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Chiral effective theory

The chiral lagrangian is a non-renormalizable theory describing accurately pion physics at
low energies.

It contains a (infinite) number of operators organized according to the number of derivatives

L = f2
πTr ∂µU∂

µU† + α1Tr ∂µU∂
µU†∂νU∂

νU† + α2Tr ∂µU∂νU
†∂µU∂νU† + . . .

U = exp iπ̃/fπ

L = O(p2) + O(p4) + O(p6) + ...

Pions are the Goldstone bosons associated to the (global) symmetry breaking pattern of
QCD

SU(2)L × SU(2)R → SU(2)V

Locality, symmetry and relevance (in the RG sense) are the only guiding principles to
construct L.

The effective lagrangian still has the full symmetry

U → LUR†
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Loops

ANπ (pi) =

∫
d4k

(2π)4
(

1

fπ
)Nπ

(k2)NV (
1

k2
)NP

Consider e.g. ππ → ππ scattering. Nπ = 4, NV = 2 and NP = 2

ANπ ∼ 1

16π2f2
π

p4

This counting works to all orders and IR divergences are absent (Weinberg)

At each order in perturbation theory the divergences that arise can be eliminated by
redefining the coefficients in the higher order operators, e.g.

αi → αi +
ci

ε

Also logarithmic non-local terms necessarily appear. For instance (in a two-point function)
they appear in the combination

1

ε
+ log

−p2
µ2
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Unitarity

The cut provided by the log is absolutely required by unitarity. Let us separate

S = I + iT.

The identity corresponds to having no interaction at all.

Unitarity implies

S†S = I = I + i(T − T †) + T †T.

i(T − T †) = −T †T.

Loops are essential, even for effective theories. There is no such thing as a ‘classical
effective theory’.
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Chiral counting

The lowest-order, tree level contribution is ∼ p2

f2
π

The one-loop chiral corrections is ∼ p4

16π2f4
π

⇒ The counting parameter in the loop (chiral) expansion is

p2

16π2f2
π

Each chiral loop gives an additional power of p2

O(p2n) counts as p2n

Soft breaking terms: Tr µm(U + U†)

⇒ m counts as p2.

All coefficients in the chiral lagrangian are nominally of O(Nc).

Loops are automatically suppressed by powers of Nc, but enhanced by logs.
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Relevance of chiral corrections

Figure 1: Recent fits using chiral perturbation theory at the NLO
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The gravity analogy

Einstein-Hilbert action shares several aspects with the chiral lagrangian (non-renormalizable,
dimension two, massless quantum,...)

L = M2
P

√
−gR + Lmatter

κ2 ≡ 2

M2
P

= 32πG

MP will play a role very similar to fπ

R contains two derivatives of the dynamical variable gµν

Rµν = ∂νΓα
µα − ∂αΓα

µν + Γα
βνΓβ

µα − Γα
βαΓβ

µν

Γγ
αβ =

1

2
gγρ

(
∂βgρα + ∂αgρβ − ∂ρgαβ

)

R ∼ ∂∂g

In the chiral language, the Einstein-Hilbert action is O(p2) (i.e. most relevant).
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Symmetry

Based on promoting a global symmetry (Lorentz)

x′a = Λa
bx

b

ηab = Λc
aΛd

bηcd

to a local one

x′µ = x′µ(x) → dx′µ = Λµ
ν(x)dxν

Λ̄ ν
µ (x) ≡ [Λµ

ν(x)]−1

Λµ
ν Λ̄ ν

ρ = δµ
ρ

This can be done if the metric is allowed to be a coordinate dependent field transforming as

g′µν(x′) = Λ̄ α
µ Λ̄ β

ν gαβ(x)

dτ2 = g′µν(x′)dx′µdx′ν = gαβ(x)dxαdxβ

Fields transform as scalars, vectors, etc., under this change

φ′(x′) = φ(x)

A′µ(x′) = Λµ
ν(x)Aν(x)
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Why Einstein-Hilbert

Arguably, these considerations alone, in particular relevance in the RG sense (and not
renormalizability) are the ones that single out Einstein-Hilbert action (in front e.g. of R2).

