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Outline

I Introduction - Motivation: Physics, Mathematics, Biology, . . .

I Principal questions

I Models

I Methods

I Results

I The vertex splitting model

I Some details on SVM
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Random Walks

I Universal theoretical tool in the Sciences: diffusion, functional
integrals, . . .

I No intrinsic structure: properties come from imbedding into
an ambient space, e.g. Rd

I Strong universality results - central limit theorem

I Rigorous continuum theory, Wiener integral, potential theory
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Random geometry

I Intrinsic and extrinsic degrees of freedom

I Trees

I Surfaces: phase boundaries, membranes, string theory,
2-dimensional quantum gravity, . . .

I Higher dimensional manifolds: gravity in dimensions � 3

I General graphs, networks
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Random trees

I Physical tree-like objects: branched polymers

5 / 78



I Surfaces and higher dimensional manifolds can have a phase
where they degenerate into trees
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I Secondary structure of macromolecules, e.g. RNA

First problem: RNA folding & random splitting trees

RNA primary, secondary and tertiary structure

(borrowed from Scott K. Silverman  scott@scs.uiuc.edu)
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GCCUUAAUGCACAUGGGCAAGCCCACGUAGCUAGUCGCGCGACACCAGUCCCAAAUAAUGUUCACCCAACUCGCCUGACCGUCCCGCAGUA
GCUAUACUACCGACUCCUACGCGGUUGAAACUAGACUUUUCUAGCGAGCUGUCAUAGGUAUGGUGCACUGUCUUUAAUUUUGUAUUGGGCC
AGGCACGAAAGGCUUGGAAGUAAGGCCCCGCUUGACCCGAGAGGUGACAAUAGCGGCCAGGUGUAACGAUACGCGGGUGGCACGUACCCCA
AACAAUUAAUCACACUGCCCGGGCUCACAUUAAUCAUGCCAUUCGUUGCCGAUCCGACCCAUAUAGGAUGUGUAUGCCUCAUUCCCGGUCG
GGGCGGCGACUGUUAACGCAUGAGAACUGAUUAGAUCUCGUGGUAGUGCUUGUCAAAUAGAAUGAGGCCAUUCCACAGACAUAGCGUUUCC
CAUGAGCUAGGGGUCCCAUGUCCAGGUCCCCUAAAUAAAAGAGUC

Problem: find the secondary (and the tertiary) structure from the base 
sequence

1. “kissing hairpins” & interlaced strands are
rare  (unfavored by kinematics & topology)

2. RNA can (to some extent) be considered 
as a planar tree

1.2 RNA secondary structure 1 PROPERTIES OF RNA

(i)

(ii)

(a) (b)

Figure 1.2: (a) Diagrammatics and height picture: the upper diagram shows a RNA secondary
structure, the base pairs designed as dashed rainbows over the backbone line, in the lower diagram
is drawn the corresponding height picture h(s). (b) Excluded structures: (i) kissing hairpins and
(ii) kinetically forbidden formations.

RNA folding uniquely based on its secondary structure. In fact, the separation of energy scales
considerably simplifies the RNA problem when compared to general protein folding. The total
energy of a secondary structure may be considered as a sum of its pairing energies,

E(S) =
∑

(i,j)∈S

εij (1.2)

This neglects for example loop cost energies which are specific to the indivual secondary structures
and re-organize slightly the energy landscape.

Sequence randomness vs. natural RNA. To be honest from the beginning on, we aim at a
description of random RNA sequences. The binding energies εij are supposed to be independent
quenched random variables and we intend to study RNA as a disordered system. This hypothesis
must be based on a solid ground, it certainly does not hold for the small RNA discoverd recently.
Therefore we have to specify the RNA types which this description is destinated to. In general,
it is reasonable to suppose that the RNA primary structure is not random since evolution has led
to its optimization. The quest for the relationship between the sequence heterogenity and folding
into a secondary structure constitutes a crucial unresolved problem.

For tRNA the comparision between natural and random sequences of same length has been
carried out by P. Higgs [Hig93]. By means of numerical simulations he has shown that the the
configuration of lowest energy of random tRNA is localized much above the minima for natural
sequences. This difference is attributed to enormous optimization and stabilization of the structure
of tRNA. Thus, tRNA can conceptually not be described by the above method and its length may
constitute a lower bound for the application of random sequence approaches. For the long molecule
of mRNA, the situation is completely reversed. Numerical studies have proven that natural mRNA,
which does not optimize its energetic groundstate, is well simulated by random sequences. So theyreferences
are a good candidate to be considered as ”a disordered system”.

Furthermore, the above discussion leads to the problem of choice of the distribution function
ρ(εij). From the analytical point of view we prefer a Gaussian. Other distributions are discussed
in [Bun02] and no significant effect on universal quantities has been found. The dependence of
RNA secondary structure on the energy model is discussed in [Bur05]

Sequence randomness has an interesting effect on the height picture representation: it maps
the secondary structure problem to the analysis of one-dimensional random walks in the half-space
h > 0. This problem is well-understood, in particular its return probability is caracterized by
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Thermus thermophilus
large subunit ribosomal RNA
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I Family trees
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I Phylogenetic trees

I Fragmentation and coagulation models, river networks, blood
vessels, search and decision algorithms, citation networks, etc.
etc.
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Random surfaces and trees

There is a one to one mapping from trees to causal triangulations
6

3

0

1
2

Fig. 2 Example of G ∈ C3

Z is analytic in the disk |g| < 1
2 and has a critical point at gc = 1

2 . Rather than computing
Z directly it is more informative to study the disk amplitudes; these are computed from the
graphs Cn equipped with a marked point on the boundary. They are essentially the partition
function for a boundary of l edges at a height n and are given by [4]

Z(n; l) = ∑
G∈Cn: |Sn|=l

g1+∆(G), l = 1, . . . . (19)

This can be evaluated by noting that ∆(Σk) = |Sk|+ |Sk+1|, and counting the graphs by
building G up successively from its slices {Σ0, . . . ,Σn−1}. The number of ways of connecting
lk+1 points in Sk+1 with lk points in Sk, one of which we know is marked, is

(lk+lk+1−1
lk−1

)
and

so, remembering the marked point on Sn, we find that

Z(n; l) = gln
n−1

∏
k=1

(
∞

∑
lk=1

(
lk + lk+1 −1

lk −1

))
g2(l1+...ln−1)+ln . (20)

Doing the sums gives

Z(n; l) = gl(g−1Xn)l
n−1

∏
k=1

Xk

1−Xk
, (21)

where

Xk+1 =
g2

1−Xk
, X1 = g2. (22)

The recursion (22) is straightforward to solve and has the following properties:

Xn ↑ X∗ =
1−

√
1−4g2

2
as n ↑ ∞ for g <

1
2

;

Xn =
1
2

n
n+1

at g =
1
2
. (23)

It follows that Z(n; l) is analytic in the disk |g| < 1
2 . Using (21) we can calculate the average

boundary length for disks of height n and obtain

〈 l 〉n = ∑∞
l=1 lZ(n; l)

∑∞
l=1 Z(n; l)

=
1+g−1Xn

1−g−1Xn
<

1+2g√
1−4g2

(24)

8

S
n

n+1

1
2 3 m!1 m

S

Fig. 3 The bijection from G ∈ C to T ∈T : the dashed links are assigned to T .

