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Topics of this talk
Hydrodynamics

As efffective theory
First-order hydrodynamics
Second-order hydrodynamics

Gauge/gravity duality
AdS/CFT prescription for real-time field theory
Transport coefficients from AdS/CFT
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Motivation and Introduction
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Motivation for studying hydrodynamics
Applications, e.g., in heavy ion collisions

Events with nonzero impact
parameter

Elliptic flow: final particles have
anisotropic momentum distribution

is a collective effect

Hydrodynamic models work well for
elliptic flow.
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Motivation for studying hydrodynamics
Applications, e.g., in heavy ion collisions

Events with nonzero impact
parameter

Elliptic flow: final particles have
anisotropic momentum distribution

is a collective effect

Hydrodynamic models work well for
elliptic flow.

Conceptually a much simpler theory than QFT:

Few d.o.f.

Classical: bosonic modes at ω � T
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Why gauge/gravity duality
Practical consideration:

Strong coupling, not treatable by other methods

Simple calculations

Conceptual consideration:

Deep connection between QFT and black-hole physics

sharp contrast to weak coupling:
weak coupling: QFT → kinetic theory → hydro
strong coupling: QFT → hydro

Hydrodynamics and gauge/gravity duality – p.5/48



Original AdS/CFT correspondence
Maldacena; Gubser, Klebanov, Polyakov; Witten

between N = 4 supersymmetric Yang-Mills theory
and type IIB string theory on AdS5× S5

ds2 =
R2

z2
(d~x2 + dz2) + R2dΩ2

5

Large ’t Hooft limit in gauge theory ⇔ small curvature limit in string theory

g2Nc � 1 ⇔ R/ls =
√

α′ R � 1

Correlation function are computable at large ’t Hooft coupling, where string theory
→ supergravity.
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The dictionary of gauge/gravity duality

gauge theory gravity
operator Ô field φ

energy-momentum tensor Tµν graviton hµν

dimension of operator mass of field
globar symmetry gauge symmetry

conserved current gauge field
anomaly Chern-Simon term

... ...

Z

eiS4D+φ0O =

Z

eiS5D

where S5D is computed with nontrivial boundary condition

lim
z→0

φ(~x, z) = φ0(~x)
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Green’s function from AdS/CFT
Let us compute the correlator of O = −L, which corresponds to the dilaton Φ in
supergravity.
First write down the field equation

∂µ(
√−g gµν∂νφ) = 0

Solution with boundary condition φ → J at z → 0:

φ(z, p) = fp(z)J(p), fp(z) = 1
2
(pz)2K2(pz)

Substituting to the action one finds

Scl =

Z

p

J(−p)F(p, z)J(p)|z→0, F(p, z) =
N2

16π2
z−3f−p(z)f ′

p(z)

Correlator is obtained by differentiating Scl with respect to J :

〈OO〉p = −2 lim
z→0

F(p, z) =
N2

64π2
p4 ln(p2)
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Other correlators
Other correlators can be computed similarly:

Correlators of R-charge currents: solve Maxwell equation

DµF µν = 0

with boundary condition

lim
z→0

Aµ = A0
µ

and differentiate the 5D action with respect to A0
µ

Correlators of stress-energy tensor: solve the Einstein equation with
boundary condition

ds2 =
R2

z2
(dz2 + g0

µνdxµdxν)

and then differentiate the gravitational action with respect to g0
µν .
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Finite-temperature AdS/CFT correspondence
Black 3-brane solution:

ds2 =
r2

R2
[−f(r)dt2 + d~x2] +

R2

r2f(r)
dr2 + R2dΩ2

5, f(r) = 1 − r4
0

r4

r0 = 0, f(r) = 1: is AdS5× S5, r = R2/z.

r0 6= 0: corresponds to N = 4 SYM at temperture

T = TH =
r0

πR2

Entropy = A/4G

S =
π2

2
N2

c T 3V3D

This formula has the same N2 behavior as at zero ’t Hooft coupling g2Nc = 0
but the numerical coefficient is 3/4 times smaller.
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Thermodynamics

S = f(g2Nc)
2π2

3
N2

c T 3V3D

where the function f interpolates between weak-coupling and strong-coupling
values, which differ by a factor of 3/4:

f(λ) =

8

>><

>>:

1 − 3

2π2
λ +

√
2 + 3

π3
λ3/2 + · · ·, λ � 1

3

4
+

45ζ(3)

32λ3/2
+ · · ·, λ � 1

(0)
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Euclidean correlators
Correlation functions: can be obtained by a finite-temperature version of AdS/CFT:

Z4D[J ] = e−S[φcl]

0
r8r

0

zz0

Due to geometry, correlation functions are periodic in Euclidean time.

