EXPLORING AN S-MATRIX FOR GRAVITATIONAL COLLAPSE

G. Veneziano and J.W.

- Classical collapse and Choptuik scaling
- Linearized gravity, scattering and effective action
- Solving effective equations of motion
 - 1. x-space soln : critical lines

closed trapped surfaces on shell action (scaling) multiplicity of gravitons

- 2. p-space soln : spectrum of gravitons
 - complex trajectories

I. Classical gravitational collapse

Solve Einstein + field equations with a matter e.g.

$$R^{\mu\nu} + \frac{1}{2}Rg^{\mu\nu} = 8\pi G T^{\mu\nu}, \quad \nabla_{\mu}\nabla^{\mu}\phi = 0 \tag{1}$$

Initial conditions

$$\phi(r,0;p) \tag{2}$$

Generically: if $p < p^*$ no collapse – a dispersive phase

if $p > p^*$ collapse – a black hole phase

 \Rightarrow numerical solutions: close to the criticality solutions are self-similar (locally)

$$\phi_*(sr, st) = \phi_*(r, t) \tag{3}$$

and

$$M(p) = c(p - p^*)^{\gamma} \tag{4}$$

Choptuik, 1990

II. From Einstein-Hilbert action to an effective action

• Linearize $\sqrt{-g}R$ to $O(h^4) \longrightarrow$ a mess

Sherk and Schwartz, Kaku, Aragone and Chela Flores '75 Bengtsson, Cederval and Lindgren '83

- Reorganize according to the kinematics of the high energy collisions
 - exchanged gravitons (ones in the t channel)
 - scattered gravitons (ones in the s channel)
 - fix the gauge, keep only the modes (of $h_{\mu\nu}(x)$) relevant for the multi-regge kinematics
 - integrate over "no-man's" (heavy) modes
 - Lipatov's action (QCD and/or gravity) still complicated

Lipatov '91, Kirschner and Szymanowski '95

• - Further simplifications: only eikonal diagrams with one emission

Amati, Ciafaloni, Veneziano '81, '88,...,'07

- ACV action - manageable

II. Solving effective equations of motion in x-space

$$\mathcal{A} = 2\pi G s \int d^2 \mathbf{x} \left[a(\mathbf{x}) \bar{s}(\mathbf{x}) + \bar{a}(\mathbf{x}) s(\mathbf{x}) - \frac{1}{2} \partial_i \bar{a} \partial_i a + \frac{(\pi R)^2}{2} (-(\partial_i \partial_i \phi)^2 + 2\phi \partial_i \partial_i \mathcal{H}) \right]$$

$$\partial_i \partial_i \mathcal{H} = -\partial_i \partial_i a \partial_i \partial_i \bar{a} + \partial_i \partial_j a \partial_i \partial_j \bar{a}, \quad i = 1, 2$$

$$R = 2G\sqrt{s}, \quad R_i(r) = 4GE_i(r), \quad r = |\mathbf{x}|, \quad R_i(\infty) = R \tag{5}$$

$$\int d^2 \mathbf{x} s(\mathbf{x}) = 1, \quad R_i(r) = R \int^r d^2 \mathbf{x} s(\mathbf{x}). \tag{6}$$

Equations of motion in the axially symmetric case

$$\ddot{\rho}(r) = \frac{1}{2} \frac{R_1(r) R_2(r)}{\rho^2(r)}$$
(7)

$$\rho(0) = 0, \quad \rho(r) \sim r^2, r \to \infty \tag{8}$$

$$\rho(r) = r^2 (1 - 2\pi \dot{\phi}(r)), \quad \dot{} = d/dr^2 \tag{9}$$

Parameters

Energy: $\sqrt{s} \leftrightarrow R$, impact parameter: b Sources: sizes L_i ,

Kinematics

- b > R "normal" scattering and production of gravitons
- b < R energy \sqrt{s} within the radius $2G\sqrt{s} ??$
- there may exist a critical value of R/b, $(R/b)_c$
- head-on scattering of two extended sources, vary R/L
- \bullet head-on scattering of a particle and a ring with radius L
 - an axially symmetric version of particle-particle scattering at the impact parameter b=L

III. Momentum space

$$\mathcal{A} = \frac{Gs}{2} \int \frac{d^2 \mathbf{k}}{\mathbf{k}^2} \left[\beta_1(\mathbf{k}) s_2(-\mathbf{k}) + \beta_2(\mathbf{k}) s_1(-\mathbf{k}) - \beta_1(\mathbf{k}) \beta_2(-\mathbf{k}) - \frac{(\pi R)^2}{2} \left[-h(\mathbf{k})h(-\mathbf{k}) - h(-\mathbf{k})\mathcal{H}(\mathbf{k}) \right] \right]$$
(10)

Equations of motion

$$\beta_{i}(k^{2}) = s_{i}(k^{2}) + \frac{R^{2}}{8} \int \frac{dk_{1}^{2}dk_{2}^{2}}{k_{1}^{2}k_{2}^{2}} \sqrt{\lambda(k_{1}^{2},k_{2}^{2},k^{2})} h(k_{1}^{2})\beta_{i}(k_{2}^{2})$$

$$h(k^{2}) = \frac{1}{4\pi^{2}} \int \frac{dk_{1}^{2}dk_{2}^{2}}{k^{2}k_{1}^{2}k_{2}^{2}} \sqrt{\lambda(k_{1}^{2},k_{2}^{2},k^{2})} \beta_{1}(k_{1}^{2})\beta_{2}(k_{2}^{2})$$
(11)

$$\lambda(k_1^2, k_2^2, k^2) = 2k_1^2 k_2^2 + 2k_1^2 k_2^2 + 2k_1^2 k_2^2 - k^4 - k_1^4 - k_2^4$$
(12)

Solution in p-space

- a) iteration
- b) as algebraic equations
- \Rightarrow In both cases there is a critical value of R/L !

