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Topics of this talk

® Hydrodynamics
® As efffective theory
# First-order hydrodynamics
#® Second-order hydrodynamics

® Gauge/gravity duality
® AdS/CFT prescription for real-time field theory
# Transport coefficients from AdS/CFT
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Motivation and Introduction



Motivation for studying hydrodynamics

® Applications, e.g., in heavy ion collisions

#® Events with nonzero impact
parameter

# Elliptic flow: final particles have
anisotropic momentum distribution

® |s a collective effect

#® Hydrodynamic models work well for
elliptic flow.
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Motivation for studying hydrodynamics

® Applications, e.g., in heavy ion collisions

#® Events with nonzero impact
parameter

# Elliptic flow: final particles have
anisotropic momentum distribution

® |s a collective effect

#® Hydrodynamic models work well for
elliptic flow.

® Conceptually a much simpler theory than QFT:

® Fewd.o.f.
® Classical: bosonic modes at w < T
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Why gauge/gravity duality
Practical consideration:

® Strong coupling, not treatable by other methods

® Simple calculations

Conceptual consideration:
® Deep connection between QFT and black-hole physics

® sharp contrast to weak coupling:
weak coupling: QFT — kinetic theory — hydro

strong coupling: QFT — hydro
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Original AdAS/CFT correspondence

Maldacena; Gubser, Klebanov, Polyakov; Witten

between N = 4 supersymmetric Yang-Mills theory
and type |IB string theory on AdSs x S°

2
ds® = R—(de + dz?) + R*dQ;

Z2
Large 't Hooft limit in gauge theory < small curvature limit in string theory

¢GNe>1< R/ls=vVa'R>1

Correlation function are computable at large 't Hooft coupling, where string theory
— supergravity.
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The dictionary of gauge/gravity duality

gauge theory gravity
operator O field ¢
energy-momentum tensor 7}, graviton h,,,
dimension of operator mass of field
globar symmetry gauge symmetry
conserved current gauge field
anomaly Chern-Simon term

/eiS4D‘|’¢OO _ /6%'55D

where Ssp is computed with nontrivial boundary condition

lim ¢(Z, z) = ¢o(T)

z—0
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Green’s function from AdS/CFT

Let us compute the correlator of O = — L, which corresponds to the dilaton & in
supergravity.
First write down the field equation

8M(\/—_gg“yﬁygb) =0

Solution with boundary condition ¢ — J at z — O:

3(z,0) = fo(2)J(p),  [fo(2) = 3(p2)° K2(p2)

Substituting to the action one finds

N2
1672

Sur = / J=p)F(,2) I (D)oo, Fp,2) = ——23f ,(2)£1(2)

Correlator is obtained by differentiating S.; with respect to J:

N2
(00), = =2 1im F(p, z) = 4 ln(pQ)

z—0 647T2p
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Other correlators

Other correlators can be computed similarly:

® Correlators of R-charge currents: solve Maxwell equation

D,F"" =0
with boundary condition
lim A, = AO
z—0

and differentiate the 5D action with respect to A2

® Correlators of stress-energy tensor: solve the Einstein equation with
boundary condition
R2
ds® = 2 (dz + gpdetde”)

and then differentiate the gravitational action with respect to gg,,.
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Finite-temperature AdS/CFT correspondence

Black 3-brane solution:

2 ) 2 A
ds® = ﬁ[—f(r)dt2 + di’] + 21 dr® + R*dQ:Z, firy=1- r_i

® =0, f(r) =1:is AdS5x S°, r = R?/z.
® 1, £ 0: corresponds to N/ = 4 SYM at temperture

To

T =Ty =
"= T R2

Entropy = A/4G

7_[_2
S = 7N3T3V3D

This formula has the same N? behavior as at zero 't Hooft coupling ¢ N. = 0
but the numerical coefficient is 3/4 times smaller.
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Thermodynamics

2 2
g — f(gQNc)%NCQT?’VgD

where the function f interpolates between weak-coupling and strong-coupling
values, which differ by a factor of 3/4:

)
1—%>\+\/§j3>\3/2+-~, A< 1
2T T
f(A) = 1 3 4503) (0)
\ Z+32)\3/2—|—"', A>S> 1
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Euclidean correlators

Correlation functions: can be obtained by a finite-temperature version of AdS/CFT:

Zip|J] = e Sldall

| | >

Z, 0 =z
Due to geometry, correlation functions are periodic in Euclidean time.