Note: fixing the boundary condition at the boundary r = ∞ completely determines
the solution. No separate boundary condition at r = r0 is necessary
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Hydrodynamics
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Hydrodynamics
is the effective theory describing the long-distance, low-frequency behavior
of interacting finite-temperature systems. Hydrodynamic regime

Valid at distances � mean free path, time � mean free time.

At these length/time scales: local thermal equilibrium: T , µ vary slowly in
space.

Simplest example of a hydrodynamic theory: the Navier-Stokes equations

The quark-gluon plasma can be described by a relativistic version of the
Navier-Stokes equation.

All microscopic physics reduces to a small number of kinetic coefficients
(shear viscosity η, bulk viscosity, diffussion coeffecients).

Hydrodynamics and gauge/gravity duality – p.14/48



Relativistic hydrodynamics
Consider a neutral plasma: no conserved charge, except energy and momentum.

Thermodynamics: one variable T

P = P (T ), s =
∂P

∂T
, ε = Ts − P

Ideal (zeroth order) hydrodynamics

∇µT µν = 0 T µν = (ε + P )uµuν + Pgµν

4 equations for 4 unknowns (T and uµ, u2 = −1).

Viscous hydrodynamics
T µν = T µν

ideal + Πµν

|{z}

viscous stress

Ambiguity of defining uµ beyond leading order: fixed by uµΠµν = 0
(“Landau-Lifshitz frame”)
Physical interpretation: in the local rest frame momentum density is zero: T 0i = 0.
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Shear and bulk viscosities
The most general form of the viscous stress is

Πµν = −η∂〈µuν〉 − ζP µν(∂ · u)

P µν = gµν + uµuν

A〈µν〉 =
1

2
P µαP νβ(Aαβ + Aβα) − 1

3
P µνP αβAαβ

Shear viscosity η and bulk viscosity ζ. Affect damping of shear and sound modes.

In theories with conformal invariance (such as N = 4 SYM theory), T µ
µ = 0

leads to
ε = 3P, ζ = 0
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Linearized hydrodynamics
We linearize around the static solution:

ε = ε0 + δε

P = P0 + δP

u0 = 1 + O(~u2)

~u = ~u � 1

Energy-momentum tensor:

T 00 = ε0 + δε

T 0i = (ε0 + P0)u
i

T ij = (P0 + δP )δij − η(∂iuj + ∂jui) − (ζ − 2
3
η)δij∂kuk

Linearized hydrodynamic equations:

ωδε − (ε0 + P0)q
iui = 0

[(ε0 + P0)ω + iηq2]ui − qiδP + i(ζ + 1
3
η)qi(~q · ~u) = 0
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Shear modes
Decompse the velocity ~u into longitudinal and transverse parts:

~u = ~u⊥ + ~u‖, ~q · ~u⊥ = 0, ~u‖ ‖ ~q

Equation for transverse modes:

[(ε0 + P0) + iηq2]u⊥ = 0

corresponds to an overdamped shear mode

x

z

v
with dispersion relation

ω = −iDq2, D =
η

ε0 + P0
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Sound modes
Longitudinal modes: coupled system of equations for δε and u‖:

ωδε − (ε0 + P0)qu‖ = 0

−q

„
∂P

∂ε

«

δε + [(ε0 + P0)ω + i(ζ + 4
3
η)q2]u‖ = 0

yields propagating sound modes

ω = ±csq − iΓq2, cs =

„
∂P

∂ε

«1/2

, Γ =
1

2

ζ + 4
3
η

ε0 + P0
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Kubo’s Formula
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Kubo’s formula: preliminaries
Viscosities can be expressed in terms of Green’s functions

Hydrodynamics = effective theory describing response of a system to
external long-distance perturbations.

Example of such perturbation: gravitational waves
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Kubo’s formula: preliminaries
Viscosities can be expressed in terms of Green’s functions

Hydrodynamics = effective theory describing response of a system to
external long-distance perturbations.

Example of such perturbation: gravitational waves

Long-wavelength ravitational waves induce hydrodynamic perturbations
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Generalization to curved space
To find the response of a hydrodynamic medium to external gravitational
perturbations, one needs to generalize the hydrodynamic equations to
curved spacetime.