Fig. 4 The bijection from G ∈ C to T ∈T : an example, the dashed lines show the tree

and C = C f ∪C∞.
We can now establish relationships between the statistical weights in the critical CDT

and the tree ensembles defined earlier which are summarized in:

Theorem 2 The measure for the critical CDTs is related to that for trees by

i) µCT(G) = µGW(β (G)), G ∈ C f . (29)

Proof Consider a graph G ∈ C f and the corresponding tree T = β (G). Every vertex in
Si+1(G) has exactly one link of T connecting it to Si(G) and therefore

|Si+1(G)| = ∑
v∈Di+1(T )

σv−1, i = 0, . . .h(G)−2. (30)

The statistical weight (17) for G can then be written

g1+∆(G) = g1+|S1(G)|
h(G)−2

∏
i=1

g|Si(G)|+|Si+1(G)|g|Sh(G)−1(G)|

= ∏
v∈T\r

gσv . (31)

Comparing this with (7) we see that at g = 1
2 this is the same as µGW with offspring proba-

bilities given by

pn =
1
2

(
1
2

)n

, (32)

which do indeed satisfy the requirements for a critical GW tree.

Can be generalized to a mapping between planar quadrangulations
and well-labelled trees - Schaeffer
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I Extensive mathematics literature: branching processes etc.

I Theory of continuous trees – Aldous et al.

I Has been used to construct a theory of continuous random
surfaces – Le Gall et al.

I We consider discrete trees

I Rooted planar tree graphs

13 / 78



Two main approaches

1. Equilibrium statistical mechanics

T = Set of graphs, � a probability measure on T

�(T ) = Z�1e��E(T )

2. Growing trees Tn 7! Tn+1, time discrete

Stochastic growth rules induce a probability measure on Tt,
the trees that can arise in t steps

I Sometimes (1) is more natural

I Sometimes (2) is more natural

I Sometimes (1) and (2) are known to be equivalent

14 / 78



Problems to study

I What are the prinicipal characteristics of the trees under
consideration? How sensitive are they to E or the growth
rules?

I Distribution of vertex degrees

I Correlations

I Fractal dimensions: Hausdorff, spectral, . . .

I The “shape” of trees – mass distribution

I Universality classes .........

15 / 78



Galton-Watson trees

I pn = probability of having n descendents,

X
n

pn = 1; m =
X
n

npn

I m < 1 subcritical, m > 1 supercritical, m = 1 critical

I n generations at time t = n� 1 if no extinction

I Well understood

16 / 78



Preferential attachment trees

I In each timestep one new edge is attached to a preexisting tree

I Probability of attaching to a vertex v of degree k

Pv =
wkP

k nkww
; wk � 0;

nk = the number of vertices of degree k.

I Growth rule induces a probability measure on Tt.

17 / 78



Local trees

I Weight factor of a tree T

W (T ) =
Y
i2T

w�(i)

�(i) = degree of the vertex i

I Partition functions

ZN =
X

T :jT j=N

W (T ); Z =
X
N

�NZN ; j�j < �0

I Generating function g(z) =
P

nwnz
n�1, radius of

convergence �

I Main equation

&%
'$ &%

'$

&%
'$

&%
'$

u u
u

u
u

u
u

= + � � �+ +

w2 w3
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Generic trees

&%
'$ &%

'$

&%
'$

&%
'$

u u
u

u
u

u
u

= + � � �+ +

w2 w3

I Algebraically

Z(�) = �g(Z(�)) = �
1X
i=0

wi+1Z
i(�)

I Define Z0 = lim�!�0 Z(�)

I If Z0 < � then we say that the trees are generic.

I Z(�)� Z0 �
p
�0 � �
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h(Z) h(Z) h(Z)

ρ =Z
0 ZZZ

a) b) c)

Z
0

= ρ = Z
0

= ρ =1 1 1

Here we have defined

h(Z) =
g(Z)

Z

and the weights have been scaled so that � = 1
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I Define
�(T ) = Z�1

0 �
jT j
0

Y
i2T

w�(i)

Probability measure

I This measure is the same as the one obtained from a
Galton-Watson process with

pn = �0wn+1Z
n�1
0
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Y
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Another equivalence

I Preferential attachment trees � Causal trees

I Weight proportional to the number of causal labelings

0

1

2

9

53

4

8

10 6

7

I More branchings, more ways to grow
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Some results about generic trees

I Let VT (R)=volume of a ball of radius R centered on the root

hVT (R)i � RdH ; R!1 de�nes dH

I Let pT (t) = probability that a random walker is back at the
root after t steps on T

hpT (t)i � t�ds=2; t!1 de�nes ds

cf.
Kt(x; y) = (2�t)�d=2e�(x�y)

2=2t

23 / 78



Some results about generic trees

I Let VT (R)=volume of a ball of radius R centered on the root

hVT (R)i � RdH ; R!1 de�nes dH

I Let pT (t) = probability that a random walker is back at the
root after t steps on T

hpT (t)i � t�ds=2; t!1 de�nes ds

cf.
Kt(x; y) = (2�t)�d=2e�(x�y)

2=2t

23 / 78



Some results about generic trees

I Let VT (R)=volume of a ball of radius R centered on the root

hVT (R)i � RdH ; R!1 de�nes dH

I Let pT (t) = probability that a random walker is back at the
root after t steps on T

hpT (t)i � t�ds=2; t!1 de�nes ds

cf.
Kt(x; y) = (2�t)�d=2e�(x�y)

2=2t

23 / 78



Some results about generic trees

I Let VT (R)=volume of a ball of radius R centered on the root

hVT (R)i � RdH ; R!1 de�nes dH

I Let pT (t) = probability that a random walker is back at the
root after t steps on T

hpT (t)i � t�ds=2; t!1 de�nes ds

cf.
Kt(x; y) = (2�t)�d=2e�(x�y)

2=2t

23 / 78



Some results about generic trees

I Let VT (R)=volume of a ball of radius R centered on the root

hVT (R)i � RdH ; R!1 de�nes dH

I Let pT (t) = probability that a random walker is back at the
root after t steps on T

hpT (t)i � t�ds=2; t!1 de�nes ds

cf.
Kt(x; y) = (2�t)�d=2e�(x�y)

2=2t

23 / 78



I Averages taken w.r.t. a measure on infinite trees

�N = Z�1
N

Y
i2T

w�(i)

�N ! �1 as N !1

I Theorem.(B. Durhuus, J. Wheater and T.J.)

(i) dH = 2
(ii) ds = 4=3
(iii) There is a unique infinite simple path whose outgrowths are

critical GW-trees
(iv) Vertex degrees are uncorrelated
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GW GW GW GW GW
GW

I One spine due to entropy

I The number of rooted planar trees with ` edges is

N(`) � `�3=2C`

maxfN(`1)N(`2) : `1 + `2 = `g � N(`)

25 / 78



I Main tool for analysing the spectral dimension is the
generating function

QT (x) =
1X
t=0

pT (t)(1� x)t=2

and its ensemble average

Q(x) = hQT (x)i

Q(x) � x�1=3 =) ds = 4=3

26 / 78



Non-generic trees

I Critical exponents change

Z(�)� Z0 � (�0 � �) ;  6= 1=2

I There can arise a vertex of infinite order in the
thermodynamic limit (Bialas, Burda, Johnston)

I No infinite spine and outgrowths are subcritical GW trees

I Proven in a special case (S. Stefansson)

27 / 78



Preferential attachment trees

F. David, P. di Francesco, E. Guitter and T.J., J. Stat. Mech.
(2007) P02011

I In general many infinite simple paths

I dH =1 in many cases (all cases?)