Einstein-Hilbert action has all the ingredients for being an effective theory describing the long
distance properties of some unknown dyamics

Are gravitons just Goldstone bosons of some (Lorentz) unbroken symmetry?
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Quantum corrections in gravity

Analogous to the weak field expansion in pion physics

U = I + i
π(x)

fπ
+ ...

one writes

gµν ≡ ηµν + κhµν

gµν = ηµν − κhµν + κ2hµλh ν
λ + . . .

so κ↔ 1
fπ

Curvatures:

Rµν =
κ

2

[
∂µ∂νh

λ
λ + ∂λ∂

λhµν − ∂µ∂λh
λ
ν − ∂λ∂νh

λ
µ

]
+ O(h2)

R = κ
[
�hλ

λ − ∂µ∂νh
µν
]

+ O(h2)

indices are raised and lowered with ηµν . This can be done around any fixed background
space time metric.
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Gauge fixing and field equations

Green function do not exist without a gauge choice and it is most convenient to use harmonic
gauge

∂λhµλ =
1

2
∂µh

λ
λ

The field equations

Rµν − 1

2
gµνR = −8πGTµν ,

√
gTµν ≡ −2

δ

δgµν
(
√
gLm)

reduce in this gauge to

�hµν = −16πG

(
Tµν − 1

2
ηµνT

λ
λ

)

The momentum space propagator is relatively simple in this gauge. Around Minkowski:

iDµναβ =
i

q2 + iε
Pµν,αβ Pµν,αβ ≡ 1

2

[
ηµαηνβ + ηµβηνα − ηµνηαβ

]

In addition one needs to include the gauge-fixing and ghost part

Lgf =
√
ḡ

{(
Dνhµν − 1

2
Dµh

λ
λ

) (
Dσh

µσ − 1

2
Dµhσ

σ

)}
Lgh =

√
ḡη∗µ

[
DλD

λḡµν − Rµν

]
ην

It is plain that perturbative calculations in quantum gravity are manifestly difficult.
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Divergences

The following two results are well known

L(div)
1loop = − 1

16π2ε

{
1

120
R̄2 +

7

20
R̄µνR̄

µν

}

(t Hooft and Veltman)

L(div)
2loop = − 209κ2

5760(16π2)

1

ε
R̄αβ

γδR̄
γδ

ησR̄
ησ

αβ

(Goroff and Sagnotti)

It is less well appreciated that the two results are on a different footing. The result of ’t Hooft
and Veltman

– is gauge dependent

– vanishes when the field equation in empty space are used

– gives a net divergence when Tµν 6= 0, but the result is, in principle, incomplete.

The one-loop counterterms computed by ’t Hooft and Veltman are largely irrelevant from the
point of view of effective lagrangians (they vanish on shell).
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de Sitter space-time

In de Sitter space

S =
1

16πG

∫
dx

√
−g(R− 2Λ)

Γdiv
eff = − 1

16π2ε

∫
dx

√
−g[c1RµνRµν + c2Λ2 + c3RΛ + c4R2].

The constants ci are actually gauge dependent and only a combination of them is gauge
invariant.

Using the equations of motion (in absence of matter) Rµν = gµνΛ, the previous equation
reduces to the (gauge-invariant) on-shell expression

Γdiv
eff =

1

16π2ε

∫
dx

√
−g 29

5
Λ2.

If we set Λ = 0 above, we get the well-known ’t Hooft and Veltman divergence

Γdiv
eff = − 1

16π2ε

∫
dx

√
−g[ 7

20
RµνRµν +

1

120
R2].
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Counterterms and power counting

Exactly as the chiral lagrangian Einstein-Hilbert requires an infinite number of counterterms

L = M2
P

√
−gR + α1

√
−gR2 + α2

√
−g(Rµν)2 + α3

√
−g(Rµναβ)2 + . . .