Replacing derivative by covariant derivative:

∇µT µν =
1√−g

∂µ(
√−g T µν) + Γν

µλT µλ = 0

τµν = −ηP µαP νβ(∇αuβ + ∇βuα) + · · ·
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Linear response theory
Consider a fluid initially in thermal equilibrium: T = T0, uµ = (1,~0).
Let us probe the fluid by a weak metric perturbation:

gµν = ηµν + hµν

Linear response theory:

〈δT µν(x)〉 = −
Z

dy Gµν,αβ
R (x − y)hαβ(y)

where GR is the retarded propagator of T µν

We can use the hydrodynamic equation to find GR at low momenta
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Kubo’s formula
For simplicity, consider perturbation spatially homogeneous, dependent on time
only:

hxy = hxy(t)

all other components are zero
Spin-2 perturbation: does not excite motion of the fluid: uµ = (1,~0), T = T0.
Nontrivial response from Christofell symbols:

δT xy = −Phxy − η(∇xuy + ∇yux)

but

∇iuj = ∂iui
|{z}

=0

−Γ0
iju0 =

1

2
∂thij

Therefore:
Gxy,xy(ω,~0) = P − iηω

We find Kubo’s formula relating shear viscosity with correlation function:

η = − lim
ω→0

1

ω
Im Gxy,xy

R (ω,~0)
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Summary: two-point hydrodynamic correlators
Consider a momentum (ω, 0, 0, q).

Components of T µν are classified by O(2) in xy directions

Expectation:

Spin-2 components (e.g., T xy): correlators do not show low-momentum
singularity, but imaginary part is tied to shear viscosity through Kubo’s
formula

Spin-1 componets (e.g., T 0x, T zx): correlators show shear-mode pole
ω = −iDq2.

Spin-0 components (e.g., T 00): correlators have sound-wave pole.

Note: all correlators above are real-time correlators.
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Real-Time Finite-Temperature
AdS/CFT
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Real-time correalation functions from AdS/CFT
Naive generalization of AdS/CFT correspondence runs into problem: solution is
not uniquely fixed by the boundary condition at z = 0.

∂µ(
√−g gµν∂νφ) = 0

Two solutions near z = z0:

f± ∼ (z − z0)
±iω/4πT

are both regular.

Correspond to incoming and outgoing waves.

Picking only incoming wave solution provides partial relieve, but the complete
formulation of real-time AdS/CFT requires a more radical approach.
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Penrose diagram and Schwinger-Keldysh formalism
Extend the metric beyond the horizon: Penrose diagram

U=0
V=0

R

P

L

F

Two boundaries (left and right) correspond to two contours in the close-time-path
formulation of real-time finite-temperature field theory with σ = β/2

t -

�

?

t

ti
A

B

tfC

tf − iσ

ti−iβ
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Formulation of real-time AdS/CFT

Z4D[J1, J2] = eiS[φcl]

where φcl

satisfies field equation in the whole Penrose diagram

approaches J1 on right boundary and J2 on left boundary

satisfies certain boundary conditions at the horizon (readily formulated in
Kruskal coordinates)

Diffentiating the partition function one can find any real-time Green’s function. For
example, the Schwinger-Keldysh propagators are

Gab ∼ δ2S

δJaδJb
, a, b = 1, 2.

Can be shown to satisfy all properties required for Schwinger-Keldysh propagator
(fluctuation dissipation theorem etc.)
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Retarded propagator from AdS/CFT
Retarded Greens function can be computed from the component of this matrix:

GR = G11 − e−βω/2

| {z }

σ=β/2

G12

But using the general formalism one can show that the following procedure works
for 2-point retarded Green’s function

Forget about Penrose diagram

Find the mode function fp(z) with incoming-wave boundary condition at the
horizon

Use the same formula as at zero temperature:

GR ∼ lim
z→0

z−3f−p(z)f ′
p(z)|z→0

Naively: reduce the action to boundary integrals and pick up only a horizon
contribution.
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Hydrodynamics
from Gauge/Gravity Duality
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Calculating η from AdS/CFT
First write down equation for φ = hx

y ,

φ′′
p − 1 + u2

uf
φ′

p +
w2 − k2f

uf2
φp = 0, u = z2/z2

0

where w = ω/2πT , k = q/2πT .