Note: fixing the boundary condition at the boundary » = co completely determines
the solution. No separate boundary condition at » = rg IS necessary
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Hydrodynamics
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Hydrodynamics

Is the effective theory describing the long-distance, low-frequency behavior
of interacting finite-temperature systems. Hydrodynamic regime

Valid at distances > mean free path, time > mean free time.

At these length/time scales: local thermal equilibrium: 7", 1 vary slowly in
space.

Simplest example of a hydrodynamic theory: the Navier-Stokes equations

The quark-gluon plasma can be described by a relativistic version of the
Navier-Stokes equation.

All microscopic physics reduces to a small number of kinetic coefficients
(shear viscosity 7, bulk viscosity, diffussion coeffecients).
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Relativistic hydrodynamics

Consider a neutral plasma: no conserved charge, except energy and momentum.

Thermodynamics: one variable T°

oP
P=P(T), s o7 s

Ideal (zeroth order) hydrodynamics
vV, " =0  T" = (e+ P)u"u"” + Pg"”
4 equations for 4 unknowns (7" and u*, u* = —1).

Viscous hydrodynamics
T =T+ 1"
~—

viscous stress

Ambiguity of defining «* beyond leading order: fixed by u,IT*" =0
(“Landau-Lifshitz frame”)

Physical interpretation: in the local rest frame momentum density is zero: 7% = 0.
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Shear and bulk viscosities

The most general form of the viscous stress is
1" = —pd“u”’ — CP* (9 )

PP = g"" +ufu”

1
AW = %P“O‘P”B(Aag + Aga) — §P’“’PO‘BAQ5

Shear viscosity n and bulk viscosity (. Affect damping of shear and sound modes.

In theories with conformal invariance (such as N' = 4 SYM theory), T}/ =0
leads to
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Linearized hydrodynamics

We linearize around the static solution:

€ = €0+ 0€
P = Py+6P
w = 14 0(a@%)
u = ukl
Energy-momentum tensor:
T = €5+ de
TOi = (60 —+ Po)ui
TV = (Po+6P)§7 — n(Bsuj + dju;) — (¢ — 2n)5" dpu”

Linearized hydrodynamic equations:

wde — (€0 + Po)g'u' =0
(€0 + Po)w +ing’Ju’ — ¢'0P +i(¢ + 3m)ai(7- @) = 0
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Shear modes

Decompse the velocity « into longitudinal and transverse parts:

i=dL+dy, §-a=0, @q
Equation for transverse modes:
[(e0 + Po) +ing*lur =0
corresponds to an overdamped shear mode
Y
3 with dispersion relation
U n

1’“J5 w=-iPr,  D=—rp
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Sound modes

Longitudinal modes: coupled system of equations for de and w:

Wwoe — (6() + Po)qu” =0

oP

—q (E) de + [(60 + Po)w + Z(C + %77)(]2]’&” =0

yields propagating sound modes

opP\ /2 1¢+4
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Kubo’s Formula
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Kubo’s formula: preliminaries

Viscosities can be expressed in terms of Green’s functions

® Hydrodynamics = effective theory describing response of a system to
external long-distance perturbations.

® Example of such perturbation: gravitational waves
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Kubo’s formula: preliminaries

Viscosities can be expressed in terms of Green’s functions

® Hydrodynamics = effective theory describing response of a system to
external long-distance perturbations.

® Example of such perturbation: gravitational waves

Long-wavelength ravitational waves induce hydrodynamic perturbations
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Generalization to curved space

To find the response of a hydrodynamic medium to external gravitational

perturbations, one needs to generalize the hydrodynamic equations to
curved spacetime.