I Can calculate vertex degree distribution - and fluctuations.
Independent of the initial tree.

I Broad distribution of sizes of subtrees, depends on the initial
tree

28 / 78



Mass distribution

Consider trees with vertices of order 1; 2 and 3. Only one
parameter: x = 2w2=w1.

LEFT RIGHT

Root

What is the distribution of the size of the left tree as the total size
of the tree gets large? We know the answer for generic trees.

29 / 78



Let TL and TR be the sizes of the left and right subtrees. If x = 1,
then the growth process maps onto reinforced random walk and if
we start from the one link tree, then

P (TL; TR) =
1

TL + TR + 1
:

More generally, defining uL = TL=T , uR = TR=T ,

p(uL; uR) =
T !

T 0
L!T

0
R!
u
T 0

L

L u
T 0

R

R �(uL + uR � 1);

i.e. exponents depend on the initial tree.
For arbitrary x we define the left exponent

p(uL; uR) � u
�L
L ; uL ! 0:

The right exponent �R is defined similarily.
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One can show, using a MFT assumption - small fluctuations in the
vertex degree distribution,

J.S
tat.M

ech.
(2007)

P
02011

Mass distribution exponents for growing trees
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Figure 3. Left mass distribution exponent βL as a function of x = 2w2/w1 for an
initial empty left subtree, with value given by (3.2) with n0

1,L = 0 and n0
2,L = 1.

At x = 1, we see the value βL = 0 of section 2.3. A change of regime takes place
at x = 2, i.e. w1 = w2.

increases by w2 > 0 if the link is added at a univalent vertex, or is shifted by w1 − w2

if it is added at a bivalent vertex. If w1 > w2, the quantity n1w1 + n2w2 may therefore
only increase strictly and the minimum is attained for the initial state T = T 0

L , with
value w1n

0
1,L + w2n

0
2,L, where n0

i,L ≡ ni(T 0
L ). When w1 < w2, the minimum is obtained

by saturating each bivalent vertex of T 0
L into a trivalent vertex and a univalent one. The

resulting tree T has no more bivalent vertices and a number n0
1,L + n0

2,L of univalent ones.

The associated minimum now reads w1(n
0
1,L+n0

2,L). We finally obtain the following explicit
expression:

βL = −1 +
x +

√
x(8 + x)

8 x
(4n0

1,L + (x + 2− |x− 2|)n0
2,L) (3.2)

and a similar expression for the right exponent. As mentioned above, we use the
convention that n0

1,L = 0 and n0
2,L = 1 if T 0

L is empty. Note that the left exponent

only depends on the left initial subtree via its numbers n0
i,L of univalent and bivalent

vertices. The exponent βL is displayed in figure 3 for the simple case where we start from
an empty left subtree.

A few remarks are in order. First we note that, as a first check of our formula,
we recover when x = 1 the result βL = 2n0

1,L + n0
2,L − 1 = T 0

L of section 2.3. Two
other particular values of x may be easily checked, namely x → 0 and x → ∞, as the
corresponding limiting growth processes may be easily analysed.

When x→ 0, we find that βL tends to infinity unless n0
1,L = 0, which corresponds to

an empty initial left subtree in which case βL = −1. These results may be understood as
follows. For x→ 0, i.e. w1 % w2, the trees that are built are extensions of the initial tree
by polymer-like chains (without new branching) attached to the initial leaves. If at least
one of the left or right initial subtrees is non-empty, the number of attachment points for
the chains is n0

1,L on the left and n0
1,R on the right, with n0

1,L + n0
1,R > 0; hence at large t,

we have

P (uL, uR)→ δ

(
uL −

n0
1,L

n0
1,L + n0

1,R

)
δ

(
uR −

n0
1,R

n0
1,L + n0

1,R

)
. (3.3)
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where n0i;L is the number of vertices of degree i in the left initial
left tree.
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When x→ 0, we find that βL tends to infinity unless n0
1,L = 0, which corresponds to

an empty initial left subtree in which case βL = −1. These results may be understood as
follows. For x→ 0, i.e. w1 % w2, the trees that are built are extensions of the initial tree
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one of the left or right initial subtrees is non-empty, the number of attachment points for
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1,R on the right, with n0
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we have
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Numerical simulations
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Figure 7. Measured distribution P (uL) for the initial tree T 0 drawn on the left.
For x = 1, we have also indicated the exact distribution.
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Figure 8. Measured distribution P (uL) for the initial tree T 0 drawn on the left.

large final tree with left part T ∗
L . The predicted exponents (3.16) are plotted against their

measured values, i.e. the limiting slopes of a log–log plot of the probability p(T 0, T ∗
L ; t)

versus t. The plots 12 and 13 have been obtained from a statistics over N = 108 runs
for x = 1/2 and x = 4 and starting with the initial tree T 0 indicated. The various
curves correspond to various final left configurations T ∗

L as indicated in medallions. For
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Figure 7. Measured distribution P (uL) for the initial tree T 0 drawn on the left.
For x = 1, we have also indicated the exact distribution.
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Figure 8. Measured distribution P (uL) for the initial tree T 0 drawn on the left.

large final tree with left part T ∗
L . The predicted exponents (3.16) are plotted against their

measured values, i.e. the limiting slopes of a log–log plot of the probability p(T 0, T ∗
L ; t)

versus t. The plots 12 and 13 have been obtained from a statistics over N = 108 runs
for x = 1/2 and x = 4 and starting with the initial tree T 0 indicated. The various
curves correspond to various final left configurations T ∗

L as indicated in medallions. For
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The vertex splitting model

F. David, M. Dukes, S. Stefansson and T.J.: J. Stat. Mech.
(2009) P04009

I A model of randomly growing rooted, planar trees

v
v

V

V’
V’

V

v’

I Degree of vertices is bounded by an integer d (we also discuss
the case d =1)

I Nonnegative splitting weights w1; w2; : : : ; wd

I nj(T ) = the number of vertices of degree j in a tree T
pj = Probability of choosing a vertex v 2 T of degree j

pj =
wjP

iwini(T )
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Splitting rules
I The parameters of the model are2

666666664

0 w1;2 w1;3 � � � w1;d�1 w1;d

w2;1 w2;2 w2;3 � � � w2;d�1 w2;d

w3;1 w3;2 w3;3 � � � w3;d�1 0

w4;1 w4;2 w4;3 0 0
...

...
...

...
...

...
wd;1 wd;2 0 � � � 0 0

3
777777775

a symmetric matrix of non–negative partitioning weights
I Split a vertex of degree i into vertices of degree k and
i+ 2� k with probability wk;i+2�k=wi – all such splittings
equally probable

I The splitting weights w1; w2; : : : ; wd are related to the
partitioning weights by

wi =
i

2

i+1X
j=1

wj;i+2�j :
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A tree
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Vertex splitting rules

w3
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Vertex splitting rules
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Vertex splitting rules

w2;3
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Vertex splitting rules

40 / 78



Vertex splitting rules

w2;3
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Vertex splitting rules
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Vertex splitting rules

w1;4 = w4;1
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Vertex splitting rules

w1;4
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Vertex splitting rules
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Vertex splitting rules

w1;4
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Relation to other models

I Ergodic moves in Monte Carlo simulations of triangulations in
2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

vv
v’

I A tree growth process which is equivalent to a simplified
model for RNA secondary structures F. David, C. Hagendorf, K.

