Generalized Integrability in Higher Dimensional Classical Theories

Andrzej Wereszczyński

Jagiellonian University, Kraków, Poland

10th June 2008

- 1 Integrability in 1+1 dimensions
- Generalized Integrability: 2+1 dimensions
- 3 Application
 - Integrable models: S^2 target space
 - Integrable models with higher dimensional target space
 - Integrable submodels of non-integrable models: Skyrme model
- Summary

- Integrability in classical models:
 - Zero curvature formulation
 - Infinitely many conserved quantities
- Exact methods:
 - Inverse scattering methods
 - o Bäclund transformation, dressing methods
 - Lax pair formulation etc...

Theorem: The ZC in 1+1 dim \equiv the condition for the path ordered integral

$$Pe^{\int_{\Gamma} dx^{\mu} A_{\mu}}$$

to be independent of the path Γ , for the fixed end points

Proof:

Def: W as

$$\frac{dW}{d\sigma} + A_{\mu} \frac{dx^{\mu}}{d\sigma} W = 0, \tag{1}$$

where Γ is parameterized by $\sigma \in [0,2\pi]$ and $A_{\mu} \in \mathcal{G}$

How does W change under a fixed end-point deformation of Γ ?

$$\frac{d\delta W}{d\sigma} + A_{\mu} \frac{dx^{\mu}}{d\sigma} \delta W + \delta \left(\frac{dx^{\mu}}{d\sigma} \right) W = 0$$

But

$$W^{-1}W = 1 \Rightarrow \frac{d\delta W^{-1}}{d\sigma} = W^{-1}A_{\mu}\frac{dx^{\mu}}{d\sigma}$$

$$\tfrac{d}{d\sigma}\left(W^{-1}\delta W\right) = -W^{-1}\left(\partial_{\lambda}A_{\mu}\delta x^{\lambda}\tfrac{dx^{\mu}}{d\sigma} + A_{\mu}\tfrac{d\delta x^{\mu}}{d\sigma}\right)W$$

$$\begin{split} W^{-1}\delta W\big|_0^{\sigma'} &= \\ &- \int_0^{\sigma'} d\sigma \, \left(\, W^{-1}\partial_\lambda A_\mu W \delta x^\lambda \frac{dx^\mu}{d\sigma} + W^{-1}A_\mu \left(\frac{d\delta x^\mu}{d\sigma} \right) \, W \, \right) = \\ &- W^{-1}A_\mu W \delta x^\mu \big|_0^{\sigma'} + \int_0^{\sigma'} d\sigma W^{-1} F_{\mu\nu} W \frac{dx^\mu}{d\sigma} \delta x^\nu \end{split}$$

Fixed end-points $\delta x^{\mu}(0) = \delta x^{\mu}(2\pi) = 0$

$$W^{-1}\delta W(2\pi) = \int_0^{2\pi} d\sigma W^{-1} F_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \delta x^{\nu}, \qquad (2)$$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]$$

Consider:

$$\Gamma$$
 a closed loop $x_0 = x^{\mu}(0) = x^{\mu}(2\pi)$
 Σ a surface $\partial \Sigma = \Gamma$

Scan
$$\Sigma$$
 using loops parameterized by $au \in [0,2\pi]$
$$au = 0 \qquad \text{constant loop at } x_0$$

$$au = 2\pi \qquad \Gamma$$

Variation is the deformation of one loop into the other $\delta = \delta \tau \frac{d}{d\tau}$

Then

$$\frac{W}{d\tau} = W(2\pi) \int_0^{2\pi} d\sigma W^{-1} F_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau}$$
 (3)

Thus, W is defined by (1) and (3) \Rightarrow non-Abelian Stokes theorem

$$P e^{\int_{\Gamma} dx^{\mu} A_{\mu}} = P_{2} \operatorname{Exp} \left(\int_{\Sigma} d\sigma d\tau W^{-1} F_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau} \right)$$

 $F_{\mu\nu} = 0 \Rightarrow \text{I.h.s.}$ is Γ independent

Idea: The generalized ZC in 2+1 dim is the condition for the surface ordered integral of a rank 2 tensor

$$P_2 \operatorname{Exp} \left(\int_{\Sigma} d\sigma d\tau W^{-1} B_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau} \right)$$

to be independent of the surface Σ

Def: Operator *V*

$$\frac{dV}{d\tau} - V T(B, A, \tau) = 0, \quad V(\tau = 0) = 1$$

$$T \equiv \int_0^{2\pi} d\sigma W^{-1} B_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau}$$
(4)