Replacing derivative by covariant derivative:

v 1 v v
VMT'M — \/—__gau(\/ —gTM )+ PMATMA =0

Y —nPMaPVB(Vo/UJB + Vﬁua) 4 ...
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Linear response theory

Consider a fluid initially in thermal equilibrium: T = Tp, u* = (1, 6).
Let us probe the fluid by a weak metric perturbation:

Guv = Npv + hpv

Linear response theory:

0T (2)) = [ dy G (@ = y)haa(y)
where G'r Is the retarded propagator of T#"

We can use the hydrodynamic equation to find G at low momenta
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Kubo’s formula

For simplicity, consider perturbation spatially homogeneous, dependent on time
only:

all other components are zero
Spin-2 perturbation: does not excite motion of the fluid: v* = (1,0), T = To.
Nontrivial response from Christofell symbols:

0T = —Phyy — n(Vauy + Vyug)

but
1
Viuj = &uz —ng’LLQ = §8thij
=0
Therefore:
G (w,0) = P — inw

We find Kubo’s formula relating shear viscosity with correlation function:

1 =
1= = lim = ImGR* (w,0)
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Summary: two-point hydrodynamic correlators

Consider a momentum (w, 0,0, q).
Components of T#" are classified by O(2) in xzy directions

Expectation:

® Spin-2 components (e.g., T*Y): correlators do not show low-momentum
singularity, but imaginary part is tied to shear viscosity through Kubo’s
formula

® Spin-1 componets (e.g., T, T*%): correlators show shear-mode pole
w = —iDg".

® Spin-0 components (e.g., 7°%): correlators have sound-wave pole.

Note: all correlators above are real-time correlators.
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Real-Time Finite-Temperature
AdS/CFT



Real-time correalation functions from AdS/CFT

Naive generalization of AAS/CFT correspondence runs into problem: solution is
not uniquely fixed by the boundary condition at z = 0.

8M(\/—_gg“yﬁygb) =0

Two solutions near z = zg:

f:l: N (Z . zo):lziw/élﬂ-T

are both regular.
Correspond to incoming and outgoing waves.

Picking only incoming wave solution provides partial relieve, but the complete
formulation of real-time AdS/CFT requires a more radical approach.
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Penrose diagram and Schwinger-Keldysh formalisn

Extend the metric beyond the horizon: Penrose diagram

Two boundaries (left and right) correspond to two contours in the close-time-path
formulation of real-time finite-temperature field theory with o = 5/2

Aoti ~C te

A

tf — 10
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Formulation of real-time AdS/CFT
Zip|Ji, Jo] = 519!

where ¢
® satisfies field equation in the whole Penrose diagram
® approaches J; on right boundary and Js on left boundary

® satisfies certain boundary conditions at the horizon (readily formulated in
Kruskal coordinates)

Diffentiating the partition function one can find any real-time Green’s function. For
example, the Schwinger-Keldysh propagators are

529

Glap ~ 5T 0y

a,b=1,2.

Can be shown to satisfy all properties required for Schwinger-Keldysh propagator
(fluctuation dissipation theorem etc.)
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Retarded propagator from AdS/CFT

Retarded Greens function can be computed from the component of this matrix:

Gr = G111 —e 72 Gys
N—_——
c=03/2

But using the general formalism one can show that the following procedure works
for 2-point retarded Green’s function

® Forget about Penrose diagram

® Find the mode function f,(z) with incoming-wave boundary condition at the
horizon

® Use the same formula as at zero temperature:
Gr~ lim 27" f_p(2) f(2)]2—0

Naively: reduce the action to boundary integrals and pick up only a horizon
contribution.
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Hydrodynamics
from Gauge/Gravity Duality



Calculating n from AdS/CFT

First write down equation for ¢ = h,

1—|—u2¢, +w2—k2f
uf P uf2

where w = w/27T, k = q/2nT.

bp =0, u:ZQ/zg

/1
pr _

Solution for small w, q:
fp= (1 —u®)""
Applying general formulas for the retarded correlators:

G:Ey,wy — #u_lf_pf;? ‘u—>0

The coefficient # is fixed by the normalization of Hilbert-Einstein action. We find

GV () = —i %NQT?’ ‘W

N—_——
n
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Hydrodynamic poles

One can find poles in the Green’s function that correspond to the shear (w ~ —ig?)

and sound modes.
Shear: start with the unperturbed metric

ds® =

(xTR)’ (—f(u)dt® + dz*) + i 2

_ 2
" 4u2—f(u)du flu)=1—u

Assume nonvanishing h:., h.,; momentum along z direction In terms of

Uht;c thw
H — HZ =
"7 (xTR)?’ (7T R)?
the field equations are
H| + k‘f =0
H”_EH’ kH —k—QH—O
¢ ut uf 7 uf ’

where k = q/(27T) and w = w/(2nT).

