^{d} n_{i} w_{i}} \mathbf{c}(\mathbf{x}) \cdot \nabla\left(x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}\right)
$$

where $\mathbf{c}(\mathbf{x})=\left(c_{1}(\mathbf{x}), c_{2}(\mathbf{x}), \ldots, c_{d}(\mathbf{x})\right)$ with

$$
c_{i}(\mathbf{x})=\frac{i}{2} \sum_{j=1}^{i+1} w_{j, i+2-j} x_{j} x_{i+2-j} \quad \text { and } \quad \nabla=\left(\partial / \partial x_{1}, \ldots, \partial / \partial x_{d}\right)
$$

Vertex degree distribution

- Begin with a tree T_{0} at time 0
- At time $t>0$ we have a tree T_{t} with $n_{i}\left(T_{t}\right)$ vertices of degree i
- Let $\bar{n}_{t, i}$ denote the average of $n_{i}(T)$ over all trees that can arise at time t, i.e.

$$
\bar{n}_{t, k}=\sum_{n_{1}+\ldots+n_{d}=t} p_{t}\left(n_{1}, \ldots, n_{d}\right) n_{k}=\left.\partial_{k} \mathcal{H}_{t}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{1}}
$$

- Define

and we will use the notation

$$
\rho(t)=\left(\rho_{t, 1}, \ldots, \rho_{t, d}\right)
$$

Vertex degree distribution

- Begin with a tree T_{0} at time 0
- At time $t>0$ we have a tree T_{t} with $n_{i}\left(T_{t}\right)$ vertices of degree i
- Let $\bar{n}_{t, i}$ denote the average of $n_{i}(T)$ over all trees that can arise at time t, i.e.

$$
\bar{n}_{t, k}=\sum_{n_{1}+\ldots+n_{d}=t} p_{t}\left(n_{1}, \ldots, n_{d}\right) n_{k}=\left.\partial_{k} \mathcal{H}_{t}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{1}}
$$

- Define

$$
\rho_{t, i}=\frac{\bar{n}_{t, i}}{t}
$$

and we will use the notation

$$
\rho(t)=\left(\rho_{t, 1}, \ldots, \rho_{t, d}\right)
$$

- The recurrence for \mathcal{H}_{t} gives rise to a recurrence for $\rho(t)$.

$$
\mathcal{H}_{t+1}(\mathbf{x})=\frac{1}{\mathcal{W}(t)} \mathbf{c}(\mathbf{x}) \cdot \nabla \mathcal{H}_{t}(\mathbf{x})
$$

$$
\rho_{t+1, k}=\frac{t}{\mathcal{W}(t)}\left(-w_{k} \rho_{t, k}+\sum_{i=k-1}^{d} i w_{k, i+2-k} \rho_{t, i}\right)+t\left(\rho_{t, k}-\rho_{t+1, k}\right)
$$

- Under mild conditions on the $w_{i, j}$ the limits

$$
\lim _{t \rightarrow \infty} \rho_{t, i}=\rho_{i}
$$

exist and are the unique positive solution to the linear equations

$$
\rho_{k}=-\frac{w_{k}}{w_{2}} \rho_{k}+\sum_{i=k-1}^{d} i \frac{w_{k, i+2-k}}{w_{2}} \rho_{i} .
$$

- These values are independent of the initial tree.
- The proof uses the Perron-Frobenius theorem for "positive" matrices.
- Under mild conditions on the $w_{i, j}$ the limits

$$
\lim _{t \rightarrow \infty} \rho_{t, i}=\rho_{i}
$$

exist and are the unique positive solution to the linear equations

$$
\rho_{k}=-\frac{w_{k}}{w_{2}} \rho_{k}+\sum_{i=k-1}^{d} i \frac{w_{k, i+2-k}}{w_{2}} \rho_{i} .
$$

- These values are independent of the initial tree.
- The proof uses the Perron-Frobenius theorem for "positive" matrices.
- Under mild conditions on the $w_{i, j}$ the limits

$$
\lim _{t \rightarrow \infty} \rho_{t, i}=\rho_{i}
$$

exist and are the unique positive solution to the linear equations

$$
\rho_{k}=-\frac{w_{k}}{w_{2}} \rho_{k}+\sum_{i=k-1}^{d} i \frac{w_{k, i+2-k}}{w_{2}} \rho_{i} .
$$

- These values are independent of the initial tree.
- The proof uses the Perron-Frobenius theorem for "positive" matrices.