Observation: $F_{\mu\nu}=0 \ \Rightarrow \ V$ does not depend upon the way we choose to scan Σ

Proof:

A flat \Rightarrow W is path independent $x \in \Sigma \Rightarrow \exists \gamma$ - a loop scanning $\Sigma : x \in \gamma \Rightarrow W$ defined by (1) change the way we scan $\Sigma \Rightarrow W$ at x is constant thus T is a local function on Σ

How does V change under a fixed boundary deformation of Σ ?

$$\frac{d\delta V}{d\tau} - \delta V T - V \delta T = 0$$

But

$$V^{-1}V = 1 \Rightarrow \frac{dV^{-1}}{d\tau} = -TV^{-1} \Rightarrow \frac{d}{d\tau} \left(\delta V V^{-1}\right) = V(\delta T)V^{-1}$$

$$\delta V V^{-1} = \int d\tau V(\delta T)V^{-1}$$

$$ullet A_\mu ext{ flat} \Rightarrow A_\mu = -\partial_\mu W \cdot W^{-1}$$
 $\delta W = -A_\mu W \delta x^\mu, \quad \delta W^{-1} = W^{-1} A_\mu \delta x^\mu$

$$\bullet \delta T = \int_0^{2\pi} d\sigma \left(\delta W^{-1} B_{\mu\nu} W + W^{-1} \delta B_{\mu\nu} W + W^{-1} B_{\mu\nu} \delta W \right) \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau} + W^{-1} B_{\mu\nu} W \delta \left(\frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau} \right)$$

$$\begin{split} \delta V \ V^{-1} &= V(\tau) \left(\int_0^{2\pi} d\sigma W^{-1} B_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \delta x^{\nu} \right) V^{-1}(\tau) + \\ \int_0^{\tau} d\tau' V(\tau') \left[\int_0^{2\pi} W^{-1} \left(D_{\lambda} B_{\mu\nu} + D_{\mu} B_{\nu\lambda} + D_{\nu} B_{\lambda\mu} \right) W \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau'} \delta x^{\lambda} \right] V^{-1}(\tau') \\ &- \int_0^{\tau} d\tau' V(\tau') \left[T(B, A, \tau'), \int_0^{2\pi} W^{-1} B_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \delta x^{\nu} \right] V^{-1}(\tau') \end{split}$$

Consider:

 Σ a closed surface where the loop Γ collapses to x_0

 Ω a volume $\partial \Omega = \Sigma$

Scan Ω using closed surfaces parameterized by $\zeta \in [0, 2\pi]$

$$\zeta = 0$$
 constant surface at x_0

$$\zeta=2\pi$$
 Σ

Variation is the deformation of one closed surface into the other $\delta = \delta \zeta \frac{d}{d\zeta}$

Then

$$\frac{dV}{d\tau} - \left(\int_0^{2\pi} d\zeta V^{-1} \mathcal{K} V\right) V = 0, \tag{5}$$

where

$$\mathcal{K} = \int_0^{2\pi} d\sigma W^{-1} \left(D_{\lambda} B_{\mu\nu} + D_{\mu} B_{\nu\lambda} + D_{\nu} B_{\lambda\mu} \right) W \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau'} \frac{dx^{\lambda}}{d\zeta} - \left[T(B, A, \tau), T(B, A, \zeta) \right]$$

Thus, V is defined by (4) and (5) \Rightarrow a generalized non-Abelian Stokes theorem

$$\begin{array}{c} P_2 \; \mathsf{Exp} \; \left(\int_{\Sigma} d\tau d\sigma W^{-1} B_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\tau} \right) = P_3 \; \mathsf{Exp} \; \left(\int_{\Omega} d\zeta d\tau V \mathcal{K} V^{-1} \right) \\ & \qquad \qquad \Downarrow \\ \mathcal{K} = 0 \quad \Rightarrow \quad \mathsf{l.h.s.} \; \text{is} \; \Sigma \; \text{independent} \end{array}$$

When
$$K = 0$$
?

$$D_{\lambda}B_{\mu\nu} + D_{\mu}B_{\nu\lambda} + D_{\nu}B_{\lambda\mu} = 0$$
, (a) $[T(B, A, \tau), T(B, A, \zeta)] = 0$ (b)