Hydrodynamics and gauge/gravity duality — p.33/4:



Shear pole

Can be converted to one 2nd order equation for H;:

7 ue =0

Boundary condition at v = 1: H}(u) ~ (1 — u)~*/? (incoming waves)
The equations can be solved at small w, ¢
Boundary action:

1
(!

(Hi(u)Hi(u) — H-(u)H (u))

u=0

Sboundary ~

differentiating which one finds the corerlators, e.g.,

TaN?T3  §°
8 iw — Dg?

Gta:,ta: (Cd, q) —

where
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Hydrodynamic modes (continued)

The value of D extracted from the pole is consistent with

as required by hydrodynamic equations.

Moreover: the correlator (T°°7T°°) computed from AdS/CFT has a pole
corresponding to sound wave:

w:i—'l“q2

V3

The sound damping rate is also consistent with the calculated n and ¢ = 0.
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Viscosity entropy ratio

One can consider other theories with gravity duals
It seems that for each theory one has to compute n again.

However, it turns out to be unnecessary, since the ration /s can be shown to be
constant across all theories with gravity duals

One method is to
® Use AJS/CFT and Kubo’s formula to map viscosity into of graviton
absorption cross section (by black hole)
® Using Einstein equation, show that the absorption cross section is equal to
the area of the horizon
® Use Bekenstein’s formula for the entropy S = A/(4G) to show the constancy
of n/s.
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Viscosity/entropy ratio and uncertainty principle

Estimate of viscosity from kinetic theory

P
~ 6 ~ = —
n ~ pvk, §~M —

mean free path
T muol ~ h P

S de Broglie wavelength

Quasiparticles: de Broglie wavelength < mean free path

Therefore /s = h
® \Weakly interacting systems have n/s > h.

® Theories with gravity duals have universal /s, but we don’t know how to
derive the constancy of /s without AdS/CFT.

Corrections to n/s computed

n 1 15¢(3)  5AY/?
s _<1+ Nz TNz T
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L J

Gravity/hydrodynamics correspondence

Starting from a black-brane solution, i.e.,

AN

2 5 . R2
— ﬁ(—fdt + dx )—|— W

r

2 2
ds dr”, f:1——§

=

Construct a family of configurations by changing T' ~ o /R? and boosting
along ¥ directions by velocity «

Juv = Guv <Z§ T, uu)

Promote 7" and « into fields.
Require regularity away from r = 0 = hydrodynamic equations
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Second-Order Hydrodyamics



Corrections to hydrodynamics

® Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?
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Corrections to hydrodynamics

Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

GV (W) = P — inw + #w’
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Corrections to hydrodynamics

Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

GV (W) = P — inw + #w’
Howerver it turns out that the correction after n is nonanalytic:
G™V™ (W) = P — inw + #w*/?

Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics
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Corrections to hydrodynamics

Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

G™ (w) = P — inw + #w”
Howerver it turns out that the correction after n is nonanalytic:
G™V™ (W) = P — inw + #w*/?
Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics

The hydrodynamic loops are suppressed in the large N limit
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Corrections to hydrodynamics

Can one systematically go beyond the first-order hydrodynamics?
Second-order hydrodynamics?