Perron-Frobenius

Theorem. Let A be a matrix with nonnegative matrix elements such that all the matrix elements of A^{p} are positive (A primitive) for some integer p. Then the eigenvalue of A with the largest absolute value is positive and simple. The corresponding eigenvector can be taken to have positive entries.

Iterating the recurrence equation for $\rho(t)$ we find

$$
\rho(t)=\frac{1}{t} \prod_{i=1}^{t-1}\left(1+\frac{1}{(2 a+b) i-2 a} B\right) \rho_{0}
$$

where B is a matrix with nonnegative entries except on the diagonal. If B is primitive and diagonalizable, then $\rho(t)$ converges to the normalized Perron-Frobenius eigenvector of B.

Examples

- $d=3$ The matrix B is diagonalizable and

$$
\rho_{1}=\rho_{3}=2 / 7, \quad \rho_{2}=3 / 7
$$

if the partitioning weights are chosen to be uniform, i.e.

$$
w_{i, j}=w_{i+j-2} \frac{2}{(i+j-2)(i+j-1)} .
$$

- $d=4$ Can again solve explicitly with uniform partitioning weights and get ρ_{i} 's which vary with a and b.
- $d=\infty$ Do not have a proof of convergence but can solve the equation for the ρ_{i} 's

Examples

- $d=3$ The matrix B is diagonalizable and

$$
\rho_{1}=\rho_{3}=2 / 7, \quad \rho_{2}=3 / 7
$$

if the partitioning weights are chosen to be uniform, i.e.

$$
w_{i, j}=w_{i+j-2} \frac{2}{(i+j-2)(i+j-1)} .
$$

- $d=4$ Can again solve explicitly with uniform partitioning weights and get ρ_{i} 's which vary with a and b.
equation for the ρ_{i} 's

Examples

- $d=3$ The matrix B is diagonalizable and

$$
\rho_{1}=\rho_{3}=2 / 7, \quad \rho_{2}=3 / 7
$$

if the partitioning weights are chosen to be uniform, i.e.

$$
w_{i, j}=w_{i+j-2} \frac{2}{(i+j-2)(i+j-1)}
$$

- $d=4$ Can again solve explicitly with uniform partitioning weights and get ρ_{i} 's which vary with a and b.
- $d=\infty$ Do not have a proof of convergence but can solve the equation for the ρ_{i} 's

$$
\begin{gathered}
\rho_{k} \sim \frac{1}{k!} 2^{k-1} k^{-1-x}, \quad x=b / a \\
\rho_{k}=\frac{1}{e(k-1)!}, \quad a=0
\end{gathered}
$$

General splitting weights

- Use mean field theory for the normalization factor $\sum_{i} n_{i}(T) w_{i} \rightarrow t \sum_{i} \rho_{i} w_{i}$.
Equation for a steady state vertex distribution

$$
\rho_{k}=-\frac{w_{k}}{w} \rho_{k}+\sum_{i=k-1}^{d} i \frac{w_{k, i+2-k}}{w} \rho_{i}
$$

subject to the constraints

$$
\rho_{1}+\ldots+\rho_{d}=1, \quad w_{1} \rho_{1}+\ldots+w_{d} \rho_{d}=w .
$$

- There is a unique positive solution by the Perron-Frobenius theorem.
- For $d=3$ and uniform partitioning weights we find

$$
\rho_{3}=\frac{7 \alpha-\sqrt{\alpha(\alpha+24 \beta+24)}}{6(2 \alpha-\beta-1)}
$$

where $\alpha=w_{2} / w_{1}$ and $\beta=w_{3} / w_{1}$.