The divergences can be absorbed by redefining the coefficients just as before

αi → αi +
ci

ε

The expansion parameter is a tiny number in normal circumstances

p2/16πM2
P

or

∇2/16π2M2
P , R/16π2M2

P

The most effective of all effective actions!!
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Why we need genuine loop effects
Consider

L =
2

κ2
R+ cR2 + (matter)

The equation of motion is

�h+ κ2c2��h = (8πGT )

The Green function for this equation has the form

G(x) =

∫
d4q

(2π)4
eiq·x

q2 + κ2cq4

=

∫
d4q

(2π)4

[
1

q2
− 1

q2 + 1/κ2c

]
e−iq·x

Leading to a correction to Newton’s law

V (r) = −Gm1m2

[
1

r
− e−r/

√
κ2c

r

]

Experimental bounds indicate c < 1074. If c was a reasonable number there would be no
effect on any observable physics at terrestrial scales.

Note that if c ∼ 1,
√
κ2c ∼ 10−35m. The curvature is so small that R2 terms are irrelevant at

ordinary scales

Lectures given at the 49 Cracow School of Theoretical Physics, Zakopane 2009 – p. 16/45



Why we need genuine loop effects II
However using the full solution of the wave equation is not compatible with the effective
lagrangian philosophy (higher orders in κ are sensitive to higher curvatures we have not
considered). The leading behaviour of the correction is

e−r/
√

κ2c

r
→ 4πκ2cδ3(~r)

1

q2 + κ2cq4
=

1

q2
− κ2c+ · · ·

Thus

V (r) = −Gm1M2

[
1

r
+ 128π2Gcδ3(~x)

]

Totally unobservable, even as a matter of principle.

Of course, apart from the divergences there are finite pieces and non-local pieces since in DR
we get at the one-loop level 1

ε
+ log

−p2
µ2

Or, in position space 1

ε
+ log

∇2

µ2
, ∇ = covariant derivative.

Non-localities are due to the propagation of massless non-conformal modes, such as the
graviton itself.

Lectures given at the 49 Cracow School of Theoretical Physics, Zakopane 2009 – p. 17/45



Quantum corrections to Newton law
Let us use ’chiral counting’ arguments to derive the relevant quantum corrections to Newton
law (up to a constant)

Propagator at tree level: 1
p2

One-loop corrections: 1
p2

(1 +A p2

M2

P

+B p2

M2

P

log p2)

Consider the interaction with an static source (p0 = 0) and let us Fourier transform
∫
d3x exp(i~p~x)

1

p2
∼ 1

r

∫
d3x exp(i~p~x)1 ∼ δ(~x)

∫
d3x exp(i~p~x) log p2 ∼ 1

r3

Thus the corrections are of the form

GMm

r
(1 + C

G~

r2
+ . . .)

We note that [
Gm

c2

]
= L,

[
G~

c3

]
= L2

so C is a pure number.
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The inclusion of matter

A long controversy regarding the value of C exist in the literature (Donoghue, Muzinich,
Vokos, Hamber, Liu, Bellucci, Khriplovich, Kirilin, Holstein, Bjerrum-Bohr,...)

The commonly accepted result is obtained by considering the inclusion of quantum matter
fields (a scalar field actually) and considering all type of loops

Feynman rules

τµν = − iκ
2

(
pµp

′
ν + p′µpν − gµν [p · p′ −m2]

)

τηλ,ρσ =
iκ2

2

{
Iηλ,αδI

δ
β,ρσ

(
pαp′β + p′αpβ

)

−1

2

(
ηηλIρσ,αβ + ηρσIηλ,αβ

)
p′αpβ

−1

2

(
Iηλ,ρσ − 1

2
ηηληρσ

)
[p · p′ −m2]

}

with

Iµν,αβ ≡ 1

2
[ηµαηνβ + ηµβηνα]
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The inclusion of matter II

LRR =
1

3849π3r3
(42RµνR

µν +R2)

LRT = − κ

8π2r3
(3RµνT

µν − 2RT )

LT T =
κ2

60πr3
T 2

Using the equation of motion

Rµν − 1

2
gµνR = −8πGTµν

⇒ Ltotal = − κ2

60πr3
(138TµνT

µν − 31T 2)

The final result is positive: gravity is more atractive at long distances

C =
41

10π

What happens for classical matter, e.g. a cloud of dust, is in my view still an open problem.
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Power counting in effective gravity