Type I

$$F_{\mu\nu} = 0, \quad D_{\lambda}B_{\mu\nu} = 0, \quad [B_{\mu\nu}^{(0)}, B_{\rho\sigma}^{(0)}] = 0$$
 where $B_{\mu\nu}(x) = W(x)B_{\mu\nu}^{(0)}W^{-1}(x)$

Examples:

BF theory theory without kinetic term, if $[\mathcal{B}_{\mu\nu}^{(0)},\mathcal{B}_{\rho\sigma}^{(0)}]=0$ Chern-Simons theory 2+1 gravity

Type II

$$A_{\mu}\in\mathcal{G}$$
 - Lie algebra $B_{\mu
u}\in\mathcal{P}$ - abelian ideal \Rightarrow $W^{-1}B_{\mu
u}W\in\mathcal{P}$ \Rightarrow (b)

Conditions:

$$F_{\mu\nu} = 0, \quad D_{\mu}\tilde{B}^{\mu} = 0 \tag{6}$$

Conserved currents

$$j_{\mu} = W^{-1} \tilde{B}_{\mu} W$$

Number of currents = dim \mathcal{P}

Def: Model is integrable \Leftrightarrow dim $\mathcal{P} = \infty$

• Gauge transformation

i)
$$A_{\mu} \rightarrow g A_{\mu} g^{-1} - \partial_{\mu} g g^{-1},$$

$$B_{\mu\nu} \rightarrow g B_{\mu\nu} g^{-1}, \quad g \in \ \mathsf{Exp} \ \mathcal{G}$$
 ii)
$$A_{\mu} \rightarrow A_{\mu}$$

$$B_{\mu\nu} \rightarrow B_{\mu\nu} + D_{\mu} \alpha_{\nu} - D_{\nu} \alpha_{\mu}$$

⇒ constructing solutions (dressing method)

In higher dim

Hypersurface independence of the hypersurface ordered operator ${\cal V}$

$$\mathcal{V} = \mathcal{P} \operatorname{Exp} \left(\int_{\Sigma_{d-1}} d\sigma^1 ... d\sigma^{d-1} W^{-1} B_{\mu_1 ... \mu_{d-1}} W \frac{dx^{\mu_1}}{d\sigma^1} ... \frac{dx^{\mu_{d-1}}}{d\sigma^{d-1}} \right)$$

sufficient, local conditions

$$F_{\mu\nu} = 0, \quad D_{\mu}\tilde{B}^{\mu} = 0, \quad \tilde{B}^{\mu} = \frac{1}{(d-1)!} \epsilon^{\mu\nu_1...\nu_{d-1}} B_{\nu_1...\nu_{d-1}}$$
 (7)

- \mathcal{G} Lie algebra of G = SU(2) Lie group restricted to the equator of SU(2)
- $\mathcal{P} = \{ \text{reps } R_{lm} \text{ of } su(2), \ m = \pm 1, \ l = 1...\infty \}$

Here spin-j representation

$$\begin{split} &[T_3, T_{\pm}] = \pm T_{\pm}, \quad [T_+, T_-] = 2T_3 \\ &[T_3, P_m^{(j)}] = m P_m^{(j)} \\ &[T_{\pm}, P_m^{(j)}] = \sqrt{j(j+1) - m(m\pm 1)} P_{m\pm 1}^{(j)} \\ &[P_m^{(j)}, P_m^{(j')}] = 0 \end{split}$$

Element of G = SU(2)/U(1)

$$W = \frac{1}{\sqrt{1 + |u|^2}} \begin{pmatrix} 1 & iu \\ i\overline{u} & 1 \end{pmatrix}$$

Triplet representation

$$\begin{split} \mathcal{A}_{\mu} &= -\partial_{\mu}WW^{-1} = \frac{1}{1+|u|^2} \left(-i\partial_{\mu}uT_{+} - i\partial_{\mu}\bar{u}T_{-} + \left(u\partial_{\mu}\bar{u} - \bar{u}\partial_{\mu}u \right)T_{3} \right) \\ \tilde{\mathcal{B}}_{\mu} &= \frac{1}{1+|u|^2} \left(\mathcal{K}_{\mu}P_{1}^{(1)} - \bar{\mathcal{K}}_{\mu}P_{-1}^{(1)} \right) \\ \mathbf{GZC} &\Rightarrow (1+|u|^2) \ \partial^{\mu}\mathcal{K}_{\mu} - 2\bar{u} \ \mathcal{K}_{\mu}\partial^{\mu}u = 0 \\ \text{Currents} \ J_{\mu}^{(1)} &= \sum_{m=-1}^{1} J_{\mu}^{(1,m)}P_{m}^{(1)} \\ J_{\mu}^{(1,1)} &= \frac{1}{(1+|u|^2)^2} (\mathcal{K}_{\mu} + \bar{\mathcal{K}}_{\mu}u^2) \\ J_{\mu}^{(1,0)} &= \frac{i\sqrt{2}}{(1+|u|^2)^2} (\bar{\mathcal{K}}_{\mu}u - \mathcal{K}_{\mu}\bar{u}) \end{split}$$