Comparison with simulations

Figure 4. The value of ρ_{3} as given in (2.45) compared to results from simulations. Each point is calculated from 20 trees on 10000 vertices.

A comparison of the theoretical prediction with simulations in the case $\mathrm{d}=3$ and uniform partitioning weights.

$$
\alpha=\frac{w_{2}}{w_{1}}, \quad \beta=\frac{w_{3}}{w_{1}}
$$

Correlations

In a typical infinite tree, what is the proportion of edges whose endpoints have degrees j and k ?

Let $n_{j, k}=$ number of such edges in a finite tree of size t, where the vertex of degree j is closer to the root

Let $\rho_{j, k}=\lim _{t \rightarrow \infty} \frac{n_{j, k}}{t}$. Then (for linear splitting weights)
assuming the existence of the limit.

Correlations

In a typical infinite tree, what is the proportion of edges whose endpoints have degrees j and k ?

Let $n_{j, k}=$ number of such edges in a finite tree of size t, where the vertex of degree j is closer to the root

Let $\rho_{j, k}=\lim _{t \rightarrow \infty} \frac{n_{j, k}}{t}$. Then (for linear splitting weights)
assuming the existence of the limit.

Correlations

In a typical infinite tree, what is the proportion of edges whose endpoints have degrees j and k ?

Let $n_{j, k}=$ number of such edges in a finite tree of size t, where the vertex of degree j is closer to the root

Let $\rho_{j, k}=\lim _{t \rightarrow \infty} \frac{n_{j, k}}{t}$. Then (for linear splitting weights)
assuming the existence of the limit.

Correlations

In a typical infinite tree, what is the proportion of edges whose endpoints have degrees j and k ?

Let $n_{j, k}=$ number of such edges in a finite tree of size t, where the vertex of degree j is closer to the root

Let $\rho_{j, k}=\lim _{t \rightarrow \infty} \frac{n_{j, k}}{t}$. Then (for linear splitting weights)

$$
\begin{aligned}
\rho_{j k}= & -\frac{w_{j}+w_{k}}{w_{2}} \rho_{j k}+(j-1) \frac{w_{j, k}}{w_{2}} \rho_{j+k-2} \\
& +(j-1) \sum_{i=j-1}^{d} \frac{w_{j, i+2-j}}{w_{2}} \rho_{i k}+(k-1) \sum_{i=k-1}^{d} \frac{w_{k, i+2-k}}{w_{2}} \rho_{j i} .
\end{aligned}
$$

assuming the existence of the limit.

Explicit solutions

Can solve in simple cases and find nontrivial correlations

$$
\rho_{j k} \neq \frac{\rho_{j} \rho_{k}}{1-\rho_{1}}
$$

Take $d=3$, linear splitting weights and uniform partitioning weights. Then $\rho_{1}=\rho_{3}=2 / 7$ and $\rho_{2}=3 / 7$. Let $y=w_{3} / w_{2}$.
Then the solutions to the correlation equation are

Explicit solutions

Can solve in simple cases and find nontrivial correlations

$$
\rho_{j k} \neq \frac{\rho_{j} \rho_{k}}{1-\rho_{1}}
$$

Take $d=3$, linear splitting weights and uniform partitioning weights. Then $\rho_{1}=\rho_{3}=2 / 7$ and $\rho_{2}=3 / 7$. Let $y=w_{3} / w_{2}$. Then the solutions to the correlation equation are

$$
\begin{aligned}
\rho_{21} & =\frac{4(3-y)}{7(11-2 y)}, & \rho_{31} & =\frac{10}{7(11-2 y)} \\
\rho_{22} & =\frac{4 y^{2}-12 y+105}{7(2 y+7)(11-2 y)}, & \rho_{32} & =\frac{2\left(-8 y^{2}+18 y+63\right)}{7(2 y+7)(11-2 y)} \\
\rho_{23} & =\frac{2\left(-4 y^{2}+20 y+21\right)}{7(2 y+7)(11-2 y)}, & \rho_{33} & =\frac{8(3 y-14)}{7(2 y+7)(2 y-11)}
\end{aligned}
$$