J. Wiese

I When wi;j = 0 unless j = 1 or i = 1 it reduces to the
preferential attachment model R. Albert and A. L. Barabasi et al.

I For d = 3, in a certain limit, it reduces to Ford’s alpha model
for phylogenetic trees
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Main results

I Distribution of vertex degrees in a large tree

I Correlations between the degrees of vertices

I ”Shape” of trees – Hausdorff dimension

If we consider linear splitting weights

wi = ai+ b:

the analysis simplifies due to the Euler relation for trees

dX
i=1

ni(T ) = jT j;
dX

i=1

ini(T ) = 2(jT j � 1):

The normalization factor
P

iwini(T ) depends only on the size of
the tree T .

49 / 78



Recurrence for generating functions

Let pt(n1; : : : ; nd) be the probability that the tree T at time t has
(n1(T ); : : : ; nd(T )) = (n1; : : : ; nd) .
The probability genereting function

Ht(x) =
X

n1+���nd=t

pt(n1; : : : ; nd)x
n1
1 � � �xndd

satisfies the recurrence

Ht+1(x) =
X

n1+���+nd=t

pt(n1; : : : ; nd)Pd
i=1 niwi

c(x) � r(xn11 � � �xndd );

where c(x) = (c1(x); c2(x); : : : ; cd(x)) with

ci(x) =
i

2

i+1X
j=1

wj;i+2�jxjxi+2�j and r =
�
@=@x1; : : : ; @=@xd

�
:
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Vertex degree distribution

I Begin with a tree T0 at time 0

I At time t > 0 we have a tree Tt with ni(Tt) vertices of degree
i

I Let �nt;i denote the average of ni(T ) over all trees that can
arise at time t, i.e.

10 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.

The partial derivative ∂/∂xi in ∇ takes care of removing a vertex of degree
i and provides the factor ni. In ci(x), the factors xjxi+2−j add two vertices
of degree j and i + 2− j respectively and the appropriate weights are given.
Now sum over all possible partitionings in (iii), the dot product of c(x) and
∇ accounts for the sum over all vertex degrees, and finally sum over all
vertex degree configurations in the initial tree to obtain (2.10). !

For linear weights (2.5), equation (2.10) reduces to

Ht+1(x) =
1

W(t)
c(x) ·∇Ht(x). (2.13)

The remainder of this subsection concerns linear weights only. We have

nt,k =
∑

n1+...+nd=t

pt(n1, ..., nd)nk = ∂kHt(x)|x=1, (2.14)

where 1 = (1, 1, . . . , 1). To get a recursion equation for nt,k, differentiate
both sides of (2.13) with respect to xk and set x = 1 to find

nt+1,k =
1

W(t)

(
d∑

i=k−1

iwk,i+2−knt,i +
d∑

i=1

wi∂i∂kHt(x)|x=1

)
.

(2.15)

Since the weights are linear we can use the constraints in (2.7) to rewrite
the last term in (2.15) as

d∑

i=1

wi∂i∂kHt(x)|x=1 = (−wk +W(t))nt,k. (2.16)

Inserting this into (2.15) we see that the equations close

nt+1,k =
1

W(t)

(
−wknt,k +

d∑

i=k−1

iwk,i+2−knt,i

)
+ nt,k. (2.17)

We can also write the recursion in terms ρt,k and find

ρt+1,k =
t

W(t)

(
−wkρt,k +

d∑

i=k−1

iwk,i+2−kρt,i

)
+ t(ρt,k − ρt+1,k). (2.18)

The above equation can be put in the matrix form

ρt+1 = At ρt (2.19)

where

ρt = (ρt,1, ρt,2, . . . , ρt,d)
T , At =

t

t + 1

(
I +

1
W(t)

B

)
,

(2.20)

I Define

�t;i =
�nt;i
t

and we will use the notation

�(t) = (�t;1; : : : ; �t;d)
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I The recurrence for Ht gives rise to a recurrence for �(t).
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∇ accounts for the sum over all vertex degrees, and finally sum over all
vertex degree configurations in the initial tree to obtain (2.10). !

For linear weights (2.5), equation (2.10) reduces to

Ht+1(x) =
1

W(t)
c(x) ·∇Ht(x). (2.13)

The remainder of this subsection concerns linear weights only. We have

nt,k =
∑

n1+...+nd=t

pt(n1, ..., nd)nk = ∂kHt(x)|x=1, (2.14)

where 1 = (1, 1, . . . , 1). To get a recursion equation for nt,k, differentiate
both sides of (2.13) with respect to xk and set x = 1 to find

nt+1,k =
1

W(t)

(
d∑

i=k−1

iwk,i+2−knt,i +
d∑

i=1

wi∂i∂kHt(x)|x=1

)
.

(2.15)

Since the weights are linear we can use the constraints in (2.7) to rewrite
the last term in (2.15) as

d∑

i=1

wi∂i∂kHt(x)|x=1 = (−wk +W(t))nt,k. (2.16)

Inserting this into (2.15) we see that the equations close

nt+1,k =
1

W(t)

(
−wknt,k +

d∑

i=k−1

iwk,i+2−knt,i

)
+ nt,k. (2.17)

We can also write the recursion in terms ρt,k and find

ρt+1,k =
t

W(t)

(
−wkρt,k +

d∑

i=k−1

iwk,i+2−kρt,i

)
+ t(ρt,k − ρt+1,k). (2.18)

The above equation can be put in the matrix form

ρt+1 = At ρt (2.19)

where

ρt = (ρt,1, ρt,2, . . . , ρt,d)
T , At =

t

t + 1

(
I +

1
W(t)

B

)
,

(2.20)
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I Under mild conditions on the wi;j the limits

lim
t!1

�t;i = �i

exist and are the unique positive solution to the linear
equations

�k = �wk

w2
�k +

dX
i=k�1

i
wk;i+2�k

w2
�i:

I These values are independent of the initial tree.

I The proof uses the Perron–Frobenius theorem for ”positive”
matrices.
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Perron-Frobenius

Theorem. Let A be a matrix with nonnegative matrix elements
such that all the matrix elements of Ap are positive (A primitive)
for some integer p. Then the eigenvalue of A with the largest
absolute value is positive and simple. The corresponding
eigenvector can be taken to have positive entries.

Iterating the recurrence equation for �(t) we find

�(t) =
1

t

t�1Y
i=1

�
1 +

1

(2a+ b)i� 2a
B

�
�0

where B is a matrix with nonnegative entries except on the
diagonal. If B is primitive and diagonalizable, then �(t) converges
to the normalized Perron-Frobenius eigenvector of B.
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Examples

I d = 3 The matrix B is diagonalizable and

�1 = �3 = 2=7; �2 = 3=7

if the partitioning weights are chosen to be uniform, i.e.

wi;j = wi+j�2
2

(i+ j � 2)(i+ j � 1)
:

I d = 4 Can again solve explicitly with uniform partitioning
weights and get �i’s which vary with a and b.