• Higher spin representation

$$\begin{aligned} \textbf{GZC} & \Rightarrow & \left(1+|u|^2\right)\partial^\mu\mathcal{K}_\mu - 2\bar{u}\;\mathcal{K}_\mu\partial^\mu u = 0 \\ & \quad \text{Constrain} & \quad \mathcal{K}_\mu\partial^\mu u = 0 \end{aligned}$$

• Infinitely many conserved currents = integrable system

$$J_{\mu} = \mathcal{K}_{\mu} rac{\partial \mathcal{G}}{\partial u} - \bar{\mathcal{K}}_{\mu} rac{\partial \mathcal{G}}{\partial ar{u}}$$

Example: knotted solitons in Aratyn-Ferreira-Zimerman model

$$L = \left(H_{\mu\nu}^2\right)^{\frac{3}{4}}, \ \ H_{\mu\nu} = \vec{n} \cdot \left(\partial_{\mu}\vec{n} \times \partial_{\nu}\vec{n}\right)$$

where

$$\vec{n} = (n^1, n^2, n^3), \ \vec{n}^2 = 1$$

Topological charge - Hopf index $Q_H \in \pi_3(S^2)$

$$\lim_{|\vec{x}|\to\infty}\vec{n}=\vec{n}_0 \text{ then } \vec{n}:R^3\cup\{\infty\}\cong S^3\to S^2$$

Stereographic projection

$$\vec{n} = \frac{1}{1 + |u|^2} (u + \bar{u}, -i(u - \bar{u}), |u|^2 - 1)$$

$$L = 2^{3/2} \frac{(K_{\mu} \partial^{\mu} \bar{u})^{\frac{3}{4}}}{(1 + |u|^2)^3}, \quad K_{\mu} = (\partial_{\nu} \bar{u} \partial^{\nu} u) \partial_{\mu} u - (\partial_{\nu} u)^2 \partial_{\mu} \bar{u}$$

Equation of motion

$$\partial_{\mu}\mathcal{K}^{\mu}=0,\quad \mathcal{K}_{\mu}\equiv rac{1}{1+|u|^2}(\mathcal{K}_{\mu}\partial^{\mu}ar{u})^{-1/4}\mathcal{K}_{\mu}$$

Integrable model $\mathcal{K}_{\mu}\partial^{\mu}u\equiv 0$

Exact solitons toroidal coordinates (η, ξ, ϕ)

$$x=q^{-1}\sinh\eta\cos\phi,\quad y=q^{-1}\sinh\eta\sin\phi$$

$$z=q^{-1}\sin\xi,\quad q=\cosh\eta-\cos\xi$$

solutions

$$u = \frac{\cosh \eta - \sqrt{n^2/m^2 + \sinh^2 \eta}}{\sqrt{1 + m^2/n^2 \sinh^2 \eta} - \cosh \eta} e^{i(m\xi + n\phi)}$$

topological charge $Q_H = -mn$

• S³ Lagrangian

$$\mathcal{L} = \omega(u\bar{u}, \xi)H^q$$

where

$$H \equiv h_{\mu\nu\rho} u_{\mu} \bar{u}_{\nu} \xi_{\rho},$$

$$h_{\mu\nu\rho} = u_{\mu}\bar{u}_{\nu}\xi_{\rho} + u_{\rho}\bar{u}_{\mu}\xi_{\nu} + u_{\nu}\bar{u}_{\rho}\xi_{\mu} - u_{\nu}\bar{u}_{\mu}\xi_{\rho} - u_{\rho}\bar{u}_{\nu}\xi_{\mu} - u_{\mu}\bar{u}_{\rho}\xi_{\nu}$$

