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Negative radiation pressure

Negative radiation pressure in classical field theories is a phenomenon when
an object (i.e. topological defect) instead of being pushed away by radiation is
being pulled toward the source of radiation.

In all cases there is some kind of mechnism which transforms part of the
energy of incoming wave into another wave which carries more momentum.

Examples

kinks in 1+1 D in φ4 theory, and small modifications of φ4

oscillons (pseudobreathers) in 1+1 D, probably also in higher
dimensions

vortices in abelian Higgs model

vortices in Goldstone’s model (?)
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Scattering in 1+1 d:

general scattering:
force pushing the object
F = |R2|A2q2

kink in φ4 is transparent

linear approximation: F = 0

nonlinearity introduces waves
with 2ω. They have larger
momentum/energy ratio:

rω =
p
ω2 − 4/ω < r2ω =

p
ω2 − 1/ω.

A surplus of momentum
pushes the kink towards the
source of radiation F ∼ A4
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Goldstone’s model is described by following Lagrangian

L =
1
2
∂µφ∂

µφ∗ − 1
2

(φφ∗ − 1)
2
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Goldstone’s model is described by following Lagrangian

L =
1
2
∂µφ∂

µφ∗ − 1
2

(φφ∗ − 1)
2

Small perturbations around the vacuum manifold can be divided into two sectors

massless Goldstone’s mode
excitation along the valley
costs no energy

massive amplitude mode
excitation perpendicular to the
valley
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The Lagrangian leads to equation of motion

φ̈−∆φ+ 2φ(φφ∗ − 1) = 0. (1)

As usual the static, linear (along z−axis) vortex solution has the form

φs(r , θ) = f (r)eiNθ. (2)

This leads to an equation for profile

f ′′ +
1
r

f ′ − N
r 2 f − 2f

“
f 2 − 1

”
= 0, (3)

where f (∞) = 1 (minimum of energy) and f (0) = 0 (smoothness of field –
topological zero).
Vortices with winding number N larger than 1 are unstable so we assume
N = 1. It is quite easy to obtain an asymptotic form of f for large values of r :

f (r →∞) = 1− 1
4

r−2 − 9
32

r−4 − 161
128

r−6 − 24661
2048

r−8 +O(r−10). (4)
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How do vortices interact with radiation?

Goldstone’s mode pushes the vortex

φ(x , y = L, t) = (f (r) + iA cos(ωt))eiθ

amplitude mode pulls the vortex (NRP)

φ(x , y = L, t) = (f (r) + A cos(ωt))eiθ

combination of the above two pushes the vortex also a little sideways
(Magnus force)

φ(x , y = L, t) = (f (r) + A exp(iωt))eiθ

T. Romańczukiewicz NRP – vortices
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Are vortices reflectionless?

They most likely are not!
There must be some other mechanism standing behind the NRP.

Excitations around vacuum have two components: massless Goldstone’s
mode and massive amplitude field.
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Let us consider 1+1 d model. A
wave with mass m1 and amplitude
A hitting the kink after transition is
transformed into another wave with
different mass m2 and amplitude B.
For simplicity let us assume R = 0.

From energy conservation law we get:

1
2

A2ωk1 =
1
2

B2ωk2 ⇒ B2 =
k1

k2
A2

where k2
i = ω2 −m2

i . The force acting on the kink is equal to:

F = −1
2

A2k2
1 +

1
2

B2k2
2 =

1
2

A2k1(k2 − k1).

If k2 > k1 (or other words: m2 < m1) the force pushes the kink against the
wave and we have another example of the NRP.
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Example 1

A toy model of two interacting fields:

L = Lφ4 +
1
2

“
ψ2

t − ψ2
x −m2ψ2

”
+Lint

where

Lint =
1
2
κ(φ2 − 1)ψ.

mφ = 2.
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Example 1 cont.

We consider scattering of the ψ over the kink.
In limit for small coupling constant κ and small amplitudes A we obtain that

Rψψ = 0

Rψφ(q, k) =
π(3k2−q2−4)

4q
√

(q2+1)(q2+4) sinh
“

q+k
2 π

”
Tψφ(q, k) = Rψφ(−q, k)

where k =
√
ω2 −m2 and q =

√
ω2 − 4 are wave numbers of ψ and φ fields

respectivily.
Note that our approximation fails when k ≈ q that is when m ≈ 2.
Using Noether theorem we can calculate energy and momentum balance.
From that we can obtain the force acting on the kink.
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Exaple 1 cont.

F =
1
2

A2q
“

T 2(q − k)− R2(q + k)
”

Note that when q < k i.e. m < 2 the force is always negative (or at most zero)
whatever the coefficients R and T are.
When m > 2 the direction in which the kink accelerate can be determined
only after substitution the values of R and T .
The negative radiation pressure appears when

T 2 >
q + k
q − k

R2.