• 3-graviton coupling: ∼ κq2

• 4-graviton coupling: ∼ κ2q2

• (On-shell) matter– 1-graviton coupling: ∼ κm2

• (On-shell) matter– 2-graviton coupling: ∼ κ2m2

• Graviton propagator: ∼ 1
q2

• Matter propagator ∼ 1
mq

If we iterate the 4-graviton vertex to produce a one loop diagram we obtain schematically

Mloop ∼ κ4

∫
d4l

(2π)4
(l − p1)2(l − p22)2

l2(l− q)2

If this loop integral is regularized dimensionally, which does not introduce powers of any new
scale, the integral will be represented in terms of the exchanged momentum to the
appropriate power. Thus we have

Mloop ∼ κ4q4
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Power counting in effective gravity II
When matter fields are included in loops the situation is more subtle The tree level result is

Mtree = κ2 · m
2
1m

2
2

q2

Iterating this to form a loop

Mloop ∼ κ4m4
1m

4
2 ·
∫
d4l · 1

m1(l+ p)
· 1

m2(l+ p′)
· 1

(l + q′)2
· 1

(l + q)2

which by the same reasoning is

Mloop ∼ κ4 · m
3
1m

3
2

q2
∼ κ2 · m

2
1m

2
2

q2
· κ2m1m2

Here the expansion parameter appears as κ2m2 This issue has been studied by Donoghue

A(Nm,Ng) ∼ qD

D = 2 − Nm
E

2
+ 2NL −Nm

V +
∑

n

(n− 2)Ng
V [n] +

∑

l

l ·Nm
V [l]

If we disregard matter vertices this is identical to Weinberg’s result for chiral theories However
it is dangerous the negative Nm

V term appearing in D. Although no general proof exists yet,
Donoghue has been able to prove cancellation of the dangerous terms at the one-loop level
except for the terms leading to 1/r corrections (classical, non-linear)
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The use of equations of motion

In chiral lagrangians they allow to get rid of redundant operators

U�U† − (�U)U† = 0

Tr U�U† → 0

Notice that in gravity, the equation of motion mixes terms of different ‘chiral’ order

Rµν − 1

2
gµνR = −8πGTµν − gµνΛ

For instance, it is incorrect to use

Rµν = gµνΛ

in ’t Hooft and Veltman calculation. It just does not reproduce the de Sitter result.
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Cosmological implications

We are concerned about (universal) quantum corrections to the Einstein-Hilbert lagrangian

1

16π2M2
pl

R[log∇2]R

There are two reasons why such apparently hopelessly small corrections might be relevant
in a cosmological setting

– Curvature was much larger at early stages of the universe: in a de Sitter universe R ∼ H2,
H2 = 8πGV0/3, H ≤ 1013 GeV (present value is 10−42 GeV).

– Logarithmic non local term corresponds to an interaction between geometries that is
long-range in time, an effect that does not have an easy classical interpretation.

– These non-localities are unrelated to f(R) models. They are real and unambigous.

Somewhat related (?) non-localities (but at the two loop level) were studied by Tsamis and
Woodard long ago. They slow down the rate of inflation.

Our conventions:

S =
1

16πG

∫
dx

√
−g(R− 2Λ) + Smatter, Rµν − 1

2
Rgµν = −8πGTµν − Λgµν
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Quantum corrections

Quantum corrections to the Einstein-Hilbert action were originally computed by ’t Hooft and
Veltman in the case of vanishing cosmological constant, and by Chistensen and Duff for a de
Sitter background. The key ingredient we shall need is the divergent part of the one-loop
effective action. Setting d = 4 + 2ε

Γdiv
eff = − 1

16π2ε

∫
dx

√
−g[c1RµνRµν + c2Λ2 + c3RΛ + c4R2].

The constants ci are actually gauge dependent and only a combination of them is gauge
invariant. Using the equations of motion (in absence of matter) Rµν = gµνΛ, the previous
equation reduces to the (gauge-invariant) on-shell expression

Γdiv
eff =

1

16π2ε

∫
dx

√
−g 29

5
Λ2.