- o Infinitely many conservation laws
- Exact solution with nontrivial topological charge

$$\pi_4(S^3) \cong Z_2 \quad d = 4 + 1, q = 2/3$$

$$\pi_5(S^3) \cong Z_2 \quad d = 5 + 1, q = 5/6$$

$$\pi_6(S^3) \cong Z_{12}$$
 $d = 6 + 1, q = 1$

- G Lie algebra of G = SU(2) Lie group
- $\mathcal{P} = \{ \text{reps } R_{lm} \text{ of } su(2), \ m = \pm 1, \ l = 1...\infty \}$

Skyrme model

$$L = \frac{f_\pi^2}{4} \operatorname{Tr} \left(U^\dagger \partial_\mu U U^\dagger \partial^\mu U \right) - \frac{1}{32 e^2} \operatorname{Tr} \left[U^\dagger \partial_\mu U, U^\dagger \partial_\mu U \right]^2,$$

where

$$U = e^{i\xi_i \tau^i} = e^{i\xi T}, \quad \xi = \sqrt{\xi_1^2 + \xi_2^2 + \xi_3^2}$$

and

$$T = \frac{1}{1 + |u|^2} \begin{pmatrix} |u|^2 - 1 & -2iu \\ 2i\bar{u} & 1 - |u|^2 \end{pmatrix}$$

Triplet representation

$$\begin{split} A_{\mu} &= \frac{1}{1 + |u|^2} \left(-i \partial_{\mu} u T_{+} - i \partial_{\mu} \bar{u} T_{-} + \frac{1}{2} (u \partial_{\mu} \bar{u} - \bar{u} \partial_{\mu} u) T_{3} \right) \\ B_{\mu} &= -i R_{\mu} P_{3} + \frac{2 \sin \xi}{1 + |u|^{2}} \left(e^{i \xi} S_{\mu} P_{+} - e^{-i \xi} \bar{S}_{\mu} P_{-} \right) \\ R_{\mu} &= \partial_{\mu} \xi - 8 \lambda \frac{\sin^{2} \xi}{(1 + |u|^{2})^{2}} \left(N_{\mu} + \bar{N}_{\mu} \right) \\ S_{\mu} &= \partial_{\mu} u + 4 \lambda \left(M_{\mu} - \frac{2 \sin^{2} \xi}{(1 + |u|^{2})^{2}} K_{\mu} \right) \end{split}$$

$$M_{\mu} = (\partial_{\nu} u \partial^{\nu} \xi) \partial_{\mu} \xi - (\partial_{\nu} \xi)^{2} \partial_{\mu} u, \quad N_{\mu} = (\partial_{\nu} u \partial^{\nu} \bar{u}) \partial_{\mu} \xi - (\partial^{\nu} u \partial_{\nu} \xi) \partial_{\mu} \bar{u}$$

GZC \Rightarrow Skyrme e.o.m.

Higher spin representation

GZC \Rightarrow Skyrme e.o.m.

Constrains
$$\; \mathcal{S}_{\mu}\partial^{\mu}u = 0 \; ext{and} \; \; \mathcal{S}_{\mu}\partial^{\mu}\xi = 0$$

Integrable submodel

$$\partial_{\mu}S^{\mu}=0, \quad \partial_{\mu}R^{\mu}=rac{4\sin\xi\cos\xi}{(1+|u|^2)^2}(S_{\mu}\partial^{\mu}ar{u})$$

Infinitely many conserved currents

$$J_{\mu}^{G} = \mathcal{S}_{\mu} \frac{\partial G}{\partial u} - \bar{\mathcal{S}}_{\mu} \frac{\partial G}{\partial \bar{u}}$$

$$J_{\mu}^{H_1,H_2} = 4\sin\xi\cos\xi\left(H_1S_{\mu} + H_2S_{\mu}^*\right) - (1+|u|^2)^2\left(\frac{\partial H_1}{\partial\bar{u}} + \frac{\partial H_2}{\partial u}\right)$$

The simplest skyrmion with $Q=\pm 1$ is a solution of the subsystem

$$\frac{\vec{x}}{r} \equiv \frac{1}{1+|z|^2} \left(-i(z-\bar{z}), z+\bar{z}, |z|^2 - 1 \right)$$
$$u = z, \quad \xi = \xi(r)$$

The constrains are

$$(\partial_{\mu}u)^2=0,\quad \partial_{\mu}u\partial^{\mu}\xi=0$$

- New criterion for d > 2 integrability
- New integrable models
 - Exact solutions
 - Nontrivial topological charge
 - Infinitely many conserved quantities
- Integrable sectors of non-integrable models