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@ Integrability in 141 dimensions

© Generalized Integrability: 241 dimensions

© Application
@ Integrable models: S? target space
@ Integrable models with higher dimensional target space
@ Integrable submodels of non-integrable models: Skyrme
model
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Integrability in 14-1 dimensions

e Integrability in classical models:
o Zero curvature formulation
o Infinitely many conserved quantities

e Exact methods:
o Inverse scattering methods
o Baclund transformation, dressing methods
o Lax pair formulation etc...
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Integrability in 14-1 dimensions

Theorem: The ZC in 141 dim = the condition for the path
ordered integral
Pefl- dxH Ay

to be independent of the path I, for the fixed end points
Proof:
Def: W as

W, b
do " do

where I is parameterized by o € [0,27] and A, € G

W =0, (1)
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Integrability in 14-1 dimensions

How does W change under a fixed end-point deformation of I?

d<5W+ dxt s+ 5<dX>W:O

do Hdo do
But
— _ dow—1t dx”
WIw =1 = WL _ py-ig o
N[}
L (WLW) = —WL (0\A6x L 4 A, 925 Wy
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Integrability in 14-1 dimensions

wlsw|l =

— ¢ do (W IaNA WS EE L WA, (958 W) =
—WLAWSXHS + [ do WL, WS sx»
Fixed end-points dx*(0) = dx*(2w) =0

27 "
W-lsW(2r) = / doWLF,, W‘;iax% (2)
0 g

where
Fu = 6MAZ, — 8,,AM + [AM, Al
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Integrability in 14-1 dimensions

Consider:
I a closed loop  xp = x*(0) = x*(27)
Y asurface O9X =T

Scan ¥ using loops parameterized by 7 € [0, 27]
7=0 constant loop at xg
T=2r I

Variation is the deformation of one loop into the other 6 = (57'(%

Then

VY% 27
— = W(27r)/ doW1F,W——
dT 0

dx* dx?
do dr (3)
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Integrability in 14-1 dimensions

Thus, W is defined by (1) and (3) = non-Abelian Stokes theorem

dxt d
P elr A — P, Exp </ dodr W LF, WwE—Z >

do dt
g

F.,=0 = Lhs. is[ independent
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Generalized Integrability: 2+1 dimensions

Idea: The generalized ZC in 241 dim is the condition for the
surface ordered integral of a rank 2 tensor

m
P, Exp (/ dodrw18,, w2 >
>

do dt
to be independent of the surface X
Def: Operator V

%—VT(BAT) 0, V(r=0)=1 (4)

2
dx? dx?
T= doW™1B,, W=
. 7 e dr
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Generalized Integrability: 2+1 dimensions

Observation: F,, =0 =V does not depend upon the way we
choose to scan x

Proof:

A flat = W is path independent

x€XY = Jvy-aloopscanningX: x €~ = W defined by (1)
change the way we scan ¥ = W at x is constant

thus T is a local function on &
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Generalized Integrability: 2+1 dimensions

How does V change under a fixed boundary deformation of X7

doV

—o0VT—-VST=0
dr

But
— -1 — — —
Vilv=1= Y —_=_-Tv! = L(vVv1)=VvET)V!

SV vl= /drV(&T)Vl
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Generalized Integrability: 2+1 dimensions

oA, flat = A, =-0,W- W1
SW = —A,Wixt, sW™1=WTA,oxH

dx* dx?
do dt

27
.57:/ do (SW™1B, W + W16B,, W + W™1B,,sW) &=
0

dx* dx
w-B,, Ws
+ . <da dT)

4
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Generalized Integrability: 2+1 dimensions

2w dxM
SV VL= V(r) (/O di—lsﬂywcj;axV> Vl(r)+

. or dx* dx?
/ dT’V(T/) |: W_l (D)\B,uu + D[LBI/)\ + DZ/BA;L) Wi x 5X/\:| V_l(T,)
0 o do dt’
P 2w o
- [farver|rean, [T wrsaw g | v
0 0 do
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Generalized Integrability: 2+1 dimensions