If we set Λ = 0 above, we get the well-known ’t Hooft and Veltman divergence, that in the
so-called minimal gauge is

Γdiv
eff = − 1

16π2ε

∫
dx

√
−g[ 7

20
RµνRµν +

1

120
R2].

If the equations of motion are used in the absence of matter this divergence is absent.
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E.o.M. in the presence of non-local terms
For the sake of discussion, we shall consider here a simplified effective action that includes
only terms containing the scalar curvature

S = κ2

(∫
dx

√
−gR + α̃

∫
dx

√
−gR ln(∇2/µ2)R + β̃

∫
dx

√
−gR2

)

≡ κ2
(
S1 + α̃S2 + β̃S3

)
,

where κ2 = M2
P /16π = 1/16πG. µ is the subtraction scale. The coupling β̃ is µ dependent

in such a way that the total action S is µ-independent.

– The value of β̃ is actually dependent on the UV structure of the theory (it contains
information on all the modes -massive or not- that have been integrated out)

– The value of α̃ is unambiguous: it depends only on the IR structure of gravity (described by
the Einstein-Hilbert Lagrangian) and the massless (nonconformal) modes. In conformal time

gµν = a2(τ)ηµν , R = 6
a′′(τ)

a3(τ)
,
√
−g = a4(τ).

We first obtain the variation of the local part

δS1

δa(τ)
= 12a′′

δS3

δa(τ)
= 72

(
−3

(a′′)2

a3
− 4

a′a′′′

a3
+ 6

(a′)2a′′

a4
+
a(4)

a2

)
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Computing the non-local part
To obtain the variation of the non-local (logarithmic piece) we need to compute

〈x| log∇2|y〉

where in conformal coordinates

∇2 = a−3
�a+

1

6
R

To the order we are computing we can neglect the R term in the previous equation and
commute the scale factor a with the flat d’Alembertian

∇2 =

(
a

a0

)−2

�

Where a0 = a(0). With this rescaling (absorbable in β̃), at τ = 0 the d’Alembertian in
conformal space matches with the Minkowskian one.

We can now separate S2 in turn into a local and a genuinely non-local piece

S2 =

∫
dx

√
−g

(
−2R ln(a)R + R ln(�/µ2)R

)
≡ SI

2 + SII
2 .

δSI
2

δa(τ)
= −72

{
(a′)2a′′

a4
[12 ln a− 10] +

a′a′′′

a3
[−8 ln a+ 4] +

(a′′)2

a3
[−6 ln a+ 2] +

a(4)

a2
2 ln a

}
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Computing the non-local part II
Finally we have to compute

〈x| ln �|y〉 = lim
ε→0

1

ε
〈x|�ε|y〉 − 1

ε
〈x|y〉

The delta function is in one-to-one correspondence with the counterterm. The Green
function we are interested will be

∼ 1

|x− y|4+2ε

After integration of ~x− ~y we get

∼ 1

|t− t′|1+2ε

So

SII
2 = 36

∫
dτ
a′′(τ)

a(τ)

∫ τ

0
dτ ′

1

τ − τ ′
a′′(τ ′)

a(τ ′)

The variation of SII
2 is

δSII
2

δa(τ)
= 36

{[
2a−3(τ)

(
a′(τ)

)2 − 2a−2(τ)a′′(τ)
] ∫ τ

0
dτ ′

1

τ − τ ′
a′′(τ ′)

a(τ ′)

−2a−2(τ)a′(τ)
∂

∂τ

(∫ τ

0
dτ ′

1

τ − τ ′
a′′(τ ′)

a(τ ′)

)
+ a−1(τ)

∂2

∂τ2

(∫ τ

0
dτ ′

1

τ − τ ′
a′′(τ ′)

a(τ ′)

)}
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Next ...

In the spirit of effective Lagrangians we would obtain first the lowest order equation of motion
from S1 and plug it in α̃(SI

2 + SII
2 ) + β̃S3

Quantum corrections act as an external driving force superimposed to Einstein equations.
This procedure of course gives trivially a zero additional contribution here as neither matter
nor a cosmological constant have been considered.