I d =1 Do not have a proof of convergence but can solve the
equation for the �i’s

�k � 1

k!
2k�1k�1�x; x = b=a

�k =
1

e(k � 1)!
; a = 0:
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General splitting weights
I Use mean field theory for the normalization factorP

i ni(T )wi ! t
P

i �iwi.
Equation for a steady state vertex distribution

�k = �wk

w
�k +

dX
i=k�1

i
wk;i+2�k

w
�i;

subject to the constraints

�1 + : : :+ �d = 1; w1�1 + : : :+ wd�d = w:

I There is a unique positive solution by the Perron-Frobenius
theorem.

I For d = 3 and uniform partitioning weights we find

�3 =
7��p� (�+ 24� + 24)

6(2�� � � 1)

where � = w2=w1 and � = w3=w1.
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Comparison with simulations

16 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.

The solution to the mean field equation for the d = 3 model and uniform
partitioning weights is

ρ3 =
7α −

√
α (α + 24β + 24)

6(2α − β − 1)
(2.45)

where α =
w2

w1
and β =

w3

w1
. Note that from the constraints we have ρ1 = ρ3

and ρ2 = 1 − 2ρ3. This solution (and solutions in general) only depends
on the ratio of the weights. In Figure 4 we compare the above solution to
simulations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  20  40  60  80

! = 10000

! = 1000 

! = 100  

! = 10   

! = 0     

"

#
3

Figure 4. The value of ρ3 as given in (2.45) compared to
results from simulations. Each point is calculated from 20
trees on 10000 vertices.

2.6. The dmax = ∞ model with linear weights. In this subsection we
drop the assumption that there is an upper bound on the vertex degrees
but we still assume that all vertex degrees are finite. If we assume that
equation (2.35) holds for d =∞, then it is possible to find an exact solution
in the case of linear splitting weights, wi = ai + b, and uniform partitioning
weights. Equation (2.35) becomes

ρk = −wk

w2
ρk +

∞∑

i=k−1

2
i + 1

wi

w2
ρi. (2.46)

Subtracting from this the same equation for ρk+1 we find

ρk

(
1 +

wk

w2

)
− ρk+1

(
1 +

wk+1

w2

)
=

2
k

wk−1

w2
ρk−1. (2.47)

A comparison of the theoretical prediction with simulations in the
case d=3 and uniform partitioning weights.

� =
w2

w1
; � =

w3

w1
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Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?

Let nj;k = number of such edges in a finite tree of size t, where
the vertex of degree j is closer to the root

Let �j;k = limt!1
nj;k
t

. Then (for linear splitting weights)

�jk = �wj + wk

w2
�jk + (j � 1)

wj;k

w2
�j+k�2

+(j � 1)
dX

i=j�1

wj;i+2�j

w2
�ik + (k � 1)

dX
i=k�1

wk;i+2�k

w2
�ji:

assuming the existence of the limit.
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Explicit solutions
Can solve in simple cases and find nontrivial correlations

�jk 6= �j�k
1� �1

:

Take d = 3, linear splitting weights and uniform partitioning
weights. Then �1 = �3 = 2=7 and �2 = 3=7. Let y = w3=w2.
Then the solutions to the correlation equation are

�21 =
4(3� y)

7(11� 2y)
; �31 =

10

7(11� 2y)
;

�22 =
4y2 � 12y + 105

7(2y + 7)(11� 2y)
; �32 =

2(�8y2 + 18y + 63)

7(2y + 7)(11� 2y)
;

�23 =
2(�4y2 + 20y + 21)

7(2y + 7)(11� 2y)
; �33 =

8(3y � 14)

7(2y + 7)(2y � 11)
:
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Sum rules

The following sum rules hold:

�21 + �31 = �1 = 2=7
�22 + �32 = �2 = 3=7
�23 + �33 = �3 = 2=7;

�21 + �22 + �23 = �2 = 3=7
�31 + �32 + �33 = 2�3 = 4=7:

These relations show that there are only two independent link
densities, e.g. �21 and �22.
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Comparison with simulations

RANDOM TREE GROWTH BY VERTEX SPLITTING 33

ρ21 =
4(3− y)

7(11− 2y)
, ρ31 =

10
7(11− 2y)

,

ρ22 =
4y2 − 12y + 105

7(2y + 7)(11− 2y)
, ρ32 =

2(−8y2 + 18y + 63)
7(2y + 7)(11− 2y)

,

ρ23 =
2(−4y2 + 20y + 21)
7(2y + 7)(11− 2y)

, ρ33 =
8(3y − 14)

7(2y + 7)(2y − 11)
.

(5.2)

Note that the following sum rules hold for the solutions

ρ21 + ρ31 = ρ1 = 2/7
ρ22 + ρ32 = ρ2 = 3/7
ρ23 + ρ33 = ρ3 = 2/7,

ρ21 + ρ22 + ρ23 = ρ2 = 3/7
ρ31 + ρ32 + ρ33 = 2ρ3 = 4/7.

(5.3)

These relations show that there are only two independent link densities. We
plot ρ21 and ρ22 in Figure ?? and compare to simulations.

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.5  1  1.5  2

y

ρ21
ρ22

Figure 15. Two independent solutions given in (??) plot-
ted against y = w3/w2 and compared to simulations. The
two leftmost datapoints on each line come from simulations
of 50 trees on 50000 vertices. The other datapoints come
from simulations of 50 trees on 10000 vertices.

We can compare the above results to the case when no correlations are
present. Denote the uncorrelated densities by ρ̃ij . Then we simply have

ρ̃ij =
ρiρj

1− ρ1
.
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Nonlinear splitting weights

Taking d = 3 and general nonlinear splitting weights

�21 =
1

3

(3 + �) (7�� )

(2�� � � 1) (3�+ 2� +  + 6)

where � = w2=w1, � = w3=w1 and  =
p
� (�+ 24� + 24).36 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.
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Figure 16. The solution (5.4) for the density ρ21 plotted
as a function of β for a few values of α. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.
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Figure 17. The solution (5.5) for the density ρ22 plotted
as a function of β for a few values of α. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.
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Comparison with simulations

36 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  20  40  60  80  100

!
2

1

"

# = 2

# = 10

# = 60

# = 100

Figure 16. The solution (5.4) for the density ρ21 plotted
as a function of β for a few values of α. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.
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Figure 17. The solution (5.5) for the density ρ22 plotted
as a function of β for a few values of α. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.

RANDOM TREE GROWTH BY VERTEX SPLITTING 35

We can compare the above results to the case when no correlations are
present. Denote the uncorrelated densities by ρ̃ij. Then we simply have

ρ̃ij =
ρiρj

1− ρ1
.

The denominator comes from the fact that the vertex closer to the root is
of degree one with probability zero. Inserting the values from (5.3) into this
equation gives

ρ̃21 = 6/35, ρ̃31 = 4/35
ρ̃22 = 9/35, ρ̃32 = 6/35
ρ̃23 = 6/35, ρ̃33 = 4/35

showing that in general ρij "= ρ̃ij and so correlations are present between
degrees of vertices.

