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   Lattice Monte Carlo + chiral perturbation theory have made 
great strides in “solving” QCD, i.e. deriving such things
as the low-lying hadron spectrum and weak decay constants.

     So what else is needed?  

We would like to also understand QCD, i.e. how it does what it 
does. 

In particular we would like to understand confinement.

In this area progress has been slow, and there is still no general 
agreement about how confinement comes about.

There is even disagreement about what we are trying to 
explain...
      



  

Outline

1.  What is Confinement?  
     Is it distinguished from “non-Confinement” by some symmetry?

2.   Relevance of the gauge-Higgs model, and the ambiguity
      of spontaneous gauge symmetry breaking.

3.   Order parameters, center symmetry, and some numerical facts.
 
4.   Current approaches
         vortices, monopoles, calorons, Dyson-Schwinger eqns.,
         vacuum wavefunctionals...
         (for AdS/CFT - other talks here?)

5.   Confining Coulomb potential and the Gluon Chain Model  



  

What is Confinement?

Juliet:
    "What's in a name? That 
which we call a rose
    By any other name would 
smell as sweet."

    Romeo and Juliet (II, ii, 1-2) 



  

     1    linear static quark potential, rising to infinity  
         
     2.    colorless asymptotic particle states

These are not quite the same thing,  which raises some 
semantic issues:
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     1    linear static quark potential, rising to infinity  
         
     2.    colorless asymptotic particle states

These are not quite the same thing,  which raises some 
semantic issues:

against #1 -  in real QCD, with quarks, the static potential rises 
and then levels off, due to string breaking.

       so is real QCD not confining?
    
against #2 -   asymptotic particle states are also colorless in a 
Higgs theory, where there is no linear potential at all.    

      so are broken gauge theories confining?
  

most order parameters

common terminology

What are people trying to prove, in order to “prove” confinement?
And what do they mean by that word?



  

The Fradkin-Shenker-Osterwalder-Seiler Theorem

Consider an SU(2) gauge-Higgs theory with lattice action 

S = β
∑
plaq

1
2
Tr[UUU†U†] + γ

∑
x,µ

1
2
Tr[φ†(x)Uµ(x)φ(x + µ̂)]

It has a phase diagram something like this:

The theorem says that 
there is no complete 
separation between the 
Higgs-like and the 
confinement-like regions.



  

More precisely:  between a point

”a” deep in the confinement-like regime    (                 ) , and a point                    

“b” deep in the Higgs regime    (                 )  ,

there is a path from a to b such that all Green’s functions of all local, 
gauge-invariant operators

vary analytically along the path.

β, γ ! 1

β, γ ! 1

〈A(x1)B(x2)C(x3)...〉

This rules out an abrupt 
transition from a colorless to 
a color-charged spectrum.

a

b

What happened to “Spontaneous 
Symmetry Breaking”??



  

Elitzur’s Theorem:

    Local gauge symmetries do not break spontaneously.  In the absence 
of gauge fixing,                regardless of the shape of the Higgs potential.

However, one can always fix to some gauge, e.g. Landau or Coulomb, 
having some residual global gauge symmetry.  These residual 
symmetries can break spontaneously.

Gauge Condition    Residual          unbroken realization 
                               symmetry        required by the         
 
Landau gauge:       g(x,t) = g          Kugo-Ojima confinement criterion
                                                       

Coulomb gauge:     g(x,t) = g(t)       Coulomb confinement scenario
                                   
                                                         
                                                        

(global symmetry on a time-slice)

〈ϕ〉 = 0



  

I.  The Kugo-Ojima Criterion

Kugo and Ojima introduce a function                 defined by 

where  ca(x)  is the ghost field in a covariant gauge.   They then show that
the expectation value of charge vanishes in any physical state

                                                                            (confinement?)

providing the following conditions are satisfied: 

uab(p2)

uab(p2)
(

gµν − pµpν

p2

)
=∫

d4x eip(x−y)〈0|T [Dµca(x)g(Aν × c)b(y)|0〉

〈phys |Qa|phys〉 = 0



  

1.  Remnant symmetry  under  g(x) = g  is unbroken

2.  The criterion                              is satisfied.

     It turns out that (2)  implies that a spatially inhomogenous 
remnant symmetry in Landau gauge is also unbroken  (Hata, Kugo).

     Therefore, the Kugo-Ojima scenario requires that the 
entire remnant gauge symmetry in Landau gauge is 
unbroken, i.e. 〈φ〉 = 0 .

uab(0) = −δab



  

II.  The Coulomb Criterion     Marinari, Parisi, Paciello, Taglienti (1993)
                                                                               Olejnik, Zwanziger, JG  (2004)

The idea is to show that

  The Coulomb energy of an isolated color charge is infinite;

  The color Coulomb potential is confining.

It turns out that both of these are implied by unbroken remnant gauge 
symmetry 

which means that

where       

g(x, t) = g(t)

〈
Tr

[
L(x, T )

]〉
= 0

L(x, T ) = P exp

[
i

∫ T

0
dt A0(x, t)

]



  

Isolated Charge 

propagation  in time

infinite energy if  G(T)=0 , which implies 〈Tr[L]〉 = 0

Color-Coulomb Potential

 
Vcoul(R) goes flat at G(R) → ∞ (no confinement) if  〈Tr[L]〉 ≠ 0 

So both conditions require unbroken remnant gauge symmetry.

Ψa
q = qa(x)Ψ0

G(T ) = 〈Ψa
q |e−(H−E0)T |Ψa

q 〉
∝ 〈

Tr
[
L(x, T )

]〉

Vcoul(R) = − lim
T→0

d

dT
log

[
Tr[L(x, T )L†(y, T )]

]



  

 

Either criterion - Kugo-Ojima or Coulomb confinement - 
can work in real QCD, with matter fields.

 So is this what we mean by confinement?



  

The problem is:

   1.  these residual symmetries break in different places, and  

   2.  they break in the absence of any other abrupt change in the
        physical state  (Fradkin-Shenker)

Not a good criterion for confinement!  
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Gauge Symmetry-Breaking Transition Lines

confinement-like region

higgs-like region

Coulomb transition
Landau transition Caudy & JG (07)



  

Dual Superconductivity           Mandelstam and ‘t Hooft, mid-1970’s

In compact U(1) gauge theories there is a conserved magnetic current

associated with a dual U(1) gauge symmetry.

Spontaneous breaking of the dual gauge symmetry leads to confinement 
via a dual Meissner effect.

How to detect spontaneous breaking of a dual (global) gauge symmetry?

Pisa Proposal   Di Giacomo, Paffuti, D’Elia, Lucini, del Debbio...

The order parameter for dual symmetry breaking is a monopole 
creation operator, denoted μ, which doesn’t commute with magnetic

 charge.       

jM
µ = ∂νF̃µν



  

The monopole operator inserts a monopole field centered at a given point x

accomplished by

(In a non-abelian theory, an abelian subgroup is picked out by abelian 
projection.)