Consider:
> a closed surface where the loop I collapses to xg
Qavolume 0Q=%

Scan Q using closed surfaces parameterized by ¢ € [0, 2]
(=0 constant surface at xg
(=27 X

Variation is the deformation of one closed surface into the other
_ d
0= 5<ch
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Generalized Integrability: 2+1 dimensions

Then

av SR _
dT—</O dcv /cv>v_o, (5)

where

it e o
do dt’ d¢

2
K= / doW ™ (D\By, + DBy + DBy, ) W
0

—[T(B,A, 1), T(B,A,)]
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Generalized Integrability: 2+1 dimensions

Thus, V is defined by (4) and (5) = a generalized non-Abelian
Stokes theorem

dxt d
P, Exp (/ drdoW 1B, W=— X> — P; Exp </ dCdTVICV1>
b do d Q

U
K=0 = Lhs. is ¥ independent

When £ = 07?

DABuu+DuBVA+DuBAp = 07 (a) [T(BvA>T)a T(BaA7C)] =0 (b)
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Generalized Integrability: 2+1 dimensions

Type |

FMV — O’ D)\BMV = 07 [Blgg)y B/()g_)] = O
where

Buw(x) = W(x)B W (x)

Examples:
BF theory theory without kinetic term, if [B,L(L(I)/)7 B,g?,)] =0
Chern-Simons theory
2 4+ 1 gravity
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Generalized Integrability: 2+1 dimensions

Type Il

A, € G - Lie algebra
B, € P - abelian ideal = W™'B,WeP = (b)

Conditions:

e Conserved currents
ju=W71B,Ww
Number of currents = dim P

Def: Model is integrable & dim P = oo
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Generalized Integrability: 2+1 dimensions

e Gauge transformation

D)
1 1

—0.88
B,uz/ - gB/wg_lv g€ Expg

A, — gALE™

Ay — Ay

B., — By, + Doy, — Dyay,

= constructing solutions (dressing method)
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Generalized Integrability: 2+1 dimensions

In higher dim
Hypersurface independence of the hypersurface ordered operator V

dxH1 dxHd—1

_ 1 d—1yy/—1
V=" EXp /;d_l do*...do w B,Ul-n,ud—l WWW

T

sufficient, local conditions
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target space
h higher d\mer

Application

e G Lie algebra of G = SU(2) Lie group restricted to the equator
of SU(2)

o P = {reps R, of su(2), m==£1, | =1...00}

Here spin-j representation

[T3, Te] = £Ts, [T+, T-]=2Ts

[T3, P9 = mPy)

(T2, PY) = /G +1) — m(m £ 1)PY),

P9, Y =0

Element of G = SU(2)/U(1)
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Integrable models: S2 target space

models with higher dimensional ce

Application 2 -~
PP submodels of non-integrable mo Skyrme model

e Triplet representation

A, =0, WW™t = —i0uTy —i0,uT_ + (ud,0 — Gd,u)T3)

1—|—]u!2(

5 1 1 _ & p)
B# - 1+ ’u’2 (’C#PI ICH’Dfl)

GZC = (1+ |uf?) 9"K, — 20 K,0"u =0

Currents Jﬁl) =y! J/Sl’m)PI(r:ll)

m=—1
1,1 —
J/S )= (1+|1u|2)2 (Ku + ,C#u2)
1,0 i = —
JO = 7(1+ﬁ2)2 (K,u—K,0)
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Integrable models: S2 target space

le models with higher dimensional t

Application 2
PP le submodels of non-integrable mod

e Higher spin representation
GZC = (1+|uf?)o"K, —2uK,0"u=0
Constrain  K,0*u =0
e Infinitely many conserved currents = integrable system

oG - 0G

Ju = ’Cua - ’Cuﬁ
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Integrable models: S2 target space

Integrable models with higher dimensional

Application 2
PP Integrable submodels of non-integrable mod

Example: knotted solitons in Aratyn-Ferreira-Zimerman

model s
L= (H2)*, Hu =1 (9.5 x 9,n)

where
i=(n',n%n%), =1

Topological charge - Hopf index Qy € m3(5?)