5.3. Results for non-linear weights. We can generalize equation (5.1)
to a mean field equation, valid for arbitrary weights, by replacing w2, where
it appears in a denominator, with w as we did with the equation for vertex
degree densities in Section 2. For d = 3 and uniform partitioning weights
the two independent densities ρ21 and ρ22 are given by

ρ21 =
1
3

(3 + β) (7α− γ)
(2α− β − 1) (3α + 2β + γ + 6)

(5.4)

ρ22 = 16

3

“
284 α2β

4
γ − 177 α5βγ + 3564 α3 + 18 α6γ + 161α β5γ − 873 γ + 11979 α2β3

−2259 α5 − 39 α6β − 207 α5γ + 6516α2β4 − 5205 α5β − 1419 α4βγ + 996 αβ5

−5994 α4 − 892 α4β2γ + 1543 α2β5 − 18 α7 − 668 α3β4 + 324 α2γ + 909 αβ3γ

−2600 α5β2 − 975 α3β3 + 222 αβ6 − 1533 α3β2γ + 10206 α2β2 − 11799 α4β

−5300 α4β3 − 1521 α3βγ + 1899 α2β2γ + 1059α2 β3γ + 1269 α3β2 + 3240α2 β

+756 αβ3 + 4860 α3β + 6 β6γ − 11703 α4β2 + 1728α2 βγ − 162 α3γ + 486α β2γ

+18 β4γ + 1530 αβ4 + 624α β4γ − 772 α3β3γ − 9 α6 + 24 β5γ
”.“

(3 α + 2 β + γ + 6)

×
`
11 α2 + 25 αβ + 5 αγ + 3 βγ + 12 α + 4 β2

´
(−α + γ) (1− 2 α + β) (7 α + 2 β + γ)2

”

(5.5)

where α =
w2

w1
, β =

w3

w1
and γ =

√
α (α + 24β + 24). These solutions

are compared to simulations in Figures 16 and 17. The other densities are
obtained by using the sum rules (5.3).
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Subtree probabilities

I Label vertices in the tree by their time of creation

I Use linear weights

I Derive expressions for the probabilistic structure of the tree as
seen from the vertex created at a given time

I Average over the creation time

I Introduce a scaling assumption

I Extract the Hausdorff dimension

I Get results which agree with simulations
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I Begin with a tree consisting of a single vertex at time t = 0

I In a tree of size ` let pR(`; s) be the probability that the
vertex created at time s � ` is the root

I We find

pR(`; s) =
1

W (`� 1) + w1
W (`� 1)pR(`� 1; s); s < `

pR(`; `) =
1

W (`� 1) + w1

`�1X
s=0

w1pR(`� 1; s); s = `

W (`) = (2a+ b)`� a is a normalization factor.
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Figure 6. Diagrams representing equations (??) and (??).

If v is a vertex of order k in a tree T , then there is a unique link !1 incident
on v leading towards the root (unless v is the root). Let !2, . . . , !k be the
other links incident on v. The largest subtree of T which contains the root
and !1 but none of the links !i with i ≥ 2 will be called the left subtree (with
respect to v). The maximal subtrees which contain one !j with j "= 1 and
no other link !i will be called the right subtrees (with respect to v). If k = 1
then there are of course no right subtrees and if v is the root then we view
the left subtree as being empty. Let pk(!1, . . . , !k; s) denote the probability
that the vertex created at time s has a left subtree on !1 edges and right
subtrees on !2, . . . , !k edges, where !1 + . . . + !k = !. By the nature of the
splitting operation, pk(!1, !2, . . . , !k; s) is symmetric under permutations of
(!2, . . . , !k). We will sometimes refer to the vertex created at time s as the
s-vertex.

By the definition of the relabeling when we split we have

p1(!; !) = 0, (3.4)

because the vertex closer to the root gets a new label and therefore no leaf
except the root can have the maximal label. In the case s < ! we find the
recursion

p1(!; s) =
1

W (!− 1) + w1

[
W (!− 1)p1(!− 1; s)

+
d−1∑

i=1

iwi+1,1

∑

!′
1+...+!′

i=!−1

pi(!′1, . . . , !
′
i; s) + δ!1w1

]
.

(3.5)

The first term in the square bracket corresponds to the case when we do
not split the vertex with label s. The second term corresponds to splitting
the s-vertex which can have any order up to d − 1. Finally the last term
corresponds to the special case when we have ! = 1 so the s-vertex is the
root of the trivial tree, see Fig. ??.

Let pk(`1; `2; : : : ; `k; s) be the probability that the vertex v created
at time s has degree k, the root subtree has `1 links and the other
subtrees incident on v have size `2; : : : ; `k. Denote the sum of the
`i’s by `. Then for k = 1 and s < `RANDOM TREE GROWTH BY VERTEX SPLITTING 19

Figure 7. A diagram representing equation (??).

For a general k ≥ 2 and s < ! the recursion can be written

pk(!1, . . . , !k; s) =
1

W (!− 1) + w1
×

[
δk2δ!11w1pR(!− 1; s) +

k∑

i=1

W (!i − 1)pk(!1, . . . , !i − 1, . . . , !k; s) (3.6)

+
d∑

i=k

(i + 1− k) wk,i−k+2

∑

!′1+...+!′i+1−k=!1−1

pi(!′1, . . . , !
′
i+1−k, !2, . . . , !k; s)

]
,

see Fig.??. The first term corresponds to the case when the s-vertex is the
root before the splitting in which case we have !1 = 1 and k = 2. The
second term corresponds to the case when we split a vertex different from
the s-vertex and the last term arises when we split the s-vertex in the step
from time !− 1 to time !. Finally we have

pk(!1, . . . , !k; !) =
1

W (!− 1) + w1
× (3.7)

!−1∑

s=0

k∑

j=2

d−1∑

i=k−1

∑

!′1+...+!′
i+1−k

=!j−1

wk,i−k+2pi(!1, . . . , !j−1, !
′
1, . . . , !

′
i+1−k, !j+1, . . . , !k; s),

where !1 + . . . + !k = !, see Fig.??. Here s is the label of the vertex that
is split in the step from time ! − 1 to time ! and we sum over all possible
degrees of the s-vertex and all ways of splitting it.

We define the following mean probabilities by averaging over the vertex
labels in (??–??)

pR(!) =
1

! + 1

!∑

s=0

pR(!; s) (3.8)
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and for k > 1 and s < `RANDOM TREE GROWTH BY VERTEX SPLITTING 21

Figure 8. A diagram representing equation (3.6).

and

pk(!1, . . . , !k) =
1

! + 1

!∑

s=0

pk(!1, . . . , !k; s), (3.9)

where !1 + . . . + !k = ! From (3.8) we get a recursion for the mean proba-
bilities, going from time ! to ! + 1

pR(! + 1) =
! + 1
! + 2

pR(!). (3.10)

For k = 1 we obtain from (3.4), (3.5) and (3.9)

p1(! + 1) (3.11)

=
! + 1
! + 2

1
W (!) + w1

[
W (!)p1(!) +

d−1∑

i=1

iwi+1,1

∑

!′1+...+!′
i

=!

pi(!′1, ..., !
′
i) + 2δ!0w1

]
.
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Figure 9. A diagram representing equation (3.7).

Finally, the general case for k ≥ 2 is

pk(!1, . . . , !k)

=
! + 1
! + 2

1
W (!) + w1

[
δk2δ!11w1pR(!) +

k∑

i=1

W (!i − 1)pk(!1, . . . , !i − 1, . . . , !k)

+
d∑

i=k

(i− k + 1) wk,i−k+2

∑

!′1+...+!′
i+1−k

=!1−1

pi(!′1, . . . , !
′
i+1−k, !2, . . . , !k) (3.12)

+
k∑

j=2

d∑

i=k−1

wk,i−k+2

∑

!′1+...+!′
i+1−k

=!j−1

pi(!1, . . . , !j−1, !
′
1, . . . , !