In practice one computes

A large negative peak in ρ at some  β=βc , growing with lattice volume, is the 
sign that                ,  and dual superconductivity disappears, for β>βc .

µ(x)|Ai〉 = |Ai + AM
i 〉

µ(x) = exp
[
i

∫
d3y AM

i (y)Ei(y)
]

〈µ〉 = 0

ρ =
∂

∂β
log〈µ〉 = 〈S〉S − 〈SM 〉SM



  

In case after case, a symmetry restoration transition
                       ρ → −∞  ,   〈µ〉→ 0   
occurs at the deconfinement temperature.

But what about the behavior of ρ near other types of transitions; e.g. in the 
gauge-Higgs model, at zero temperature? 

Pure SU(2),  NT=4
Di Giacomo et al. (1999)



  

There is strong evidence of µ→0 (dual symmetry restoration) 
transitions in the absence of any transition from a confining to a non-
confining phase, and even in the absence of any change of phase 
whatever.

We (Lucini & JG, 08) find such µ→0 transitions, at zero temperature, 
in

1.  SU(5) gauge theory 

2.  mixed fundamental-adjoint SU(2) gauge theory

3.  pure SU(2) (Wilson action)

4.  gauge-Higgs theory  

5.  G(2) gauge theory  (Cossu et al.)
 



  

Example - SU(2) gauge-Higgs action

We find µ → 0 transitions in the gauge-Higgs model, where the Fradkin-
Shenker theorem tells us that the phase diagram is connected.
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So, what’s in a name?

If “confinement” means:

   color-singlet spectrum

then there is probably no meaningful 
distinction between the confined and 
Higgs phases, at least in terms of 
symmetries

But there is a difference in physics!  Flux tube formation, linear potential, 
Regge trajectories....as opposed to a Yukawa potential.

If we focus on these, rather than on color neutrality, then perhaps it is 
better to say that confinement is the phase of 

             
                                    magnetic disorder



  

The vacuum of the gauge-Higgs theory has this property in the γ→0
(Higgs decoupling) limit.  

The QCD vacuum has this property in the quark mass mq→ ∞ limit.

In these limits the static quark potential rises linearly forever, and the 
theory acquires an unbroken global symmetry...     

Magnetic Disorder the existence of vacuum fluctuations strong 
enough to induce an area law falloff in 
Wilson loops at arbitrarily large scales.



  

When center symmetry is broken, 
either: 

a)  spontaneously 

         deconfinement at high T
         adjoint rep matter fields

b)   explicitly

          fundamental rep matter fields 

c)   or doesn’t exist in the first place

          G(2) gauge group              

      magnetic disorder is lost.

Center Symmetry



  

    Center Symmetry
and Order Parameters for Confinement



  

Traditional order parameters for confinement    

    A.  finite asymptotic string tension                  (implies linear potential)

    B.  vanishing Polyakov lines (isolated charge has infinite energy)

    C.   ‘t Hooft loop  (center vortex creation operator)  

    
    D.   center vortex free energy: 

           if                                                     then                         
                           
None of these conditions are satisfied if global center symmetry is 
broken spontaneously (deconfinement) or explicitly (quarks).  

W (C) =
〈

P exp[i
∮

C
dxµAµ]

〉
∼ exp[−σArea(C)]

P (!x) =

〈
P exp[i

∫ T

0
dt A0(!x, t)]

〉
= 0

Fv = LzLt exp[−σ′LxLy] σ ≥ σ′

B(C) ∼ exp[−µPerimeter(C)]

σ > 0



  

A little group theory:  the center subgroup is the set of all group 
elements that commute with the full group.  For SU(N)

ZN =
{

zn = e2πin/NIN , n = 0, 1, 2, ..., N − 1
}

Suppose M[g] is an irreducible representation of the group element 
g.   Then there is a fixed power k - known as the N-ality - such that

M [zng] =
(
e2πin/N

)k
M [g]

Gluons binding to a color charge can reduce the dimensionality of the 
representation, but not the N-ality.

Asymptotically, the string tension of a quark-antiquark pair can only 
depend on the N-ality of the quark color charge representation.



  

Center symmetry on the lattice is the global transformation

where                           is an element of the center subgroup of SU(N) 

U0(!x, t0)→ zU0(!x, t0) , z ∈ ZN , all !x

z = e2πin/N

This transformation does not change plaquettes or Wilson loops, but Polyakov 
lines are multiplied by the center element z .

                         iff  center symmetry is unbroken.〈P 〉 = 0



  

 

                   

 If we take “Confinement”  to mean  “Magnetic Disorder”, then
 

Confinement is the phase of unbroken center symmetry.



  

Question:
 
   “If the center is so important, then what confines gluons?”

Answer: 
  
   The same thing that “confines” large electric charge in QED.

 
                                                   

spectrum sense!

↑



  

In QED it is impossible to have an object of nuclear size having an 
electric charge much greater than |Qc| ≈ 170.

QED vacuum
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The same process goes on for adjoint charges in non-abelian theories, 
given sufficient charge separation

Yang-Mills vacuum
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The same process goes on for adjoint charges in non-abelian theories, 
given sufficient charge separation

QCD vacuum

I prefer to call this “color screening”, rather than color “confinement”.



  

Text

For theories with unbroken center symmetry, charges with non-
zero N-ality cannot be completely screened by gluons.

These theories - mainly pure SU(2) and SU(3), but also higher N 
to some extent - have been studied extensively numerically.

 



  

Text

For theories with unbroken center symmetry, charges with non-
zero N-ality cannot be completely screened by gluons.

These theories - mainly pure SU(2) and SU(3), but also higher N 
to some extent - have been studied extensively numerically.

I.  Linear potential 

r0 ≈ 0.5 fm

The static quark 
potential is 
asymptotically
linear.



  

II.  Casimir Scaling

For the static quark-antiquark 
pair in representation “r” of the 
color group:

At intermediate scales, string 
tensions are proportional to the 
quadratic Casimir of the color 
charge representation.
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Bali (2000)

(this numerical calculation is 
insensitive to string-breaking, and 
looks at metastable flux tubes)



  

III.   Color Screening:  N-ality

Asymptotically, the string tension depends only on the N-ality of the 
representation, not the quadratic Casimir.

for the adjoint rep,
N-ality = 0 , and the
asymptotic string 
tension is also zero.

de Forcrand and Kratochvila  
(2002)



  

IV.  String-like properties

the sign of these is the existence of a universal correction (the “Luscher 
term”) to the linear potential in D dimensions

VL(R) = − (d− 2)
24

1
R

Luscher and Weisz 
(2002)

V (R) = σR +
c(R)
R



  

So there is evidence, from numerical simulations, for qualitatively 
different behavior of V(R) at different distance scales:

perturbative Casimir scaling N-ality regime

→  linear potential

0                        0.25                      1.25                   fm

For SU(N) gauge theories, the transition between Casimir 
scaling and N-ality runs off to infinity as                .N →∞



  

In the N-ality regime, string tension can only depend on N-ality k, 
and there are two proposals on the table:

σ(k)
σF

=


sin(πk/N)
sin(π/N) Sine Law scaling

k(N−k)
N−1 “Casimir” k-string scaling

Neither seems to be exact.