Lectures given at the 49 Cracow School of Theoretical Physics, Zakopane 2009 – p. 29/45



QG effects in de Sitter universe

The relevant one-loop corrected effective action is

S =
1

16πG

∫
dx

√
−g(R− 2Λ) +

1

16π2

∫
dx

√
−g 29

5
Λ ln

∇2

µ2
Λ + local terms of O(p4)

≡ κ2

(∫
dx

√
−g(R− 2Λ) + α̃S2

)
.

α̃ =
G

π
× 29

5

We split S2 in two parts

SI
2 = −2

∫
dx

√
−gΛ2 ln(a), SII

2 =

∫
dx

√
−gΛ ln(�/µ2)Λ,

and obtain the corresponding variations following the method outlined

δSI
2

δa(τ)
= −2Λ2a3(τ) [4 ln(a(τ)) + 1]

δSII
2

δa(τ)
= 2Λ2a(τ)

∫ τ

0
dτ ′a2(τ ′)

µ−2ε

|τ − τ ′|1+2ε
.
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Next ...

The equation of motion will be

12a′′(τ) − 8Λa3(τ) + α̃
δS2

δa(τ)
= 0

which at lowest order is just

12a′′(τ) − 24H2a3(τ) = 0, H2 = Λ/3

The lowest order solution (with a(0) = 1) is

aI(τ) =
1

1 −Hτ

The final step is to plug the 0-th order solution aI(τ) into the variation of S2 and recalculate
the solution for a(τ).
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Solving the evolution equation
Note that we use a perturbative procedure is of course only valid as long as the correction is
small compared to the unperturbed solutions.

We introduce a variable s defined aI(τ) = es. Then s counts the number of e-folds

δSI
2

δa(τ)
= −2Λ2e3s [4s+ 1]

δSII
2

δa(τ)
= 2Λ2esI(s)

and the equation of motion reads

e2sa′′(s) + e2sa′(s) − 2a3(s) =
3

2
α̃H2

(
−e3s(1 + 4s) + esI(s)

)
,

where I is

I(s) = ln
( µ
H

(1 − e−s)
)
e2s + es(1 − es − ses),

and the equation to solve is

e2sa′′(s) + e2sa′(s) − 2a3(s) =
3

2
α̃H2

[
−(5s+ 2)e3s + e2s + e3s ln

( µ
H

(1 − e−s)
)]

Note that α̃ appears only in the combination α̃H2. Since there are H large uncertainties in
H in practice only the sign of α̃ is relevant. In addition, there is some ambiguity associated to
the choice of the renormalization scale that appears in the combination ln(µ/H)
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Numerical results

Figure 2: The scale factor relative to the inflationary expansion for different values of µ and
H (all units are GeV). We can see that the curves present a very similar behaviour for the
different values shown, though a higher value of H leads earlier to deviations from the usual
inflationary expansion. Higher values of µ also have this effect, which is larger as H in-
creases. In fact, if we considered values of µ/H large enough (but not relevant physically),
the logarithm term would become dominant and the deviation would be positive.
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Space quantum correlations

Let us now assume that a = a(τ, ~x). Then

δSII
2

δa(τ, ~x)
∼ Λ2a(τ, ~x)

∫ τ

0
dτ ′d3~ya2(τ ′, ~y)

µ−2ε

|x− y|4+2ε
.

This corresponds to new correlations of a quantum nature between different points.
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Gravity as a Goldstone phenomenon

We have given arguments why the Einstein-Hilbert action could be viewed as an effective
one

– Dimensionful coupling constant (Mpl ∼ fπ)

– Derivative couplings (
√−gR ∼ g∂∂g)

– Action based on RG criteria of relevance, not on renormalizability (unlike Yang-Mills)

– Power counting anologous to ChPT

– Massless quanta (π ↔ gµν )

– Obvious global symmetry to be broken (Lorentz)

As an entertainment we shall investigate a formulation inspired as much as possible in the
chiral symmetry breaking of QCD

– No a priori metric, only affine connection is needed (parallelism)

– Lagrangian is manifestly independent of the metric

– Breaking is triggered by fermion condensate
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Chiral Symmetry Breaking
A successful model for QCD is the so-called chiral quark model. Consider the matter part
lagrangian of QCD with massless quarks (2 flavours)

L = iψ̄ 6∂ψ = iψ̄L 6∂ψL + iψ̄R 6∂ψR

This theory has a global SU(2) × SU(2) symmetry that forbids a mass term M

However after chiral symmetry breaking pions appear and they must be included in the
effective theory. Then it is possible to add the following term

−Mψ̄LUψR −Mψ̄RU
†ψL

invariant under the full global symmetry

ψL → LψL, ψR → RψR, U → LUR†

Chiral symmetry breaking is characterized by the presence of a fermion condensate

< ψ̄ψ > 6= 0

To determine whether the condensate is zero or not one is to solve a ‘gap’-like equation in
some modelization of QCD, or on the lattice.