′
i+1−k, !j+1, . . . , !k)

]

where !1 + . . . + !k = ! + 1 and we have made use of (3.6), (3.7) and (3.9).

3.2. Two-point functions. One can reduce the above recursion formulas
for the mean probabilities to simpler recursion formulas which suffice for the
determination of the Hausdorff dimension. Define the two-point functions

qki(!1, !2) =
∑

!′1+...+!′k−i=!1

∑

!′′1+...+!′′i =!2

pk(!′1, . . . , !
′
k−i, !

′′
1, . . . , !

′′
i ), (3.13)
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We average over s to get simpler recursions:
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Figure 8. A diagram representing equation (3.6).

and

pk(!1, . . . , !k) =
1

! + 1

!∑

s=0

pk(!1, . . . , !k; s), (3.9)

where !1 + . . . + !k = ! From (3.8) we get a recursion for the mean proba-
bilities, going from time ! to ! + 1

pR(! + 1) =
! + 1
! + 2

pR(!). (3.10)

For k = 1 we obtain from (3.4), (3.5) and (3.9)

p1(! + 1) (3.11)

=
! + 1
! + 2

1
W (!) + w1

[
W (!)p1(!) +

d−1∑

i=1

iwi+1,1

∑

!′1+...+!′
i

=!

pi(!′1, ..., !
′
i) + 2δ!0w1

]
.

RANDOM TREE GROWTH BY VERTEX SPLITTING 21

Figure 8. A diagram representing equation (3.6).

and

pk(!1, . . . , !k) =
1

! + 1

!∑

s=0

pk(!1, . . . , !k; s), (3.9)

where !1 + . . . + !k = ! From (3.8) we get a recursion for the mean proba-
bilities, going from time ! to ! + 1

pR(! + 1) =
! + 1
! + 2

pR(!). (3.10)

For k = 1 we obtain from (3.4), (3.5) and (3.9)

p1(! + 1) (3.11)

=
! + 1
! + 2

1
W (!) + w1

[
W (!)p1(!) +

d−1∑

i=1

iwi+1,1

∑

!′1+...+!′
i

=!

pi(!′1, ..., !
′
i) + 2δ!0w1

]
.

22 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.
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Finally we define the ”two point functions” that are needed to
calculate the Hausdorff dimension:

qki(`1; `2) =
X

`0
1
+:::+`0

k�i
=`1

X
`00
1
+:::+`00

i
=`2

pk(`
0
1; : : : ; `

0
k�i; `

00
1; : : : ; `

00
i );

which is the probability that i trees of total volume `1, none of
which contains the root, are attached to a vertex of order k in a
tree of total volume ` = `1 + `2. There are d(d� 1)=2 such
functions, 1 � i � k � 1.
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The two point functions satisfy the recursion relation
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where k = 2, . . . , d and i = 1, . . . , k−1. In total there are d(d−1)/2 of these
functions. If we define

q1,0(!1, !2) = δ!20δ!1!p1(!1 + !2)

then qki(!1, !2) is the probability that i right trees of total volume !2 are
attached to a vertex of degree k in a tree of total volume !1 + !2. By
summing over the equations in the previous section we get

qki(!1, !2) =
! + 1
! + 2

1
W (!) + w1

[

d∑

j=k−1

wk,j+2−k

(
(j − i)qji(!1 − 1, !2) + iqj,j−(k−i)(!1, !2 − 1)

)

+
(
W (!1 − 1) + (k − i− 1)(w2 − w3)

)
qki(!1 − 1, !2)

+
(
W (!2 − 1) + (i− 1)(w2 − w3)

)
qki(!1, !2 − 1)

+δk2δ!11w1pR(!2) + δi1δ!21wk,1

∑

!′1+...+!′k−1=!1

pk−1(!′1, . . . , !
′
k−1)

]

(3.14)

with !1+!2 = !+1. We see that the two-point functions satisfy an essentially
closed system of equations. The last two terms in (3.14) do not contribute
to the scaling limit which will be discussed in the next section.

4. Hausdorff dimension

In this section we relate the two-point functions defined in the previous
section to the size of trees, defined in a suitable way. With the help of
some scaling assumptions this relation allows us to calculate the Hausdorff
dimension of the trees as a function of the partitioning weights in simple
cases. As in Section 3 we assume that the weights wi are linear in i and we
shall comment on the general case at the end of the section.

4.1. Definition. Let T be a tree with ! edges and v and w two vertices of
T . The (intrinsic geodesic) distance dT (v, w) between v and w is the number
of edges that separate v from w. We define the radius of T with respect to
the vertex v as

RT (v) =
1
2!

∑

w

dT (v, w) k(w), (4.1)

where k(w) is the degree of the vertex w. Notice that 2! =
∑

w k(w). The
global radius of T is

RT =
1
2!

∑

v

RT (v)k(v). (4.2)

An almost closed system of linear equations.
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Hausdorff dimension

I Let T be a tree with ` edges and v;w vertices of T .

I Denote the graph distance between v and w by dT (v;w).

I We define the radius of T as

RT =
1

(2`)

X
v2T

dT (r; v)�(v);

I We define the Hausdorff dimension of the tree, dH , by the
scaling law for large trees

hRT i � `1=dH `!1

This definition is different from the one we wrote down earlier for
infinite trees but is expected to be equivalent.
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Combinatorics
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We define the Hausdorff dimension of the tree, dH , from the scaling law for
large trees

〈RT 〉 ∼ !1/dH ! →∞. (4.3)

The more usual definition of the local fractal dimension of a vertex v of
the tree, df (v), is defined by the growth of the volume of a ball of radius r
around v, Bv(r) = {w : d(v, w) ≤ r}

〈Card(Bv(r))〉 ∼ rdf (v) 1 ' r ' !. (4.4)

These two definitions are expected to coincide provided that the tree is a
homogeneous fractal (no multifractal behaviour). We expect that the scaling
behaviour (4.4) is valid independently of the point v and also that the scaling
(4.3) holds for RT (v) defined by (4.1) irrespective of the point v chosen.

4.2. Geodesic distances and 2 point functions. The radius RT (v) can
be extracted from the two point functions calculated in the previous section.
Let T be a tree and v a vertex of T . Let i be an edge of T . If we cut this
edge then the tree is split into two connected components, a tree T1 which
contains v and a tree T2 that does not contain v (see Figure 8). Let !2(v; i)
be the number of edges of T2. We have the simple remarkable result

∑

w

dT (v, w)k(w) =
∑

i

(2!2(v; i) + 1) (4.5)

which we will now prove. For the tree T with ! edges, we may assign two

i
v

!1

!2

Figure 10. Cutting a tree along the edge i.

labels to every edge in the following way. Starting from v, we walk around
the tree while always keeping the tree to the left. Drop the labels 1 to 2! on
the sides of edges as we pass them.

An example of such a walk and labelling is shown in Figure 11. Let us
mention that the initial direction from v is unimportant. In what follows we
will denote these new labels by greek letters.