Explanations of confinement generally fall into one of a few broad 
categories...

asymptotic, not intermediate, string tensions



  

Current Approaches

I.   “Topology” - special field configurations
                

II.   “Propagators”

III.   Vacuum Wavefunctionals

IV.   AdS/CFT  (other talks at this meeting?)

a.    Center  Vortices
b.    Monopoles
c.    Calorons

a.    confining Coulomb potential
b.    Dyson-Schwinger Equations  



  

Center Vortices

Motivations:

     1.    The asymptotic string tension in pure gauge theories   
            depends only on the N-ality of the static charges

            (i.e. how the charges transform under the center subgroup of the    
                gauge group)

     2.    All of the unambiguous order parameters for confinement  
            indicate that confinement is the phase of unbroken    
            center symmetry.

The only scenario I know of, which explains point 1 in terms of 
vacuum field configurations, is the center vortex mechanism.

‘t Hooft (1978)



  

A center vortex is a loop of quantized magnetic flux which sweeps 
out a (thick) sheet as it propagates in time. 

Creation of a center vortex, topologically linked to a Wilson loop,
multiplies the Wilson loop by a center element.  

U(C) = P exp
[
i

∮
C

dxµ Aµ]
]

Wilson Loop C



  

A center vortex is a loop of quantized magnetic flux   which 
sweeps out a (thick) sheet as it propagates in time. 

Creation of a center vortex, topologically linked to a Wilson loop,
multiplies the Wilson loop by a center element.  

Wilson Loop C

Center Vortex U(C)→ zU(C) where z ∈ ZN



  

Center Vortex 

Wilson Loop C

Area law   W(C) ~ exp[-Area(C)]  is due to fluctuations in the 
number of vortices linked to loop C.

Asymptotic string tension depends only on N-ality.



  

There is a lot of numerical evidence in favor of this picture
 based on methods, developed in 1997-98, for locating vortices in lattice 
 configurations   

     1.   Vortex linking number is correlated with the phase of the    
           Wilson loop;

     2.   Vortices by themselves give about the right string tension; 

     3.   Plaquette action is high on vortex surfaces;

     4.   Vortex density scales according to asymptotic freedom

     5.   when vortices are removed from lattice configurations

 

     6.   vortex thickness agrees with independent estimates (adjoint
           string breaking, vortex free energy measurements)     

     7.   spacelike string tension at high T comes from vortices closed
           in the periodic time direction.
     

         Faber, Olejnik, & JG,  
         Tubingen group: Reinhardt, Engelhardt,Langfeld...  
         ITEP group: Polikarpov, Gubarev, Zakharov,...
         de Forcrand et al.

a.  the string tension vanishes, and
b.  chiral symmetry breaking goes away



  

T

Deconfinement:   As  temperature increases, spacelike vortices get 
“squeezed”, vortex free energy goes up, vortex percolation disappears,
no confinement.

low temperature

high temperature

vortex

vortex

Polyakov 
line



  

Tspacelike
Wilson loop

Timelike vortices (closed in the periodic time direction) do not get 
squeezed at high temperature, and remain to give an area law to
spacelike Wilson loops.



  

N-ality dependence is fine for the 
asymptotic string tension.

However, at intermediate scales, 
string tensions are proportional 
to the quadratic Casimir of the 
color charge representation, not 
the N-ality.

“Casimir Scaling”

In the vortex scenario, this can 
be explained in terms of 
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a.  finite vortex thickness
b.  fluctuations within vortices

Vr(R) =
Cr

CF
VF (R)



  

Representation dependence of the string tension:

Casimir scaling at intermediate distances;
 

N-ality dependence asymptotically.

The latter is due to string-breaking by gluons and/or matter fields.  No big 
mystery.

But this is a “particle” explanation...  

What is the “field” explanation, for both Casimir and N-ality behavior, in 
terms of vacuum fluctuations which dominate the relevant functional 
integral?   

Group Disorder and Center Disorder
K. Langfeld, S. Olejnik, H. Reinhardt, T. Tok, & J.G.   (2006)



  

Basic idea:  In a surface slice, the vacuum is dominated by overlapping 
center domains on some scale R.  Fluctuations within each domain 
(beyond the confinement scale) are subject only to the weak constraint 
that the total magnetic flux adds up to a center element of the gauge 
group.    

Fluctuations within a domain                      Group disorder, Casimir scaling
Existence of domains                                 Center disorder,  N-ality



  

A simple model:   center domain in the plane of a Wilson loop contributes 
a factor 

z0 = 1zn ∈ ZN

where         is the group character,       the generators of the Cartan 
subalgebra, and the         depend on the overlap of the domain with the 
interior of the loop.

χr !H
!αn

z = Sei!αn· !HS†

z =
1
dr

χr

[
exp[i"αn · "H]

]
(S a random group element) 

(average over S )



  

            is proportional to the quadratic Casimir for small     , and goes to 
a center element (which may be             )   for enclosed domains.

             represents the average magnetic flux in the overlap region of 
loop and domain.   

We suppose that fluctuations in different regions of each domain are 
correlated only by the constraint that they add up to center element.   

If            is the area of the domain, and          is the area contained in 
the loop, then for SU(2) we get

α
z0 = 1

!α · !H

AD A

(
α1(x)

)2
= const.

[
A

AD
− A2

A2
D

]
+

(
2π

A

AD

)2

(
α0(x)

)2
= const.

[
A

AD
− A2

A2
D

]

z[α]



  

Difference between G(2) and SU(2):  G(2) has only one type of center 
domain, only         contributes, string tension is asymptotically zero.

For SU(2), the domain model gives results for the static potential like 
these:

α0

Casimir scaling
(short distance)

Color screening
   (asymptotic)
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Monopoles

Motivations:

     1.    “Dual Superconductivity”        (‘t Hooft & Mandelstam)
             
     2.    Compact U(1) in 2+1 dimensions  (Polyakov)

      3.      Seiberg-Witten model  

lattice investigations by the
   Kanazawa group (Suzuki et al.)
   Pisa group  (di Giacomo et al.)
   ITEP group (Polikarpov et al.)
among others...



  

Confinement in Compact QED3    (the monopole Coulumb gas)

Compact QED has monopole as well as photon excitations

θ(p) = 2π ↙

Dirac Line

U(p) = eiθ(p)



  

Polyakov showed that in D=3 dimensions, compact QED could be expressed 
as a monopole Coulomb plasma, with partition function

where the m(r) are integer-valued fields living on the dual sites of the lattice, 
and G(r) ~ 1/r .   