Integrating out the fermions reproduces the chiral effective lagrangian
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Spontaneous Lorentz breaking

There is only one possible term bilinear in fermions that is invariant under Lorentz × Diff

ψ̄aγ
a∇µψ

µ

To define ∇ we only need an affine connection

∇µψ
µ = ∂µψ

µ + iωab
µ σabψ

µ + Γν
µνψ

µ

Note that no metric is needed at all to define the action if we assume that ψµ behaves as a
contravariant spinorial vector density under Diff

We would like to find a non trivial condensate

< ψ̄aψ
µ >∼ eµ

a

We have to include some dynamics to trigger symmetry breaking and make sure the
lagrangian is hermitian

SI =

∫
d4x((ψ̄aψ

µ + ψ̄µψa)Ba
µ + cdet(Ba

µ))

Note that the interaction one also behaves as a density thanks to one of the Levi-Civita
symbol hidden in the determinant of B.
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The effective action

We shall consider the above model for D = 2 for simplicity.

Note the peculiar ’free’ kinetic term γa ⊗ kµ

M =




B11 k1 B12 k2

k1 B11 k2 B12

B21 −ik1 B22 −ik2
ik1 B21 ik2 B22




We define
M = iγa ⊗∇µ ∆ = MM†

We want to compute
W = −1

2

∫ ∞

0

dt

t
tr
〈
x|e−t∆|x

〉

〈
x|e−t∆|x

〉
=

1

tD/2

∫
dDk

(2π)D
tr
[
e−k2γaγb+i

√
t(γaDb

µkµ+Da
µkµγb)+tDa

µDb
µ

]

=
1

tD/2

∫
dDk

(2π)D
e−tB2

c tr
[
e−k2γaγb+i

√
t(γaDb

µkµ+Da
µkµγb)+t(Da

µDb
µ+B2

c δa
µδb

µ

]

Note that
e−k2γaγb

= δab − 1

D
γaγb +

1

D
γaγbe−Dk2 ≡ Pab +

1

D
γaγbe−Dk2
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The gap equation
Let us first consider the case where there is no connection at all (wµ(x) = 0). We can then
use homogeneity and isotropy arguments to look for constant solutions of the gap equation
associated to

Veff = c det(Ba
µ) + 2

∫
dnk

(2π)n
Tr (log(−γakµ +Ba

µ))

The extremum of Veff are found from

cnεaa2....anε
µµ2....µnBa2

µ2
. . . .Ban

µn
+ 2tr

∫
dnk

(2π)n
(−γ ⊗ k + B)−1|µa = 0

Notice that the equations are invariant under the permutation

Bij → Bσ(i)σ(j), ki → kσ(i), σεS2

Notice also that the equations of motion show that

< ψ̄aψ
µ >∼ εabε

µνBb
ν

The ‘gap equation’ to solve for constant values of Bij is

cBij − 1

16π
Bij log

detB

µ
= 0

A logarithmic divergence has been absorbed in c.
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The effective action II

The next step is to consider wµ(x) 6= 0 and Ba
µ = δa

µBc + baµ. This requires the evaluation of
the effective action.

The heat-kernel expansion at order t0 and t1 gives

W = − 1

2

∫ ∞

0

[
e−tB2

c

tD/2

2

(D4π)D/2
(1 + t

(
−

(Ba
µ)2

D
+ B2

c +
(Ba

µ)2

D2

)]

=
(Ba

µ)2

32π

(
2

ε
− γ − log B2

c + log 4π + 1

)
+

2B2
c

16π
)

wµ(x) drops from the effective action at this order in t and hence the solution of the gap
equation is exact (at this order) even for a non-trivial connection

At the next order (t4) one gets terms with four fields/derivatives. We expect as a result of the
e.o.m. things like

wab
µ ∼ Ba

ν∂B
b
ν + . . .
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What next

The previous example is all too trivial but it shows perfectly the general ideas.