I Cutting the tree at an edge i we get two subtrees of size `1
and `2

I One can prove the following identity:

X
w

dT (v;w)�(w) =
X
i

(2`2(v; i) + 1)

valid for any vertex v. We use it for v = r.
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I The identity implies:

hRT i = 1

2`

X
T

P (T )
X
i

(2`2(r; i) + 1)

=
`+ 1

2`

1X
`2=0

(2`2 + 1)
dX

k=1

qk;k�1(`� `2; `2)

26 F. DAVID, W.M.B. DUKES, T. JONSSON, S.Ö. STEFÁNSSON.

!1 = !− !2 !2

Figure 12. Illustration of eq. 4.9.

where !1 + !2 = !, x = !1/! ∈]0, 1[ and where ωki, γki are some functions. It
must hold that ωki > 0 and we assume that the scaling exponent ρ satisfies

1 < ρ ≤ 2. (4.11)

Note that for ! finite, the probabilities qk,i(!1, !2) are of order !−1 when !1

is of order 1 and are of order 1 when !2 is of order 1. This implies that the
scaling functions ωki(x) should scale when x → 0 or x → 1, respectively, as

ωki(x) ∼
x→0

x1−ρ and ωki(x) ∼
x→1

(1− x)−ρ. (4.12)

Using this ansatz and (4.9) the mean radius scales as

〈RT (r)〉 ( !2−ρ C, C =
∫ 1

0
dx (1− x) ω(x), ω(x) =

∑

k

ωk,k−1(x).

(4.13)
Equations (4.12) and (4.11) ensure that the integral C is convergent when
ρ < 2. Equation (4.3) then implies that the Hausdorff dimension of the tree
is given by

2− ρ =
1

dH
. (4.14)

For ρ = 2 we see that C is logarithmically divergent and this corresponds
to an infinite Hausdorff dimension.

Inserting (4.10) into the recursion equation (3.14) for the two point func-
tions and expanding in !−1 gives (dropping the function argument x in an
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I We use a scaling assumptions about the q functions

qki(`1; `� `1) = `��!ki(`1=`) +O(`�+1)

I Inserting into the recurrence equation for qki keeping leading
order terms in `�1 gives

RANDOM TREE GROWTH BY VERTEX SPLITTING 27

obvious way)

ωki − ρωki#
−1 + γki#

−1 + O(#−2)

=
1
w2

#−1
(
1− w1 + 2w2 − w3

w2
#−1 + O(#−2)

)

×
[ d∑

j=k−1

wk,j+2−k

(
(j − i)ωji + iωj,j−(k−i) + O(#−1)

)

+#
(
w2x + (−w3 + (k − i− 1)(w2 − w3))#−1

)(
ωki + γki#

−1 + O(#−2)
)

+#
(
w2(1− x) + i(w2 − w3)#−1

)(
ωki + γki#

−1 + O(#−2)
)]

. (4.15)

The equation is trivially satisfied in zeroth order of #−1. When we go to the
next order we see that the following must hold

(2− ρ)ωki =
1
w2

d∑

j=k−1

wk,j+2−k

(
(j − i)ωji + iωj,j−(k−i)

)
− wk

w2
ωki.

(4.16)

This eigenvalue equation may be rewritten as

Cω = w2(2− ρ)ω (4.17)

where C is a
(
d
2

)
×

(
d
2

)
matrix indexed by a pair of two indices ki with

k > i, k = 2, . . . , d and ω is a vector with two such indices. The matrix
elements of C are

Cki,jn = wk,j+2−k

(
(j − i) δin + iδn,j−(k−i)

)
− wkδkjδin. (4.18)

We use the convention that wi,j = 0 if i or j is less than 1 or greater than
d. Thus, w2(2 − ρ) is an eigenvalue of the matrix C and the associated
eigenvector must have components ≥ 0. We now show that there is in
general a unique solution to this eigenvalue problem.

Since the only possibly negative elements of C are on the diagonal we
can make the matrix non-negative by adding a positive multiple γ of the
identity to both sides of (4.17) and choosing γ large enough.

If enough of the weights wi,j are non–zero (w1,i > 0 for 2 ≤ i ≤ d and
wj,3 > 0 for 2 ≤ j ≤ d− 1 is for example sufficient) then one can check that
the matrix C + γI is primitive. Then, by the Perron-Frobenius theorem,
it has a simple positive eigenvalue of largest modulus and its correspond-
ing eigenvector can be taken to have all entries positive cf. Lemma 2.3.
Therefore this largest positive eigenvalue gives the ρ we are after.

4.4. An upper bound on the Hausdorff dimension. We can get an
upper bound on ρ by a straight forward estimate from (4.16). The off-
diagonal terms in the sum are all non-negative so we disregard them and
get the inequality

I This is a Perron-Frobenius type equation. Gives � in principle.

I Can solve in simple cases and prove some bounds in more
general cases.
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Hausdorff dimension

Linear weights and d = 3

dH =
3(1 +

p
1 + 16y)

8y
; y = w3=w2
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4.5. Explicit solutions and numerical results for dmax = 3. When the
maximal degree is d = 3, the splitting weights are taken to be linear
wi = ai+b and the partitioning weights uniform, it is easy to solve equation
(4.16) for the Hausdorff dimension . Since the solution only depends on the
ratio of the weights there is only one independent variable and we choose it
to be y := w3/w2 where 0 ≤ y ≤ 2. The solution is

dH =
3(1 +

√
1 + 16y)

8y
(4.25)

In Figure 13 we compare this equation to results from simulations. The
agreement of the simulations with the formula is good in the tested range
0.5 ≤ y ≤ 2. For smaller values of y the Hausdorff dimension increases fast
and one would have to simulate very large trees to see the scaling.

 1

 1.5

 2

 2.5

 3

 3.5

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

d
H

y

Figure 13. Equation (4.25) compared to simulations. The
Hausdorff dimension, dH , is plotted against y = w3/w2. The
leftmost datapoint is calculated from 50 trees on 50000 ver-
tices and the others are calculated from 50 trees on 10000
vertices.

4.6. Hausdorff dimension for general weights.

4.6.1. General mean field argument. Our argument to compute the Haus-
dorff dimension relies on the recursion relations for the substructure proba-
bilities, studied in Section 3, which are valid only when the splitting weights
wi are linear functions of the vertex degree i (wi = ai + b). In this case the
total probability weight W(T ) for a given tree T depends only on its size !
(number of edges) and mean field arguments can be made exact.
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Hausdorff dimension
General solution for d = 3

dH =
(w2;2 � 2w3;1) +

p
(w2;2 � 2w3;1)2 + 8w3;1(w2;1 + 3w3;2)

(w2;2 � 2w3;1) +
p
(w2;2 � 2w3;1)2 + 16w3;1w3;2

:

w3;1 = w2;2 = w2=3

w3;2 = w3=3

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100

d H

w2

w1 = 1

w3 = 1

w3 = 2

w3 = 4

w3 = 100

w3 = 10

1
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Conclusions and problems

I Random trees are a universal mathematical tool in science

I It remains to understand in detail what types of behaviour can
occur - what constitutes a universality class?

I What classes of continuum trees exist?

I Many concrete problems: equilibrium description of splitting
vertex trees, spectral properties, etc.

I Knowing the properties of the trees which arise in a physical
system (or in some other context) may shed light on the
mechanisms that produce the trees

I Export techniques and results from trees to graphs with loops
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