Sharpen the question: formulate an effective theory which captures one
more order in derivative expansion, i.e.,

G™ (w) = P — inw + #w”
Howerver it turns out that the correction after n is nonanalytic:
G™V™ (W) = P — inw + #w*/?
Origin: hydrodynamic loops, similar to chiral logarithms in chiral dynamics

The hydrodynamic loops are suppressed in the large N limit

In the large N — oo limit (fix momenta) no nonanalytic behavior:
second-order hydrodynamics
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Second-order hydrodynamics

TH = (e 4+ P)u*u” + Pg"” — nV"*u"’ + terms with two derivatives

There are 16 possible terms with two derivatives.
Assume fundamental theory is a CFT,

T™,=0 in flat space
In curved space: Weyl anomaly

9w T" ~ R.,.5  incurved space

But R ~ 6%g,..: Weyl anomaly reproduced in hydrodynamics only at fourth order in
derivatives.
= g, """ = 0 for our purposes

First order: ( =0,

Second order: tracelessness of T#" reduces to 8 the number of possible
structures in I1#”
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Conformal invariance
Further constraint: T#" transforms simply under Weyl transformation

2

w 6w
gul/ — € g,uz/y T;U/ — € T;U/

8 — 5 possible structures in I1#*

174 174 1 124 174 (87 124
[ gger = 117 | D™ 4+ 20" (V-u)} e [RW ) 2y, R Wug]

+ Ao ao”? 4+ Ao QN £ A 002

D =u"V,

O.I«W — QVWJUV)

QM _ %(vmuw R VIOWEN

~ only in curved space, but affects 2-point function of T+"

A; nonlinear response
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Second-order transport coefficients from AAS/CFT

7. and k can be found similarly to n: using a Kubo’s like formula

® Within hydro: compute some (T**T*") from linear response theory:
response to gravitational perturbations g.s = Nag + hags

® Compare with AAS/CFT calculations

Example: for momentum ¢ = (w, 0, 0, k) hydrodynamics predicts

(T T™Y(w, k) = P — inw + nrew’ — E(wQ + k%)

2
Matching with AdS/CFT calcualation, yields
2—1n?2 n
= Tonr 0 T aT

One can match to the soud-wave dispersion:

I
w=csq—ilqg+ —(c2Tr — %F)q3
c

S

tO fl nd the Same Val Ue fOI’ 7-71- . Hydrodynamics and gauge/gravity duality — p.43/4:



Nonlinear coefficientsA; , 3

One needs to look beyond small perturbations around thermal equilibrium.,
A1: can be found from long-time tail of a boost-invariant solution

1 2m +
€(T) ~ ~4/3 12 + —8/3 (-6)

Maching the coefficient of 7=%/2 term:

N
A= ——
YT oonT
Bhattacharyya et al. also found
21n 2
A= —L Ao = — 2= A3 =0

27T’
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Israel-Stewart theory

In the literature, variations of the Israel-Stewart theory are used

Modified relatiship between IT*" and V*u"
(TWUAVA + HIT" = —not”

Frequently terms required by Weyl invariance are thrown away,

(D™ + %H“”(V- w)

(but are kept in some papers, e.g., Romatschke & Romatschke). Such terms
may be numerically important.

In addition, A1 = A3 = 0in IS theory; in A" = 4 SYM A1 # 0 (but A3 = 0).

Additional terms nonlinear: not important for sound wave propagation, but
Important for Bjorken expansion
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Other transport coefficients

Bulk viscosity: see also talk by Rocha
® Bulk viscosity ¢ nonvanishing in theories with broken conformal symmetry

® In theories with gravity duals, it seems that ¢2 is always less than %

® Parametrically

S -

Diffusion coefficients:
® Conserved charges in a plasma diffuse:

d:p = DV?p

® Diffusion coefficients D can be found by calculating current-current
correlators, which have w = —iDg? poles (and also from a Kubo’s formula)

® For R-charge in N' =4 SYM plasma

D= —
27T
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Measuring n/s at RHIC

Glauber
25 - . . . . ,
o STAR non-flow corrected (est.)
e STAR event-plane
20} .
£ 15 N
N ® |
& ...o. Ooﬁ)oooooo 009
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°

Conclusion

AdS/CFT correspondence can be generalized to finite temperature, real-time

Reveals deep connection between thermal field theory, hydrodynamics and
black hole physics

n/s constant in all theories with Einstein gravity duals
How relevant it is to QCD plasma ?

At least we now have examples of strongly coupled plasmas that can be
studied analytically
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