This inequality can be rewritten (when R 6= 0) as

sinh q−k
2 π

sinh q+k
2 π

>
q + k
q − k

which is true for all q > k > 0. The force vanishes only when R = 0 that is
when ω2 = 3m2

2 .
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Further examples

Vortices in Goldstone’s mode:
NRP for scattering amplitude wave

Abelian Higgs model vortices:

NRP for scattering amplitude wave
NRP for scattering vector field (for β = ms/mv < 0.3)
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To the static vortex we add a small, cylindrically-symmetric perturbation
φ = φs + δφ. The appropriate equation has the form:

δ̈φ−∆δφ+ 2(2f 2 − 1)δφ+ 2f 2e2iNθδφ∗ = 0. (5)

One can seek the solution of the form:

δφ =
∞X

m=−∞

ei(N+m)θ
“

eiωts+
m + e−iωts−m

”
. (6)

The equations for s±m can be obtained by plugging (6) into (5) and changing
the summing variables from m to −m in some terms:»

Dm 2f 2

2f 2 D−m

– »
s+

m

s−∗−m

–
= ω2

»
s+

m

s−∗−m

–
=: L

»
s+

m

s−∗−m

–
, (7)

where

Dm := −∂rr −
1
r
∂r +

(N + m)2

r 2 + 2(2f 2 − 1). (8)
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It is more convenient to introduce the following variables:»
am

gm

–
:=

1
2

»
1 1
1 −1

– »
s+

m

s−∗−m

–
. (9)

The equation for new functions is simply»
Da

2Nm
r2

2Nm
r2 Dg

– »
am

gm

–
= ω2

»
am

gm

–
, (10)

where

Da = −∂rr −
1
r
∂r +

N2 + m2

r 2 + 2(3f 2 − 1), (11a)

Dg = −∂rr −
1
r
∂r +

N2 + m2

r 2 + 2(f 2 − 1). (11b)

The physical interpretation is now more clear. am describes a field which far
away from the vortex core looks like a field with mass m2

a = 4 and gm

describes a massless field (the Goldstone’s mode).
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Crossections for ω = 3.0 for different positive values of m together with fitted
functions (for large r ) of type f (x) = A + Be−Cm.
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For Goldstone’s mode the values are:
Ag = -0.00028 ± 0.00016
Bg = 0.7982 ± 0.0059
Cg = 0.2856 ± 0.0012

Ag should be positive (allσ > 0) so Ag = 0 with accuracy better than 3
three digits. Exponentially decaying crossections are very common.

For amplitude mode the values are:
Ag = 0.04187 ± 0.00077
Bg = 0.226 ± 0.022
Cg = 0.265 ± 0.016

Note that Ag is significantly larger than 0⇒ infinite crossection?

Our assumption according the function could be wrong.
Infinite crossection is nothing unusual (compare with Coulomb scattering).
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T. Romańczukiewicz NRP – vortices



Intro
Goldstone’s model

Conclusions
Literature

Vortex
A toy model
Linearization

Mass of the vortex is infinite and diverges as

MR = M0 + π log R,

where M0 is finite and R � 1 is a radius within which we integrate energy
density.
If the vortex would accelerate with finite acceleration the total crossection
should also diverge as

σ2
aa ∼ log R ∼ log m

which implies

σaa(m) =
A3√
m

which also gives a nice fit (A3 = 0.1991± 0.0034).
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There is something wrong in our approach.

We expected σag > σaa in order to explain NRP and we obtained finite
σag and infinite σaa.

Even if the topological zero was accelerating towards the source of
radiation the scattering for the whole field implies the radiation pressure
is positive.

Conclusion: vortex does not interact with radiation as a rigid body!
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T. Romańczukiewicz NRP – vortices



Intro
Goldstone’s model

Conclusions
Literature

Vortex
A toy model
Linearization

Justification (not a proof!):

Eigenfunctions for large
values of m are flat until they
reach their first maximum and
a zero shortly after.

The first zero of is always
larger than r0 > m/k .

For small distances R from
the vortex core only small
values of m . 2kR needs to
be consider.

Conclusion

Field inside a small tube can undergo a NRP, however further away from the
core the positive RP emerge. This causes a stress between the vortex core
and its asymptotic cloud.
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Vortex
A toy model
Linearization

Path of the topological zero of the vortex. First the vortex is accelerating
towards the radiation. Then the rest of the field drags the vortex core.
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Due to the difference in masses between massless Goldstone’s mode
and massive amplitude mode the core of the vortex undergoes NRP
when is hit with amplitude wave. F ∼ A2 unlike in φ4 model where
F ∼ A2.

For larger distances the asymptotic field with infinite mass is pushed by
the radiation

a stress is created which finally drags the vortex

Abelian Higgs model vortices are much more compact objects (often
dubbed the local vortices). There is a true NRP (needs more
calculations).
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Significance of the NRP

Acts as effective attractive interaction between a defect and
perturbation or excited defects. Instead of F ∼ e−aR we have F ∼ R−D .

After collision defect can anihilate into radiation.

Can speed up a process of colapse of system of defects.
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T.R. (φ4)
Acta Phys. Pol., B 35, 523 (2004)

P. Forgacs,A. Lukacs, T.R. (φ4)
Phys. Rev., D77, 125012 (2008)

T.R. (Toy model)
soon in arXives (2008)

P. Forgacs,A. Lukacs,J. Karkowski, T.R. (φ4)
in preparation

T.R.
http://prunus.if.uj.edu.pl/UCP/
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