Introduce a Wilson loop                                       into the partition function, 
where

exp[i
∮

C
dxµAµ]



  

Everything can be calculated explicitly in D=3 dimensions, with the result, for 
a Wilson loop corresponding to abelian charge n ,

A very rough image of whats going on:  monopoles and antimonopoles line 
up along the minimal area, and screen out the magnetic field that would be 
generated by the Wilson (current) loop source

Wn(C) =
〈

exp
[
in

∮
C

dxµAµ

]〉
= exp[−nσArea(C)]

Plane of the Wilson loop



  

Relativistic Superconductor 

 The abelian Higgs model

has a massive and a Coulomb phase.  The Coulomb phase has 
Nielsen-Olesen vortices of magnetic flux, the analog of Abrikosov 
vortices in an ordinary type II superconductor, magnetic charge is 
confined.

Dual Superconductor Idea

      The Higgs is magnetically, rather than electrically charged, it 
couples to a “dual” photon field.  Electric, rather than magnetic fields 
are squeezed into flux tubes, and electrical charges are confined.



  

Extension to a non-abelian theory involves selection of an abelian subgroup of 
the gauge group, generated by the Cartan subalgebra.  The subgroup is 
identified either via a Higgs field in the adjoint representation, or by imposition 
of an “abelian projection” gauge, which leaves the subgroup unfixed:

The most common such gauge is the maximal abelian gauge, which makes 
the gauge fields as abelian as possible.  In lattice SU(2), the gauge 
maximizes the quantity

Abelian projection means: project each link variable to the closest abelian 
group element.  

SU(N)→ U(1)N−1

R =
∑

x

∑
µ

Tr[Uµ(x)σ3U
†
µ(x)σ3]



  

Simplest versions of monopole confinement have difficulties with N-ality for 
Wilson loops in the abelian subgroup.   E.g., for                          ,  consider 
the double-charged abelian loop

                                                      

This loop has an area law in monopole Coulomb gas and dual 
superconductor pictures.

But in fact, the loop can be screened by abelian charged gluons, and the 
string tension is zero asymptotically.

If the abelian charged degrees of freedom are integrated out, the resulting 
abelian theory must respect N-ality somehow.

In ‘t Hooft’s abelian projection picture, it turns out that the abelian monopole 
worldlines  lie on vortex sheets.

SU(2)→ U(1)

W2[C] =
〈

P exp
[
2i

∮
dxµA3

µ
σ3

2

]〉



  

In the absence of gauge-fixing, the vortex field Ba 
points in random directions in the Lie algebra

For the SU(2) gauge group, fixing to maximal abelian gauge, the field 
tends to line up in the          direction.  But there will still be regions 
where the B-field rotates in group space, from           to           .    

±σ3
+σ3 −σ3



  

If we keep only the diagonal part of the link variables (“abelian projection”), a 
center vortex appears as a monopole-antimonopole chain, with  flux 
running between a monopole and neighboring antimonopole   

Then a typical vacuum 
configuration at a fixed 
time, after abelian 
projection, looks 
something like this:

This is the picture found in lattice simulations.    Ambjorn, Giedt, & JG, 2000
                                                                            de Forcrand & Pepe, 2001



  

Calorons 

Calorons are instantons at finite temperature (volumes with finite time extent).
  
Kraan-van Baal-Lee-Lu calorons have non-trivial (i.e. non-center) Polyakov 
lines         asymptotically far from the caloron, and have monopole 
constituents.

There is evidence of calorons on cooled/smeared lattices at low temperatures.

A confinement mechanism at low temperature ??  

In principle certain types of calorons (with                    ) can give the correct N-
ality dependence for Polyakov line correlators.

van Baal, Bruckman, Diakonov, 
Ilgenfritz, Mueller-Preussker, 
Gattringer, Garcia-Perez...

P∞

Tr[P∞] = 0



  

T
caloronholonomy

time slice caloron

What is interesting about 
calorons is that they have 
monopole constituents, 
and these can be far apart.

caloron action density on a time-slice  



  

The idea is that at low T, the monopole constituents of calorons are 
widely separated, and form a kind of monopole Coulomb gas, which 
leads to confinement.

A model calculation, by Diakonov and Petrov, gives just this result, with 
Sine-Law scaling of k-string tensions.   

Their model calculation involves a guess for the appropriate measure of 
caloron collective coordinates.



  

However...

Nobody really knows the right measure, and the Diakonov-Petrov 
guess has difficulties with non-positivity.   (Ilgenfritz et al., 2009) 

Getting N-ality right for abelian Wilson loops seems  problematic;  I see 
no reason that the abelian string tensions should only depend only on 
N-ality.

No explanation for the spacelike string tension above the   
deconfinement transition; a different mechanism is needed.

 Numerical evidence in favor of this mechanism is not very strong, at 
present.



  

  “Propagators”

The other main approach is



  

 Effects of the Gribov  Horizon

 

In Landau gauge and Coulomb gauge there exist Gribov copies, all 
satisfying the given gauge-fixing condition.  

For BRST invariant actions, there is

Neuberger’s Theorem

Related to:   In lattice regularization, there are even numbers of 
Gribov copies on a gauge orbit, half having a positive sign for the 
Faddeev-Popov determinant,  half negative, so the sum over all 
copies vanishes. 

〈Q〉 =
∫

DUDcDc Q[U ]e−(S+Sgf )∫
DUDcDc e−(S+Sgf )

=
0
0



  

Gribov and Zwanziger argue that most of the volume within     (and     ) is 
concentrated near the boundary         , the Gribov Horizon, where the 
Fadeev-Popov operator              has a zero eigenvalue.∂ · D

Because of Gribov copies, the functional integration in Landau and Coulomb 
gauges should be restricted, e.g., to the Fundamental Modular Region     , 
where                    and ||A|| is minimized.

Gribov Region

!

!

"!

Gribov Region

Gribov 
Horizon

fundamental
modular
region

"A=0

"

A=0

Λ

Λ Ω
∂Ω

∂A = 0

||A||



  

Coulomb Confinement

In a non-abelian gauge theory, the Coulomb potential is given by

VC(R) = −g2

〈
1

∇ · D
(−∇2)

1
∇ · D

〉

where the VEV is taken in Coulomb  gauge. 

There are multiple gauge-equivalent configurations (”Gribov 
Copies”) which satisfy the gauge-fixing condition

 

∇ · A = 0



  

At the Gribov Horizon, the Fadeev-Popov operator              has a zero 
eigenvalue.   If there is 

     i)   a concentration of small eigenvalues for configurations near the
          horizon; and

    ii)   lattice configurations are typically close to the Gribov horizon;

then (it has been speculated) then this could lead to an enhancement of 
the Coulomb potential.

In fact, it must be so, because it can be shown rigorously that

                                                                               (Zwanziger)

No confinement without Coulomb confinement.

||A||

∇ · D

V (R) ≤ VC(R)



  

eigenvalue equation of the F-P operator: 

Let            be the eigenvalue density.  