Sum rules

The following sum rules hold:

$$
\begin{aligned}
\rho_{21}+\rho_{31} & =\rho_{1} \\
\rho_{22}+\rho_{32} & =\rho_{2}=3 / 7 \\
\rho_{23}+\rho_{33} & =\rho_{3}=2 / 7 \\
\rho_{21}+\rho_{22}+\rho_{23} & =\rho_{2}=3 / 7 \\
\rho_{31}+\rho_{32}+\rho_{33} & =2 \rho_{3}
\end{aligned}=4 / 7 .
$$

These relations show that there are only two independent link densities, e.g. ρ_{21} and ρ_{22}.

Comparison with simulations

Nonlinear splitting weights

Taking $d=3$ and general nonlinear splitting weights

$$
\rho_{21}=\frac{1}{3} \frac{(3+\beta)(7 \alpha-\gamma)}{(2 \alpha-\beta-1)(3 \alpha+2 \beta+\gamma+6)}
$$

where $\alpha=w_{2} / w_{1}, \beta=w_{3} / w_{1}$ and $\gamma=\sqrt{\alpha(\alpha+24 \beta+24)}$.

Comparison with simulations

Figure 17. The solution (5.5) for the density ρ_{22} plotted as a function of β for a few values of α. Each datapoint is calculated from simulations of 100 trees on 10000 vertices.

$$
\begin{aligned}
\rho_{22}= & \frac{16}{3}\left(284 \alpha^{2} \beta^{4} \gamma-177 \alpha^{5} \beta \gamma+3564 \alpha^{3}+18 \alpha^{6} \gamma+161 \alpha \beta^{5} \gamma-873 \gamma+11979 \alpha^{2} \beta^{3}\right. \\
& -2259 \alpha^{5}-39 \alpha^{6} \beta-207 \alpha^{5} \gamma+6516 \alpha^{2} \beta^{4}-5205 \alpha^{5} \beta-1419 \alpha^{4} \beta \gamma+996 \alpha \beta^{5} \\
& -5994 \alpha^{4}-892 \alpha^{4} \beta^{2} \gamma+1543 \alpha^{2} \beta^{5}-18 \alpha^{7}-668 \alpha^{3} \beta^{4}+324 \alpha^{2} \gamma+909 \alpha \beta^{3} \gamma \\
& -2600 \alpha^{5} \beta^{2}-975 \alpha^{3} \beta^{3}+222 \alpha \beta^{6}-1533 \alpha^{3} \beta^{2} \gamma+10206 \alpha^{2} \beta^{2}-11799 \alpha^{4} \beta \\
& -5300 \alpha^{4} \beta^{3}-1521 \alpha^{3} \beta \gamma+1899 \alpha^{2} \beta^{2} \gamma+1059 \alpha^{2} \beta^{3} \gamma+1269 \alpha^{3} \beta^{2}+3240 \alpha^{2} \beta \\
& +756 \alpha \beta^{3}+4860 \alpha^{3} \beta+6 \beta^{6} \gamma-11703 \alpha^{4} \beta^{2}+1728 \alpha^{2} \beta \gamma-162 \alpha^{3} \gamma+486 \alpha \beta^{2} \gamma \\
& \left.+18 \beta^{4} \gamma+1530 \alpha \beta^{4}+624 \alpha \beta^{4} \gamma-772 \alpha^{3} \beta^{3} \gamma-9 \alpha^{6}+24 \beta^{5} \gamma\right) /((3 \alpha+2 \beta+\gamma+6) \\
& \left.\times\left(11 \alpha^{2}+25 \alpha \beta+5 \alpha \gamma+3 \beta \gamma+12 \alpha+4 \beta^{2}\right)(-\alpha+\gamma)(1-2 \alpha+\beta)(7 \alpha+2 \beta+\gamma)^{2}\right)
\end{aligned}
$$