Solution for small w, q:

fp = (1 − u2)−iw/2 + · · ·
Applying general formulas for the retarded correlators:

Gxy,xy
R = #u−1f−pf ′

p|u→0

The coefficient # is fixed by the normalization of Hilbert-Einstein action. We find

Gxy,xy
R (ω) = −i

π

8
N2T 3

| {z }

η

·ω
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Hydrodynamic poles
One can find poles in the Green’s function that correspond to the shear (ω ∼ −iq2)
and sound modes.
Shear: start with the unperturbed metric

ds2 =
(πTR)2

u
(−f(u)dt2 + d~x2) +

R2

4u2f(u)
du2, f(u) = 1 − u2

Assume nonvanishing htx, hzx; momentum along z direction In terms of

Ht =
uhtx

(πTR)2
, Hz =

uhzx

(πTR)2

the field equations are

H ′
t +

kf

w
H ′

z = 0

H ′′
t − 1

u
H ′

t −
wk

uf
Hz − k2

uf
Ht = 0

where k = q/(2πT ) and w = ω/(2πT ).
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Shear pole
Can be converted to one 2nd order equation for H ′

t:

H ′′′
t − 2u

f
H ′′

t +
2uf − k2f + w2

uf2
H ′

t = 0

Boundary condition at u = 1: H ′
t(u) ∼ (1 − u)−iw/2 (incoming waves)

The equations can be solved at small ω, q
Boundary action:

Sboundary ∼ 1

u
(Ht(u)H ′

t(u) − Hz(u)H ′
z(u))

˛
˛
˛
˛
u=0

differentiating which one finds the corerlators, e.g.,

Gtx,tx(ω, q) =
πN2T 3

8

q2

iω −Dq2

where

D =
1

4πT
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Hydrodynamic modes (continued)
The value of D extracted from the pole is consistent with

D =
η

ε + P

as required by hydrodynamic equations.

Moreover: the correlator 〈T 00T 00〉 computed from AdS/CFT has a pole
corresponding to sound wave:

ω =
q√
3
− iΓq2

The sound damping rate is also consistent with the calculated η and ζ = 0.

Γ =
1

6πT
=

2

3

η

ε + P
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Viscosity entropy ratio
One can consider other theories with gravity duals

It seems that for each theory one has to compute η again.

However, it turns out to be unnecessary, since the ration η/s can be shown to be
constant across all theories with gravity duals

η

s
=

1

4π
Kovtun, Son, Starinets; Buchel, Liu

One method is to

Use AdS/CFT and Kubo’s formula to map viscosity into of graviton
absorption cross section (by black hole)

Using Einstein equation, show that the absorption cross section is equal to
the area of the horizon

Use Bekenstein’s formula for the entropy S = A/(4G) to show the constancy
of η/s.
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Viscosity/entropy ratio and uncertainty principle
Estimate of viscosity from kinetic theory

η ∼ ρv`, s ∼ n =
ρ

m

η

s
∼ mv` ∼ ~

mean free path

de Broglie wavelength

Quasiparticles: de Broglie wavelength . mean free path

Therefore η/s & ~

Weakly interacting systems have η/s � ~.

Theories with gravity duals have universal η/s, but we don’t know how to
derive the constancy of η/s without AdS/CFT.

Corrections to η/s computed Buchel, Liu, Starinets; Myers, Paulos, Sinha

η

s
=

1

4π

„

1 +
15ζ(3)

λ3/2
+

5λ1/2

16N2
+ · · ·

«
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Gravity/hydrodynamics correspondence
Starting from a black-brane solution, i.e.,

ds2 =
r2

R2
(−fdt2 + d~x2) +

R2

r2f
dr2, f = 1 − r4

r4
0

Construct a family of configurations by changing T ∼ r0/R2 and boosting
along ~x directions by velocity ~u

gµν = gµν(z; T, uµ)

Promote T and ~u into fields.

Require regularity away from r = 0 ⇒ hydrodynamic equations

Bhattacharyya, Hubeny, Minwala, Rangamani

Hydrodynamics and gauge/gravity duality – p.38/48



Second-Order Hydrodyamics
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Corrections to hydrodynamics
Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Hydrodynamics and gauge/gravity duality – p.40/48



Corrections to hydrodynamics
Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

Gxy,xy(ω) = P − iηω + #ω2

Hydrodynamics and gauge/gravity duality – p.40/48



Corrections to hydrodynamics
Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

Gxy,xy(ω) = P − iηω + #ω2

Howerver it turns out that the correction after η is nonanalytic:

Gxy,xy(ω) = P − iηω + #ω3/2

Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics

Hydrodynamics and gauge/gravity duality – p.40/48



Corrections to hydrodynamics
Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

Gxy,xy(ω) = P − iηω + #ω2

Howerver it turns out that the correction after η is nonanalytic:

Gxy,xy(ω) = P − iηω + #ω3/2

Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics

The hydrodynamic loops are suppressed in the large N limit Kovtun, Yaffe

Hydrodynamics and gauge/gravity duality – p.40/48



Corrections to hydrodynamics
Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

Gxy,xy(ω) = P − iηω + #ω2

Howerver it turns out that the correction after η is nonanalytic:

Gxy,xy(ω) = P − iηω + #ω3/2

Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics

The hydrodynamic loops are suppressed in the large N limit Kovtun, Yaffe

In the large N → ∞ limit (fix momenta) no nonanalytic behavior:
second-order hydrodynamics
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Second-order hydrodynamics

T µν = (ε + P )uµuν + Pgµν − η∇〈µuν〉 + terms with two derivatives

There are 16 possible terms with two derivatives.
Assume fundamental theory is a CFT,

T µ
µ = 0 in flat space

In curved space: Weyl anomaly

gµνT µν ∼ R2
µναβ in curved space

But R ∼ ∂2gµν : Weyl anomaly reproduced in hydrodynamics only at fourth order in
derivatives.