Coulomb self-energy of a static charge:  

so  the Coulomb confinement criterion is                                               

−∇ · D φn(x) = λnφn(x)

Eself =
g2CF

N − 1

〈(
1

∇ · D
(−∇2)

1
∇ · D

)aa

xx

〉

=
∫ λmax

0
dλ

〈
ρ(λ)

(φλ|(−∇2)|φλ)
λ2

〉

lim
λ→0

〈
ρ(λ)(φλ|(−∇2)|φλ)

〉
λ

> 0

ρ(λ)

which has been verified numerically (Olejnik, Zwanziger & JG, 2004) .



  

An easy way to compute the Coulomb potential:   Define, in 
Coulomb gauge

Ψqq = qa(0)qa(R)Ψ0

Then

and

G(R, T ) = 〈Ψqq|e−(H−E0)T |Ψqq〉

VC(R) =
〈Ψqq|H − E0|Ψqq〉

〈Ψqq|Ψqq〉
= − lim

T→0

d

dT
log[G(R, T )]



  

It’s not hard to show that

where

L(x, T ) = P exp

[
i

∫ T

0
dt A0(x, t)

]

is a timelike Wilson line.   On the lattice, these are products of 
timelike link variables.

G(R, T ) =
〈
Ψqq

∣∣∣e−(H−E0)T
∣∣∣ Ψqq

〉
=

〈
L†(0, T )L(R, T )

〉



  

The upshot is, on the lattice, that the Coulomb potential can be 
extracted from the correlator of timelike link variables

VC(R) = − log
[
U†

0 (x, t)U0(x + R, t)
]

Olejnik & JG (2003)



  

Dyson-Schwinger Equations

The idea is that DSE’s for n-point functions may be soluble in the 
infrared.  Look for power-law behavior.  Diagramatically, 

ghost propagator

ghost-gluon vertex

Alkofer, Fischer, Krassnig, Maris, 
Maas, Pawlowski, Roberts, von 
Smekal, Watson... 



  

Dµν(p) =
Z(p2)

p2

(
δµν − pµpν

p2

)
, Dghost(p) = −G(p2)

p2

Z(p2) ∼ (p2)2κ and G(p2) ∼ (p2)−κ

with

κ ≈ 0.595353

The claim is that these equations can be solved in a certain kinematical 
region (far infrared), and writing

Then

So the gluon propagator is less singular, and the ghost propagator 
more singular, than the perturbative result.  

This is called the scaling solution. 



  

↙
1/p4 behavior

Linear potential from “one-particle” exchange.

Unfortunately, the                “scaling” solution appears to be 
contradicted by large volume lattice simulations, which support 
instead a different solution of the DSE’s, the decoupling solution. 

κ > 0

Alkofer, Fischer, 
Llanes-Estrada & 
Schwenzer, ‘08



  

Lattice data on huge lattices (27 fm)4 does not agree that the 
gluon propagator vanishes in the infrared...

...nor is the ghost propagator more singular than a pole,
so the situation is a bit unclear, at present.

                                                  (more from Jan Pawlowki’s lectures)
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Yang-Mills Vacuum Wavefunctionals

The problem is to solve

to see if anything can be learned about confinement and the mass gap.   
Currently there are several approaches.

1.  Coulomb Gauge   (Reinhardt et al.,  Szczepaniak et al.)

      Use a gaussian ansatz
      and determine the kernel
      by minimizing <H>

I think this ansatz fails to give an area law for spacelike string tensions. 

HΨ0 = E0Ψ0

Ψ0[A] = exp
[
−

∫
Ai(x)Kij

xyAj(y)
]



  

2.  Temporal Gauge  D=2+1   (Olejnik & JG)

Ψ0[A] = exp

[
−1

2

∫
d2xd2y Ba(x)

(
1√−D2 − λ0 + m2

)ab

xy

Bb(y)

]

adjust         to get the string tension right, then we find that the mass 
gap (and other observables) comes out right.

m2

3.  New Variables  D=2+1   (Karabali & Nair,  Leigh et al.)

change variables from          to gauge-invariant        ,  the tradeoff is local 
gauge invariance for local holomorphic invariance under

Aa
µ Ja

∂J → h(z)∂Jh−1(z)



  

then let                                                    and

and define, for                                    

A = A1 + iA2

M ∈ SL(2, C)

z = x1 − ix2

A = −∂M

∂z
M−1

H = M†M

J =
cA

π

∂H

∂z
H−1

H and J are gauge-invariant, the action in new variables is invariant 
under holomorphic transformations

Start in temporal gauge, 

J → h(z)Jh−1(z) +
cA

π
(∂zh)h−1



  

The Hamiltonian has the form

holomorphic-invariant ground-state wavefunctional:

Karabali and Nair, and also Leigh et al claim to have an (exact?) 
expression for the kernel, and calculate a string tension which is in 
impressive agreement with the lattice results.

I will return to this...

Ψ0 = exp
(
− π

2cAm2

∫
∂̄J K

(
∆
m2

)
∂̄J + . . .

)

H = m

(∫
x

Ja(x)
δ

δJa(x)
+

∫
z,w

Ωab(z, w, J)
δ

δJa(z)
δ

δJb(w)

)
+

π

mcA

∫
x

∂̄Ja∂̄Ja



  

Temporal Gauge:   Our claim is that the ground state solution in D=2+1 
dimensions is approximated by 

is the color magnetic field strength

is the covariant Laplacian in adjoint color representation,

is the lowest eigenvalue of 

is a constant proportional to  g2 

where

Previous relevant work by:    J.G. (1979)
                                              Samuel (1996)
                                              Diakonov (unpublished)

D2 = DkDk

Ba = F a
12

λ0

m

−D2

Ψ0[A] = exp

[
−1

2

∫
d2xd2y Ba(x)

(
1√−D2 − λ0 + m2

)ab

xy

Bb(y)

]



  

In support of this claim, we find that Ψ0

      is a solution of the YM Schrodinger equation in the
          limit;

      solves the YM Schrodinger equation in the strong field,
          zero-mode limit;

      confines if  m > 0, and that m > 0 seems energetically 
          preferred;

      results in the numerically correct relationship between 
          the mass gap and the string tension.

g → 0



  

To begin at the beginning:

In Yang-Mills theory quantized in temporal gauge, all physical 
states must satisfy the Gauss Law constraint

which is equivalent to invariance of  Ψ[A]  under infinitesimal gauge 
transformations.  The Hamiltonian is

(
δac∂k + gεabcAb

k

) δ

δAc
k

Ψ = 0

H =
∫

ddx

{
−1

2
δ2

δAa
k(x)2

+
1
4
F a

ij(x)2
}



  

Free Field Limit

The proposed ground state

which is the known ground state solution in the abelian, free-field 
case.

obviously satisfies the non-abelian physical state condition, and in     
the                   limit this becomes g → 0