Subtree probabilities

- Label vertices in the tree by their time of creation
- Use linear weights
- Derive expressions for the probabilistic structure of the tree as seen from the vertex created at a given time
- Average over the creation time
- Introduce a scaling assumption
- Extract the Hausdorff dimension
- Get results which agree with simulations
- Begin with a tree consisting of a single vertex at time $t=0$
- In a tree of size ℓ let $p_{R}(\ell ; s)$ be the probability that the vertex created at time $s \leq \ell$ is the root
- We find

$$
\begin{aligned}
p_{R}(\ell ; s) & =\frac{1}{W(\ell-1)+w_{1}} W(\ell-1) p_{R}(\ell-1 ; s), \quad s<\ell \\
p_{R}(\ell ; \ell) & =\frac{1}{W(\ell-1)+w_{1}} \sum_{s=0}^{\ell-1} w_{1} p_{R}(\ell-1 ; s), \quad s=\ell
\end{aligned}
$$

$W(\ell)=(2 a+b) \ell-a$ is a normalization factor.

Let $p_{k}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k} ; s\right)$ be the probability that the vertex v created at time s has degree k, the root subtree has ℓ_{1} links and the other subtrees incident on v have size $\ell_{2}, \ldots, \ell_{k}$. Denote the sum of the ℓ_{i} 's by $\boldsymbol{\ell}$. Then for $k=1$ and $s<\boldsymbol{\ell}$

and for $k>1$ and $s<\ell$

Finally $k>1$ and $s=\ell$

We average over s to get simpler recursions:

$$
p_{R}(\ell+1)=\frac{\ell+1}{\ell+2} p_{R}(\ell)
$$

$$
\begin{aligned}
& p_{1}(\ell+1) \\
& \quad=\frac{\ell+1}{\ell+2} \frac{1}{W(\ell)+w_{1}}\left[W(\ell) p_{1}(\ell)+\sum_{i=1}^{d-1} i w_{i+1,1} \sum_{\substack{\ell_{1}^{\prime}+\ldots+\ell_{i}^{\prime} \\
=\ell}} p_{i}\left(\ell_{1}^{\prime}, \ldots, \ell_{i}^{\prime}\right)+2 \delta_{\ell 0} w_{1}\right] .
\end{aligned}
$$

$$
\begin{align*}
& p_{k}\left(\ell_{1}, \ldots, \ell_{k}\right) \\
& =\frac{\ell+1}{\ell+2} \frac{1}{W(\ell)+w_{1}}\left[\delta_{k 2} \delta_{\ell_{1} 1} w_{1} p_{R}(\ell)+\sum_{i=1}^{k} W\left(\ell_{i}-1\right) p_{k}\left(\ell_{1}, \ldots, \ell_{i}-1, \ldots, \ell_{k}\right)\right. \\
& \quad+\sum_{i=k}^{d}(i-k+1) w_{k, i-k+2} \sum_{\substack{\ell_{1}^{\prime}+\ldots+\ell_{i+1-k}^{\prime} \\
=\ell_{1}-1}} p_{i}\left(\ell_{1}^{\prime}, \ldots, \ell_{i+1-k}^{\prime}, \ell_{2}, \ldots, \ell_{k}\right) \tag{3.12}\\
& \\
& \left.\quad+\sum_{j=2}^{k} \sum_{i=k-1}^{d} w_{k, i-k+2} \sum_{\substack{\ell_{1}^{\prime}+\ldots+\ell_{i+1-k}^{\prime} \\
=\ell_{j}-1}} p_{i}\left(\ell_{1}, \ldots, \ell_{j-1}, \ell_{1}^{\prime}, \ldots, \ell_{i+1-k}^{\prime}, \ell_{j+1}, \ldots, \ell_{k}\right)\right]
\end{align*}
$$