⇒ gµνT µν = 0 for our purposes

First order: ζ = 0,

Second order: tracelessness of T µν reduces to 8 the number of possible
structures in Πµν
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Conformal invariance
Further constraint: T µν transforms simply under Weyl transformation

gµν → e2ωgµν , Tµν → e6ωTµν

8 → 5 possible structures in Πµν

Πµν
2nd order = ητπ

»

〈Dσµν〉 +
1

3
σµν(∇· u)

–

+ κ
h

R〈µν〉 − 2uαRα〈µν〉βuβ

i

+ λ1σ
〈µ

λσν〉λ + λ2σ
〈µ

λΩν〉λ + λ3Ω
〈µ

λΩν〉λ

D ≡ uµ∇µ

σµν = 2∇〈µuν〉

Ωµν =
1

2
(∇〈µuν〉 −∇〈νuµ〉) vorticity

κ only in curved space, but affects 2-point function of T µν

λi nonlinear response
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Second-order transport coefficients from AdS/CFT
τπ and κ can be found similarly to η: using a Kubo’s like formula

Within hydro: compute some 〈T µνT αβ〉 from linear response theory:
response to gravitational perturbations gαβ = ηαβ + hαβ

Compare with AdS/CFT calculations

Example: for momentum q = (ω, 0, 0, k) hydrodynamics predicts

〈T xyT xy〉(ω, k) = P − iηω + ητπω2 − κ

2
(ω2 + k2)

Matching with AdS/CFT calcualation, yields

τπ =
2 − ln 2

2πT
, κ =

η

πT

One can match to the soud-wave dispersion:

ω = csq − iΓq +
Γ

cs
(c2

sτπ − 1
2
Γ)q3

to find the same value for τπ. Hydrodynamics and gauge/gravity duality – p.43/48



Nonlinear coefficientsλ1,2,3

One needs to look beyond small perturbations around thermal equilibrium.
λ1: can be found from long-time tail of a boost-invariant solution
Janik, Peschanski, Heller

ε(τ) ∼ 1

τ4/3
− 2η

τ2
+

#

τ8/3
(-6)

Maching the coefficient of τ−8/3 term:

λ1 =
η

2πT

Bhattacharyya et al. also found

λ1 =
η

2πT
, λ2 = −2 ln 2

2πT
η, λ3 = 0
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Israel-Stewart theory
In the literature, variations of the Israel-Stewart theory are used

Modified relatiship between Πµν and ∇µuν

(τπuλ∇λ + 1)Πµν = −ησµν

Frequently terms required by Weyl invariance are thrown away,

〈DΠµν〉 +
4

3
Πµν(∇· u)

(but are kept in some papers, e.g., Romatschke & Romatschke). Such terms
may be numerically important.

In addition, λ1 = λ3 = 0 in IS theory; in N = 4 SYM λ1 6= 0 (but λ3 = 0).

Additional terms nonlinear: not important for sound wave propagation, but
important for Bjorken expansion
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Other transport coefficients
Bulk viscosity: see also talk by Rocha

Bulk viscosity ζ nonvanishing in theories with broken conformal symmetry

In theories with gravity duals, it seems that c2
s is always less than 1

3

Parametrically
ζ

η
∼ (

1

3
− c2

s) Buchel

Diffusion coefficients:

Conserved charges in a plasma diffuse:

∂tρ = D∇2ρ

Diffusion coefficients D can be found by calculating current-current
correlators, which have ω = −iDq2 poles (and also from a Kubo’s formula)

For R-charge in N = 4 SYM plasma

D =
1

2πT
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Measuring η/s at RHIC
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Conclusion
AdS/CFT correspondence can be generalized to finite temperature, real-time

Reveals deep connection between thermal field theory, hydrodynamics and
black hole physics

η/s constant in all theories with Einstein gravity duals

How relevant it is to QCD plasma ?

At least we now have examples of strongly coupled plasmas that can be
studied analytically
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