Ψ0[A] = exp
[
−

∫
d2xd2y

(
∂1A

a
2(x)− ∂2A

a
1(x)

)
×

(
δab

√−∇2

)
xy

(
∂1A

b
2(y)− ∂2A

b
1(y)

)]

Ψ0[A] = exp

[
−1

2

∫
d2xd2y Ba(x)

(
1√−D2 − λ0 + m2

)ab

xy

Bb(y)

]



  

Zero Mode Limit

Consider gauge fields constant in space, variable in time, in D=2+1 
dimensions.  Lagrangian 

Hamiltonian operator

Vacuum state

L =
1
2

∫
d2x

[
∂tAk · ∂tAk − g2(A1 ×A2) · (A1 ×A2)

]
=

1
2
V

[
∂tAk · ∂tAk − g2(A1 ×A2) · (A1 ×A2)

]

H = −1
2

1
V

∂2

∂Aa
k∂Aa

k

+
1
2
g2V (A1 ×A2) · (A1 ×A2)

Ψ0 = exp[−V R0]



  

With some algebra, one can verify that

Ψ0 = exp

[
−1

2
gV

(A1 ×A2) · (A1 ×A2)√|A1|2 + |A2|2
]

(−D2)ab
xy = g2δ(x− y)

[
(A2

1 + A2
2)δ

ab −Aa
1Ab

1 −Aa
2Ab

2

]

solves the zero-mode YM Schrodinger equation up to          
corrections.

Then we consider our proposal for the full vacuum state, for vacuum 
fluctuations in the strong A-field limit, where the covariant Laplacian 
is dominated by the gauge-field zero-mode, i.e.  

1/V



  

B ⊥ A1, A2

So our wavefunctional

• satisfies the physical state constraint;
• has the proper perturbative                      limit.
• agrees with the calculable ground state of the zero-mode limit.

Supposing its right, what about confinement?

Then one finds (using also that                            in SU(2) color space) 

g → 0

Ψ0[A]

= exp

[
−

∫
d2xd2y Ba(x)

(
1√−D2 − λ0 + m2

)ab

xy

Bb(y)

]

=⇒ exp

[
−1

2
gV

(A1 ×A2) · (A1 ×A2)√
A2

1 + A2
2

]



  

Ψeff
0 ≈ exp

[
−µ

∫
ddx F a

ij(x)F a
ij(x)

]

Dimensional Reduction

A long time ago it was suggested that at large distance scales, the 
pure Yang-Mills vacuum in a confining theory looks like

This vacuum state has the property of dimensional reduction:  
Computation of a spacelike loop in d+1 dimensions reduces to the 
calculation of a Wilson loop in Yang-Mills theory in d Euclidean 
dimensions.

J.G.  (1979)



  

 Suppose  Ψ0
(3)  is the ground state of the 3+1 dimensional theory, and  

Ψ0
(2) is the ground state of the 2+1 dimensional theory.   If these ground 

states both have the dimensional reduction form, and W(C) is a planar 
Wilson loop

In D=2 dimensions the Wilson loop can be calculated analytically, 
and we know there is an area-law falloff, with Casimir scaling of the 
string tensions.

 

W (C) = 〈Tr[U(C)]〉D=4 = 〈Ψ(3)
0 |Tr[U(C)]|Ψ(3)

0 〉
∼ 〈Tr[U(C)]〉D=3 = 〈Ψ(2)

0 |Tr[U(C)]|Ψ(2)
0 〉

∼ 〈Tr[U(C)]〉D=2



  

The cutoff mode sum defines the “slowly varying” B-field.  Choosing  nmax 

such that

Mode number cutoff:  Expand B(x) in eigenmodes of the covariant 
Laplacian: 

(−D2)abφb
n(x) = λnφa(x)

Ba(x) =
∞∑

n=0

bnφa
n(x)

Ba,slow(x) =
nmax∑
n=0

bnφa
n(x)

∫
d2xd2y Ba,slow(x)

(
1√−D2 − λ0 + m2

)ab

xy

Bb,slow(y)

≈ 1
m

∫
d2x Ba,slow(x)Ba,slow(x)

λnmax − λ0 " m2



  

m = 4
3βσ

|Ψ0|2 = exp
[
− 1

m

∫
d2x BslowBslow

]
So the part of the squared wavefunctional that involves Bslow is

which is the probability distribution of D=2 dimensional Yang-Mills (i.e. 
dimensional reduction).  The string tension σ can be calculated analytically; 
in lattice units it is

Suppose we turn this around, and fix                         , with σ taken from the 
Monte Carlo data. Then the full vacuum wavefunctional   

must imply a definite value for the mass gap.   What is it?

σ =
3
4

m

β

Ψ0[A] = exp

[
−1

2

∫
d2xd2y Ba(x)

(
1√−D2 − λ0 + m2

)ab

xy

Bb(y)

]



  

P [A] = |Ψ0[A]|2 = exp
[
−

∫
d2xd2y Ba(x)Kab

xy[A]Bb(y)
]

Numerical Simulation of  |Ψ0|2

To get the mass gap, we need to compute the connected correlator

in the probability distribution

where

Numerically, this looks hopeless!              is highly non-local, and is 
not even known explicitly for arbitrary gauge fields.   

G(x − y) = 〈(BaBa)x(BbBb)y〉 − 〈(BaBa)x〉2

Kab
xy

Kab
xy[A] =

(
1√−D2 − λ0 + m2

)ab

xy



  

where      is computed from      , not       ,   and                                            .
Then, assuming the variance of K is small,

But suppose - after eliminating the variance along gauge orbits by a gauge 
choice - that K[A] has very little variation among thermalized configurations.  
Then things are more promising.

Define

solve this equation iteratively...

P
[
A;K[A′]

]
= exp

[
−

∫
d2xd2y Ba(x)Kab

xy[A′]Bb(y)
]

B A A′ P [A] = P
[
A,K[A]

]
P [A] ≈ P

[
A, 〈K〉

]
= P

[
A,

∫
DA′ K[A′]P [A′]

]
≈

∫
DA′ P

[
A,K[A′]

]
P [A′]



  

General idea of the simulation:  work in an axial A1=0 gauge, and 
change integration variables from A2 to B.   Then:

       1.   given  A2 ,  set

       2.                         is gaussian in B.   Diagonalize
             and generate a new B-field (or set of B-fields) stochastically.

       3.   from B,  calculate  A2 in axial gauge,  and compute
             observables

       4.   go to step 1, repeat as necessary.   

(all in a lattice regularization)   
                   

P (1)[A] = P
[
A;K[0]

]
P (n+1)[A] =

∫
DA′ P

[
A;K[A′]

]
P (n)[A′]

A′
2 = A2

Kab
xy[A′]P [A;K[A′]]



  

Observables of interest include

      The eigenvalue spectrum {λn} of the adjoint covariant 
           Laplacian (-D2)

       The connected field-strength correlator

where

with the parameter m chosen to reproduce the known string 
tension σ

From G(R), we can extract the mass gap.