Finally we define the "two point functions" that are needed to calculate the Hausdorff dimension:

$$
q_{k i}\left(\ell_{1}, \ell_{2}\right)=\sum_{\ell_{1}^{\prime}+\ldots+\ell_{k-i}^{\prime}=\ell_{1}} \sum_{\ell_{1}^{\prime \prime}+\ldots+\ell_{i}^{\prime \prime}=\ell_{2}} p_{k}\left(\ell_{1}^{\prime}, \ldots, \ell_{k-i}^{\prime}, \ell_{1}^{\prime \prime}, \ldots, \ell_{i}^{\prime \prime}\right),
$$

which is the probability that i trees of total volume ℓ_{1}, none of which contains the root, are attached to a vertex of order k in a tree of total volume $\ell=\ell_{1}+\ell_{2}$. There are $d(d-1) / 2$ such functions, $1 \leq i \leq k-1$.

The two point functions satisfy the recursion relation

$$
\begin{aligned}
q_{k i}\left(\ell_{1}, \ell_{2}\right)= & \frac{\ell+1}{\ell+2} \frac{1}{W(\ell)+w_{1}}[\\
& \sum_{j=k-1}^{d} w_{k, j+2-k}\left((j-i) q_{j i}\left(\ell_{1}-1, \ell_{2}\right)+i q_{j, j-(k-i)}\left(\ell_{1}, \ell_{2}-1\right)\right) \\
& +\left(W\left(\ell_{1}-1\right)+(k-i-1)\left(w_{2}-w_{3}\right)\right) q_{k i}\left(\ell_{1}-1, \ell_{2}\right) \\
& +\left(W\left(\ell_{2}-1\right)+(i-1)\left(w_{2}-w_{3}\right)\right) q_{k i}\left(\ell_{1}, \ell_{2}-1\right) \\
& \left.+\delta_{k 2} \delta_{\ell_{1} 1} w_{1} p_{R}\left(\ell_{2}\right)+\delta_{i 1} \delta_{\ell_{2} 1} w_{k, 1} \sum_{\ell_{1}^{\prime}+\ldots+\ell_{k-1}^{\prime}=\ell_{1}} p_{k-1}\left(\ell_{1}^{\prime}, \ldots, \ell_{k-1}^{\prime}\right)\right]
\end{aligned}
$$

An almost closed system of linear equations.

Hausdorff dimension

- Let T be a tree with ℓ edges and v, w vertices of T.
- Denote the graph distance between v and w by $d_{T}(v, w)$.
- We define the radius of T as

$$
R_{T}=\frac{1}{(2 \ell)} \sum_{v \in T} d_{T}(r, v) \sigma(v)
$$

- We define the Hausdorff dimension of the tree, d_{H}, by the scaling law for large trees

This definition is different from the one we wrote down earlier for infinite trees but is expected to be equivalent.

Hausdorff dimension

- Let T be a tree with ℓ edges and v, w vertices of T.
- Denote the graph distance between v and w by $d_{T}(v, w)$.
- We define the radius of T as

- We define the Hausdorff dimension of the tree, d_{H}, by the scaling law for large trees

This definition is different from the one we wrote down earlier for infinite trees but is expected to be equivalent.

Hausdorff dimension

- Let T be a tree with ℓ edges and v, w vertices of T.
- Denote the graph distance between v and w by $d_{T}(v, w)$.
- We define the radius of T as

$$
R_{T}=\frac{1}{(2 \ell)} \sum_{v \in T} d_{T}(r, v) \sigma(v)
$$

- We define the Hausdorff dimension of the tree, d_{H}, by the scaling law for large trees

This definition is different from the one we wrote down earlier for infinite trees but is expected to be equivalent.