Once a “n-bein” has been dynamically generated, one is allowed to write a terms that (in 4d)
will look like

−Mψ̄ae
a
µψ

µ + h.c.

M is a parameter with dimensions of mass that on dimensional grounds must appear in four
domensions.

In 4 dimensions the affine connection and the “n-bein” have both to be determined
dynamically too. We expect that they will result in giving the connection that is compatible
with the metric.

We expect

M2
pl ∼

M2

16π2
log

µ

M
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Manifest breaking of Lorentz symmetry
Let us consider (for the moment just as a theoretical possibility) the possibility of explicit
breaking of Lorentz breaking by means of a time-like constant axial vector. Consider
electromagnetism in such a background

L = LINV + LLIV

LINV = − 1
4
FαβFαβ + ψ̄[ 6∂ − e 6A−me]ψ LLIV = 1

2
m2

γ Aµ A
µ + 1

2
ηαAβ F̃

αβ

It will be useful for us to keep mγ > 0 for the time being. Otherwise gauge invariance is
manifest.

E.o.M.: {
g λν

(
k2 −m2

γ

)
+ i ελναβ ηα kβ

}
Ãλ(k) = 0

We can build two complex and space-like chiral polarization vectors εµ
±(k)which satisfy the

orthonormality relations

− gµν ε
µ ∗
± (k) εν

±(k) = 1 gµν ε
µ ∗
± (k) εν

∓(k) = 0

In addition we have

εµ
T (k) ∼ kµ εµ

L(k) ∼ k2ηµ − kµη · k

They fulfill

gµν ε
µ ∗
A (k) εν

B(k) = gAB gAB εµ ∗
A (k) εν

B(k) = g µν
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Different physics in different frames
The polarization vectors of positive and negative chirality are solutions of the vector field
equations if and only if

kµ
± = (ωk±,k) ωk± =

√
k2 +m2

γ ± η|k| εµ
±(k, η) = εµ

±(k±)
(
k0
± = ωk±

)

In order to avoid problems with causality we want k2
± > 0. For photons of negative chirality

this can happen iff
|k| <

m2
γ

η
≡ Λ γ

for mγ = 0 they cannot exist. As is known to everyone the processes e− → e−γ or
γ → e+e− cannot occur. However here physics is different in different frames and for the
latter process

ωk± =
√

k2 +m2
γ ± η |k| =

√
p2 +m2

e +
√

(p − k)2 +m2
e

Possible iff
|k| ≥ 4m2

e

η
≡ k th (mγ = 0)

The electron-positron pairs will be created with a large momentum.

∑
|M+(k, p, q)|2 = αθ (|k| − kth) × 16π

k2

{
(p · k+)

(
p · k+ + k2

)
+ η p2 |k|

}
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Astroparticle consequences

What if ηα represents a oscillating axion background?

Figure 3: Positrons detected by the PAMELA mission
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Summary
– We have analyzed the relevance of the non-local quantum corrections due to the virtual
exchange of gravitons and other massless modes to the evolution of the cosmological scale
factor in FRW universes.

– Effect is largest in a de Sitter universe with a large cosmological constant.

– The effects are locally absolutely tiny, but they lead to a noticeable secular effect that slows
down the inflationay expansion.

– In a matter dominated universe the effect is a lot smaller, and it appears to be of the
opposite sign. Quantum effects seem to enhance the expansion rate in this case.

– These effects have no classical analogy.

– The results presented here are not ‘just another model’. Quantum gravity non-local loop
corrections exist.

– It would be very interesting to compute the space correlations that these logarithmic terms
introduce.

– A toy model where gravitons appear as a Goldstone phenomenos has been constructed.
The model has no metric whatsoever originally.

– A model with explicit Lorentz breaking (due to the æther-like nature of an axion
background has rather exotic effects
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