〈B2(x)B2(y)〉conn ∝ G(x− y)

m =
4
3
βσ

G(x− y) =
〈
(K−1)ab

xy(K−1)ba
yx

〉
K−1 =

√
−D2 − λ0 + m2



  

For Comparison 

We can also compute   {λn},   Kxy
ab , and 

on 2D slices of lattices generated by 3D lattice Monte Carlo.

This is like simulating the ground state of the transfer matrix 
in the Euclidean theory.   

Results obtained from “MC” lattices, generated by ordinary 
lattice Monte Carlo, can be compared with results obtained 
by simulating   |Ψ0|2 (“recursion” lattices).

G(x− y) =
〈
(K−1)ab

xy(K−1)ba
yx

〉
K−1 =

√
−D2 − λ0 + m2



  

Eigenvalue Spectrum       β=18, 50x50 lattice  

There is very little variance in the spectrum of -D2-λ0 from one lattice to the next..

This is a plot of eigenvalue vs mode number of

    the zero-field operator      (-r2 + m2)      
    the covariant operator (-D2 - λ0 + m2), computed on 10 lattices.  
These are not averaged; the values for each lattice are plotted, and 
(almost) fall on top of one another.



  

Mass Gap
Here is the data for
 

The data is obtained from ten recursion lattices, and ten MC lattices.  Note 
the tiny values of G(R) obtained at larger R. This requires a near-absence 
of fluctuation in K-1 from one lattice to the next.

G(x− y) =
〈
(K−1)ab

xy(K−1)ba
yx

〉



  

The mass gap is obtained by fitting the data for G(R) to extract the exponential 
falloff.  Define

where 
R=|x-y| and 
M=2µ.  

G0(R) = δabδba

[(√
−∇2 + µ2

)
xy

]2

=
3

4π2
(1 +

1
2
MR)2

e−MR

R6



  

Results for the mass gap

   “recursion” is our result. 
   “expt” is the Monte Carlo result for the 0+ glueball,
      obtained by Meyer and Teper.

Given string tension σ, we have determined fairly accurately
the 0+ glueball mass.



  

Another observable we have looked at is the Coulomb gauge ghost 
propagator.  This is evaluated by transforming each (MC or recursion) 
lattice to Coulomb gauge, and evaluating

with the (preliminary!) result

Gghost(x− y) =

〈(
1

−∇ · D

)aa

xy

〉



  

The Coulomb potential is very sensitive to “exceptional” configurations with 
very small       ; these lead to huge errorbars.  To compare recursion and MC 
results, we impose cuts on the data, throwing away these rare configurations.

λ0



  

Karabali-Kim-Nair wavefunctional     

When converted from “new variables” to old variables, it has the bilinear 
form

where

and KKN quote a string tension prediction (from Dimensional Reduction) 
derived by setting -D2=0 .  The result is accurate to a few percent.

     I think this success is a coincidence.  The analysis ignores the fact that 
the lowest eigenvalue  λ0  of  -D2  is positive definite.   When the KKN 
wavefunctional  is simulated numerically, the error in the string tension is 
around 50%, and may even be infinite in the continuum limit.

Ψ0 ≈ exp

[
− 1

2g2

∫
d2xd2y Ba(x)

(
1√−D2 + m2 + m

)ab

xy

Bb(y)

]

m =
g2CA

2π



  

Constituent Gluons, and
 the Gluon Chain Model 

We have seen that the Coulomb potential is linear:

but there are (at least) two 
serious difficulties, in 
claiming that the Coulomb 
potential “explains” 
confinement...



  

 

i)   The Coulomb string tension σcc  is about three times larger                                    
.    than the asymptotic string tension σ .

ii)   Long-range Coulombic dipole fields.  

                 q

                  _                          +                                      
                  q

Problem (ii) is generic to “one-gluon exchange” or ladder-diagram models 
of confinement.  In hadrons, there would be long range van der Waals 
forces.

!EL = g!∇ 1
∇ · D

ρ



  

The Coulomb potential  VC(R)  is the interaction energy of the 
physical state

and the Coulomb string tension σC comes out too high.

Can we bring the string tension down to σ by adding constituent
gluons?

Schematically,

Ψqq = qa(0)qa(R)Ψ0

Ψqq = qa(0)
{

c0 + c1A + c2AA + ...
}

qa(R)Ψ0

Basic Problem:  No flux tube!

So how does a flux tube form in Coulomb gauge?



  

The Gluon Chain Model    (Thorn & JG)

As a quark-antiquark pair move apart, they pull out a chain of 
constituent gluons between them.

 



  

One of the motivations of this model is that a gluon chain can be 
regarded as a time-slice of a high-order planar Feynman diagram



  

A gluon chain has string-like properties (e.g. a Luscher term), Casimir 
scaling is natural at large N, and it is also consistent with N-ality 
dependence

String breaking for adjoint representation sources



  

On the lattice, define the rescaled transfer matrix

Ideally, we would like to diagonalize this in the subspace of states 
containing two static charges.  In practice, diagonalize in a finite 
M-dimensional subspace.   Let

where the Qk are functionals of the link variables.  

Use lattice Monte Carlo to compute the quantities...

T = exp[−(H − E0)a] (E0 is the vacuum energy)

|k〉 = qa(x)Qab
k qb(y)|Ψ0〉 , k = 1, 2, ...,M



  

From these quantities we construct (Gram-Schmidt procedure) an 
orthonormal set of states                                   , and also derive the 
matrix elements

Diagonalize the M x M matrix T.  Then

is an estimate of the static quark potential.

Omn = 〈m|n〉
= 〈 1

2Tr[Q†
m(t)Qn(t)]〉

tmn = 〈m|T |n〉
= 〈 1

2Tr[Q†
m(t + 1)U†

0 (x0, t)Qn(t)U0(xL, t)]〉

V (R) = − log(λmax)

{ϕk, k = 1, 2, ...,M}

Tij = 〈ϕi|T |ϕj〉



  

Choice of Q’s and variational parameter:   Define

Fourier transform, and suppress high-momentum components in 
directions transverse to direction “j” (of line joining       ) 

where ρ is a variational parameter.   Τransform back  to position space, 
and denote the resulting “transverse-smoothed” operator

which is the A-field smeared in directions transverse to direction         .

Ak(x, t) =
1
2i

(
Uk(x, t)− U†

k(x, t)
)

Ai(x, t, j)

êj

Ai(k, t) → exp
[
−ρ(k2 − k2

j )
]
Ai(k, t)

→ exp
[
−ρk2

⊥
]
Ai(k, t)

qq



  

We also define

and smear in the same way to obtain  the “transverse-smeared” 
operator Bi(x,t,j) .