Hausdorff dimension

- Let T be a tree with ℓ edges and v, w vertices of T.
- Denote the graph distance between v and w by $d_{T}(v, w)$.
- We define the radius of T as

$$
R_{T}=\frac{1}{(2 \ell)} \sum_{v \in T} d_{T}(r, v) \sigma(v)
$$

- We define the Hausdorff dimension of the tree, d_{H}, by the scaling law for large trees

$$
\left\langle R_{T}\right\rangle \sim \ell^{1 / d_{H}} \quad \ell \rightarrow \infty
$$

This definition is different from the one we wrote down earlier for infinite trees but is expected to be equivalent.

Combinatorics

- Cutting the tree at an edge i we get two subtrees of size ℓ_{1} and ℓ_{2}
- One can prove the following identity:

$$
\sum_{w} d_{T}(v, w) \sigma(w)=\sum_{i}\left(2 \ell_{2}(v ; i)+1\right)
$$

valid for any vertex v. We use it for $v=r$.

- The identity implies:

$$
\begin{aligned}
\left\langle R_{T}\right\rangle & =\frac{1}{2 \ell} \sum_{T} P(T) \sum_{i}\left(2 \ell_{2}(r ; i)+1\right) \\
& =\frac{\ell+1}{2 \ell} \sum_{\ell_{2}=0}^{\infty}\left(2 \ell_{2}+1\right) \sum_{k=1}^{d} q_{k, k-1}\left(\ell-\ell_{2} ; \ell_{2}\right)
\end{aligned}
$$

- We use a scaling assumptions about the q functions

$$
q_{k i}\left(\ell_{1}, \ell-\ell_{1}\right)=\ell^{-\rho} \omega_{k i}\left(\ell_{1} / \ell\right)+O\left(\ell^{\rho+1}\right)
$$

- Inserting into the recurrence equation for $q_{k i}$ keeping leading order terms in ℓ^{-1} gives
$(2-\rho) \bar{\omega}_{k i}=\frac{1}{w_{2}} \sum_{j=k-1}^{d} w_{k, j+2-k}\left((j-i) \bar{\omega}_{j i}+i \bar{\omega}_{j, j-(k-i)}\right)-\frac{w_{k}}{w_{2}} \bar{\omega}_{k i}$.
- This is a Perron-Frobenius type equation. Gives ρ in principle.
- Can solve in simple cases and prove some bounds in more general cases.

Hausdorff dimension

Linear weights and $d=3$

$$
d_{H}=\frac{3(1+\sqrt{1+16 y})}{8 y}, \quad y=w_{3} / w_{2}
$$

Figure 13. Equation (4.25) compared to simulations. The Hausdorff dimension, d_{H}, is plotted against $y=w_{3} / w_{2}$. The leftmost datapoint is calculated from 50 trees on 50000 vertices and the others are calculated from 50 trees on 10000 vertices.

Hausdorff dimension

General solution for $d=3$

$$
d_{H}=\frac{\left(w_{2,2}-2 w_{3,1}\right)+\sqrt{\left(w_{2,2}-2 w_{3,1}\right)^{2}+8 w_{3,1}\left(w_{2,1}+3 w_{3,2}\right)}}{\left(w_{2,2}-2 w_{3,1}\right)+\sqrt{\left(w_{2,2}-2 w_{3,1}\right)^{2}+16 w_{3,1} w_{3,2}}}
$$

$$
\begin{aligned}
& w_{3,2}=w_{3} / 3 \\
& w_{3,1}=w_{2,2}=w_{2} / 3
\end{aligned}
$$

Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops

Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the pronerties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops

Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops

Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops

Conclusions and problems

- Random trees are a universal mathematical tool in science
- It remains to understand in detail what types of behaviour can occur - what constitutes a universality class?
- What classes of continuum trees exist?
- Many concrete problems: equilibrium description of splitting vertex trees, spectral properties, etc.
- Knowing the properties of the trees which arise in a physical system (or in some other context) may shed light on the mechanisms that produce the trees
- Export techniques and results from trees to graphs with loops