|ﬂ||im i =i then 7i: R3U {00} = §3 — §2
X|—00
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Integrable models: S2 target space
Integrable models with higher dimensional
Integrable submodels of non-integrable mod

Application

Stereographic projection

1
A= [EamE (u+a,—i(u—1),|uf —1)
3
_ 32 (Ku0MD)i _(a nav 29 -
L=2% m, K, = (0,00" u)o,u — (0, u)*0,u
Equation of motion
_ 1 —\—1/4
Integrable model Kuotu=0
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Integrable models: S2 target space
Integrable models with higher dimensional
Integrable submodels of non-integrable mod

Application

Exact solitons
toroidal coordinates (7, &, ¢)

x=q 1 sinhncosgp, y = g Lsinh nsin ¢

z=gq 'sin&, q=coshn— cos¢

solutions
— 2/ m2 inh2
. coshn \/n /m? + sinh“n Ji(metn0)
\/1 + m2/n2sinh? ) — coshn
topological charge Qy = —mn
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Integrable models: S° target space
Integrable models with higher dimensional target space

Application 2
PP Integrable submodels of non-integrable models: Skyrme model

e S3 Lagrangian

L =w(un,§)H
where
H = h,,u,0,8),,
huvp = uply€p + UpUpy + Uy Up€y — Uy Upp — Upliy€y — Uy Uy
o Infinitely many conservation laws
o Exact solution with nontrivial topological charge
(S22 d=4+1,q=2/3
m5(S3) 22, d=5+1,g=5/6
7['6(53)2212 d:6+1,q:1
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le models: S? target space
ith higher dimensional target space
Integrable submodels of non-integrable models: Skyrme model

Application

e G Lie algebra of G = SU(2) Lie group
o P = {reps Rjy of su(2), m==+1, | =1...00}
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able mode < target space
egrable models with r dimensional target space
Integrable submodels of non-integrable models: Skyrme model

Application

Skyrme model

L= 'fTr (vio.uuiory) - 32—162Tr i UTaMU}z,

where _
U=etT =€l ¢=\/g+8+8

1 WPr-1 —2iu
T=— - )
1+ |ul? 2ic 1—|u

and
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model space
Ir dimensional ge
Integrable submodels of non-integrable models Skyrme model

Application

e Triplet representation

1 ) o 1 _
A/,L = m <_18;U'UT+ - Iaﬂqu + i(ua’uU - UaMU)TB,)
i 2sin£ i —i§ ¢
B = ~iRuPs + T up (5P — 5P
sin? &
= 9,6 — 8\ (N —I—N)

(1 + [uf?)?

2sin% ¢
o = Ouur 4 (Mﬂ‘ (1+\u\2)2’<”>

M, = (8,ud"€)8,E—(8,€)?0uu, N, = (8,ud"1)d,&—(9"ud,£)0,u

GZC = Skyrme e.o.m.
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target space
vith higher dimensional target space
Integrable submodels of non-integrable models: Skyrme model

Application

e Higher spin representation
GZC = Skyrme e.o.m.

Constrains  S§,0¥u=0and S,0"{ =0
o Integrable submodel

4sinécosé

"o— RH = >"">
0uS" =0, 9, (1 + o)

(S,0"7)

Infinitely many conserved currents

0G5 0G
G _ e it
JE =850 =8
OH OH.
S = 4sin€ cos€ (HLS, + HaSy) — (1+ |ul?) (8[1 + = )
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rget space

her dimensional t: space

Skyrme model

Application Integrable submodels of non-integrable mod

The simplest skyrmion with @ = +1 is a solution of the subsystem

X 1 . _ = 2
- :T\ZP(_I(Z_Z)’Z+Z’|Z‘ —1)

u=z, &£=¢(r)

The constrains are

(Ouu)? =0, Jud"é =0
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Summary

e New criterion for d > 2 integrability
e New integrable models

o Exact solutions
o Nontrivial topological charge

o Infinitely many conserved quantities

e Integrable sectors of non-integrable models
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