The Q operators are then defined in terms of the Ai(x,t,j) and Bi(x,t,j) ,
for an antiquark at site       and a quark at site                    :

Bi(x, t) = 1− 1
2Tr[Ui(x, t)]

x0 x0 +Re j



  

Q1(t) = 2

Q2(t) =
R−1

∑
n=0

A j(x0 +ne j, t, j)

Q3(t) =
R+1

∑
n=−2

R+1

∑
n′=n

A j(x0 +ne j, t, j)A j(x0 +n′e j, t, j)

Q4(t) =
R+2

∑
n=−2

R+2

∑
n′=n

∑
i#= j

Ai(x0 +ne j, t, j)Ai(x0 +n′e j, t, j)

Q5(t) =
R−1

∑
n=0

B j(x0 +ne j, t,1) 2

Q6(t) =
R−1

∑
n=0

∑
i #= j

Bi(x0 +ne j, t, j) 2

0-gluon state

1-gluon state

2-gluon states

         ↓

 



  

We use this to define

(with M=6) and use lattice Monte Carlo to obtain an orthonormal set of 
states, and the elements of the transfer matrix                          
among those states.   

Choose a variational parameter ρ which maximizes the largest eigenvalue 
λmax  of  Tij  .   Denote the corresponding eigenmode

so
        (a1)2      is the fraction of the norm from the 0-gluon state

        (a2)2      is the fraction of the norm from the 1-gluon state

1-(a1)2-(a2)2   is the fraction of the norm from the  2-gluon states

and

    

Tij = 〈φi|T |φj〉

|ψ(R)〉 =
6∑

k=1

ak(R)|φk〉

Vchain(R) = − log(λmax) , VC(R) = − log(T11)

|k〉 = qa(x)Qab
k qb(y)|Ψ0〉 , k = 1, 2, ...,M
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Constituent gluons bring the 
potential much closer to the true 
static quark potential.  

The “chain” potential remains linear.  



  

Energy expectation values of the zero-gluon and 1-gluon states
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Gluon content of the lowest-energy state
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This is also a test of scaling.

Note the 0-gluon/1-gluon crossover, again around one fermi.



  

Help for the dipole problem?

   The color Coulomb field is not expected to be collimated into a flux 
tube.  This means that there should be strong sensitivity to lattice 
volume, on a lattice of spatial extension L, for quark-antiquark 
separations close to R=L/2.

   The reason is that for separations of that size, the finite volume cuts 
off a region where the field energy is still significant.

    If the field energy were collimated into a flux tube of diameter d,
and if L>>d, then there would not be a similar sensitivity to the finite 
volume.
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The gluon-chain states seem to be insensitive to lattice size, in contrast to 
the Coulomb potential.   Perhaps a hint that the dipole problem is much 
less severe for the multi-gluon states.



  

Conclusions

   Until asymptotically-free pure gauge theories are solved 
analytically in the infrared, there is likely to be disagreement 
about the structure of the vacuum, the origin of confinement 
and the origin of the mass gap.

   Several approachs - not necessarily compatible with each 
other - seem promising.  So far, however: 
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Conclusions

   Until asymptotically-free pure gauge theories are solved 
analytically in the infrared, there is likely to be disagreement 
about the structure of the vacuum, the origin of confinement 
and the origin of the mass gap.

   Several approachs - not necessarily compatible with each 
other - seem promising.  So far, however: 

The confinement problem remains open...

it remains a challenge to our understanding of non-
abelian gauge theories. 



  



  



  



  



  



  

Is there now a proof?

Tomboulis, arXiv: 0707.2179

We can insert a center vortex into a finite volume using 
twisted, rather than periodic boundary conditions.  

Let            denote the SU(2) partition function with t.b.c, and
                 denote the center vortex free energy

then

Confinement is proven if
 
for a vortex sheet in the z-t plane.

Z−
Fv

e−Fv =
Z−
Z

Fv = cLzLt exp[−σ′LxLy]



  

Migdal-Kadanoff blocking

    This is an RG decimation scheme, involving an uncontrolled 
approximation, which takes a lattice action with spacing a to a 
lattice action with spacing 2a .

The idea is to take a 24  hypercube, move the interior plaquettes 
to the exterior faces and integrate out some of the link variables.



  

Tomboulis’s idea is to use to the MK procedure to prove an 
inequality, after n blocking steps,

Z−
Z
≥ ZMK− (n)

ZMK(n)

If n is large enough, the rhs can be evaluated by strong-coupling 
methods, and confinement is proved.

This comes the closest to a proof that I’ve seen...

...but I think there is one crucial step in the argument which has not 
yet been shown to be true.  

   The point has been made in a very recent article by 
    Ito & Seiler, arXiv:0711.4930. 



  

Dressed ghost and gluon propagators in Landau gauge

Dµν(p) =
Z(p2)

p2

(
δµν − pµpν

p2

)
, Dghost(p) = −G(p2)

p2

the Zwanziger Horizon Conditions are that at 

Ties in nicely with both Kugo-Ojima and the Dyson-Schwinger 
Equation (DSE) approach.

Dµν(p) → 0
G(p2) → ∞

p2 → 0

“Gluon Confinement”

Kugo-Ojima condition



  

In Coulomb gauge, where the color Coulomb potential is related to 
the operator

1
∇ · D

(−∇2)
1

∇ · D

the proximity to the Gribov horizon can, in principle, enhance the 
potential in the infrared.

In fact, Monte Carlo measurements of the color Coulomb potential 
find that it does rise linearly

albeit with a slope which is three times larger than the asymtotic 
string tension. 

Vcoul(R) ∼ σcoulR with σcoul ≈ 3σ

Olejnik & JG, 2003



  

Monopoles

Motivations:

     1.    “Dual Superconductivity”        (‘t Hooft & Mandelstam)
             
     2.    Compact U(1) in 2+1 dimensions  (Polyakov)

      3.      Witten-Seiberg model  

In the absence of a Higgs field in the adjoint representation, it is 
necessary to single out an abelian subgroup using an “abelian 
projection” gauge.   (‘t Hooft, ‘80)

It turns out that in abelian projection gauges, the abelian monopole 
worldlines  lie on vortex sheets...

lattice investigations by the
   Kanazawa group (Suzuki et al.)
   Pisa group  (di Giacomo et al.)
   ITEP group (Polikarpov et al.)
among others...



  

Kugo-Ojima criterion     (covariant gauges)

      Says that                                         if a certain operator condition is 
satisfied, and if the remnant gauge symmetry in the covariant gauge is 
unbroken.   In the gauge-Higgs model it requires

Coulomb confinement    (Coulomb gauge)

      Confining color Coulomb potential.   Gribov and Zwanziger
      (measured from the correlator of timelike links)
 
      The scenario implies unbroken remnant gauge symmetry in Coulomb 
      gauge
             
                                                                Marinari, Paciello, Parisi, Taglienti

Either criterion can work in real QCD, so is this what we mean by 
confinement?

〈phys|Qa|phys〉 = 0

〈
1
L3

∑
x

Tr[U0(x, t)]

〉
→ 0

〈φ〉 = 0