Algebraic solution works also in the "BH" phase and produces complex solutions, i.e. action.

Solution in x-space

solve equivalent 1-st order system

$$\dot{\rho(r)} = \sqrt{\sigma(r) - \frac{R_1(r)R_2(r)}{\rho}} \quad i.e. \quad \sigma \equiv \dot{\rho}^2 + \frac{R_1(r)R_2(r)}{\rho},
\dot{\sigma}(r) = \frac{1}{\rho(r)} \frac{d(R_1R_2)}{dr^2},$$
(13)

with initial conditions

$$\rho(0) = 0 , \quad \sigma(0) = \sigma_0,$$
(14)

and find a σ_0 such that $\sigma(Max(L_1, L_2)) = 1$.

(finite sources
$$\Rightarrow \sigma \stackrel{(2)}{=} const. \stackrel{(1)}{=} 1 \ r > Max(L_1, L_2)$$
)

 \Rightarrow Such (real) solutions exist only for $R/L < (R/L)_c$!

Figure 1:

d		0.5	1.0	1.6	2.5	4.0	
A-x		0.419	0.471	0.502	0.528	0.550	
А-р		0.429	0.476	0.499	0.501	0.477	
σ		0.01	0.1	0.2	0.3	3.0	
B-x		0.615	0.572	0.525	0.486	0.470	
В-р		0.058	0.436	0.501	0.489	0.476	
ρ	0.25	0.333	0.5	1.0	2.0	3.0	4.0
C-x	.810	.816	.821	.823	.821	.816	.810
С-р	.823	.833	.850	.841	.838	.840	.832

Table 1: $(R/L)_c$ for a range of sizes of the power-like and Gaussian sources: a comparison between configuration and momentum-space results. A, B and C label sources as discussed below. In the case C: $\rho = L_2/L_1$ and the critical value of the ratio $2R/(L_1 + L_2)$ is shown.

A: "Lorentz" profile with width d

 $R_c|_{\sigma=0}^B = R_c|_{d=\infty}^A = 2^{1/2} 3^{3/4} \cong .62$

$$s(r) = \frac{dL^4}{\pi (dL^4 + (1-d)r^4)^{3/2}}, \quad d < L$$

B: Central gaussian on a gaussian ring C: Two gaussians with different sizes

Figure 2: A critical line (solid) in the (L_1, L_2) plane. The lower bound (dashed) comes from the CTS criterion

Closed trapped surface

Both light rays, perpendicular to a two dimensional surface, move inside (ending on the singularity).

$$R_1(R_c)R_2(R_c) = R_c^2 (15)$$

CTS provide a sufficient condition for existence of a BH

Figure 3: A critical line (solid) in the (R/L, d) plane for a b = 0 scattering of two lorentzian sources.

III. The action around the critical point

The OEM action is IR divergent, however the derivative

$$\frac{\partial (\mathcal{A}/Gs)}{\partial R^2} = \frac{1}{R^4} \int dr^2 (1-\dot{\rho})^2 = \frac{\pi^2}{R^3 \sqrt{s}} \langle N \rangle , \qquad (16)$$

is IR-finie.

The fit is consistent with

$$\langle N \rangle = c_0 + c_1 (R_c - R)^{\frac{1}{2}},$$
 (17)

and confirms the behaviour

$$A(R) = A_0 + A_1(R_c - R) + A_2(R_c - R)^{3/2}, \qquad (18)$$

consistent with the local nature of Choptuik scaling

Figure 4: Total multiplicity of emitted gravitons and the fit $0.138 - .46(R_c - R)^{0.52}$, $R_c = .47067$.

IV. Spectrum of emitted gravitons

Figure 5: Spectrum of gravitons (A). R=.44,.45,.46,.47; $R_c = .47067, n = 60 - 70.$

Figure 6: Profile in the x-space, $R = .45, .46, .47, .4706, .47064, .47065; R_c = .470673$ \Rightarrow The limiting spectrum is regular.

Figure 7: Looking for the "Hawking temperature" of emitted gravitons. R=.1,.2,.3,.4,.6,.8,.82,.83; $R_c = .841$

Beyond the critical point

Discretization

$$k \to v = \frac{1}{1+kL}, \quad \Delta(k_1, k_2, k) \to T(v_1, v_2, v)$$
 (19)

$$n = 6 \Rightarrow 3^6 = 729 \Rightarrow \text{solutions} - 2.5 \ hrs$$
 (20)

 $R < R_c$ only one stable solution – identical to the one from the recursion $R > R_c$ also the second solution "conjugate" to the recursive one

Figure 8: Two complex trajectories of $h(k_3)$ parametrized by R moving across R_c .

Conclusions

- Eikonal-like summation of single emission diagrams is sufficient to capture nonlinearities needed for a collapse.
- The on mass shell action is singular $(R_c R)^{\gamma}$. The critical exponent $\gamma \cong 2\gamma_{Choptuik}$.
- There exists a smooth limiting distribution of gravitons at R_{c-} .
- Imaginary action \Rightarrow instabilities above R_c .
- Future: \Rightarrow construct a stable state (****),
 - \Rightarrow lift some of the approximations.