

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size giant magnons and interactions

Olof Ohlsson Sax

Department of Physics and Astronomy Uppsala University

Zakopane, June 20, 2008

J. A. Minahan and O. Ohlsson Sax, Nucl. Phys. B 801, 97 (2008) arXiv:0801.2064 [hep-th].

Giant magnons

Finite size giant magnons and interactions

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

• Consider a string moving in $\mathbb{R} \times S^2 \subset \mathrm{AdS}_5 \times S^5$.

Hofman–Maldacena limit	
E , $J ightarrow\infty$	$p={ m fixed}$
E-J=fixed	$\lambda = \text{ fixed}$

• We can now relax the level matching condition $\sum p \in 2\pi\mathbb{Z}$ and consider single magnon excitations.

イロト 不得下 不良下 不良下

3

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Giant magnons

- Use conformal gauge: $\frac{dJ}{dx} = \text{ const} \rightarrow \text{the worldsheet}$ becomes infinitely long.
- Fundamental excitations are local on worldsheet, but macroscopic in space-time.
- Dispersion relation: $E J = \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}} \approx \frac{\sqrt{\lambda}}{\pi} \sin \frac{p}{2}$
- Compare with spin-chain magnon.

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections

• The leading order corrections for finite *J* to the single giant magnon dispersion relation were calculated by Arutyunov, Frolov and Zamaklar, as a soliton solution in uniform gauge.

$$\Delta(E - J) = -\frac{4}{e^2} \frac{\sqrt{\lambda}}{\pi} \sin^3 \frac{p}{2} e^{-\Re},$$
$$\Re = 2 \frac{J}{E - J} + ap \cot \frac{p}{2}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ の ()

• The result is dependent on the gauge parameter a.

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections

• The leading order corrections for finite J to the single giant magnon dispersion relation were calculated by Arutyunov, Frolov and Zamaklar, as a soliton solution in uniform gauge.

$$\Delta(E-J) = -\frac{4}{e^2} \frac{\sqrt{\lambda}}{\pi} \sin^3 \frac{p}{2} e^{-\mathcal{R}},$$

$$\mathcal{R} = 2\frac{J}{E-J} + ap\cot\frac{p}{2}$$

- The result is dependent on the gauge parameter a.
- We can get a gauge independent result (corresponding to a = 0) by considering a giant magnon with momentum $p = 2\pi m/M$ on an orbifold $\mathbb{R} \times S^2/\mathbb{Z}_M$. [Astolfi, Forini, Grignani and Semenoff]

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Multi-magnon states

For $J \rightarrow \infty$ we can construct multi-magnon states in two simple ways:

- Put them on separate patches, separated by an infinite worldsheet.
- Put several magnons on the same patch, in a scattering state.

As $t \to \infty$ the interacting magnons become infinitely separated. The two types of multi-magnon states thus share the same energy spectrum.

◆□▶ ◆□▶ ★□▶ ★□▶ □ の ()

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Multi-magnon states

For $J \rightarrow \infty$ we can construct multi-magnon states in two simple ways:

- Put them on separate patches, separated by an infinite worldsheet.
- Put several magnons on the same patch, in a scattering state.

As $t \to \infty$ the interacting magnons become infinitely separated. The two types of multi-magnon states thus share the same energy spectrum.

For finite J there is always a finite separation between the magnons, so any multi-magnon state is interacting.

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite gap equations

- Encodes the spectrum of a classical string solution in terms of a differential on a Riemann surface.
- The differential is specified as a density along the square root cuts and log cuts (condensates).
- The density is constant on the condensates, but is given as solutions of an integral equation on the cuts:

$$\int \frac{\rho(x)dx}{z-x} = f_i(E, J) \qquad z \in \mathcal{C}_i$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ の ()

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite gap equations

- Encodes the spectrum of a classical string solution in terms of a differential on a Riemann surface.
- The differential is specified as a density along the square root cuts and log cuts (condensates).
- The density is constant on the condensates, but is given as solutions of an integral equation on the cuts:

$$\int \frac{\rho(x)dx}{z-x} = f_i(E, J) \qquad z \in \mathcal{C}_i$$

• We can re-cut the surface by reconnecting the branch points in another way, but we may need to add some extra condensates.

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite gap equations

 A giant magnon is described by a two-cut solution in the singular limit where the end points of the cuts merge. [Vicedo]

イロト 不得下 イヨト イヨト

-

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite gap equations

 A giant magnon is described by a two-cut solution in the singular limit where the end points of the cuts merge. [Vicedo]

 It can also be described by a single condensate.
 [Minahan, Tirziu, Tseytlin]

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

- Finite size giant magnons and interactions
- **Olof Ohlsson Sax**
- Giant magnons
- Finite size corrections
- Magnons from finite gap
- Magnons from sine-Gordon
- Summary

Finite gap equations

- A giant magnon is described by a two-cut solution in the singular limit where the end points of the cuts merge. [Vicedo]
- It can also be described by a single condensate. [Minahan, Tirziu, Tseytlin]

 A multi-magnon state is given by a set of condensates.

SAC

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

• A finite size giant magnon is described by a two cut solution for which the endpoints *almost* coincide.

Finite size corrections from finite gap equations

-

イロト 不得下 イヨト イヨト

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

• A finite size giant magnon is described by a two cut solution for which the endpoints *almost* coincide.

Finite size corrections from finite gap equations

• This is equivalent to a condensate with small cuts attached to the ends.

Sac

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

• A finite size giant magnon is described by a two cut solution for which the endpoints *almost* coincide.

Finite size corrections from finite gap equations

- This is equivalent to a condensate with small cuts attached to the ends.
- A multi-magnon state is given by a number of such condensate – cut configurations.

-

Sac

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections from finite gap equations

• A N magnon configuration is described by a genus 2N - 1 Riemann surface.

・ロト ・ 同ト ・ ヨト ・ ヨト

UNIVERSITET

Finite size giant magnons and interactions

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections from finite gap equations

- A N magnon configuration is described by a genus 2N - 1 Riemann surface.
- In general we would expect hyperelliptic solutions.

イロト 不得下 イヨト イヨト

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections from finite gap equations

- A N magnon configuration is described by a genus 2N - 1 Riemann surface.
- In general we would expect hyperelliptic solutions.
 - The density for the cut \mathcal{C}_i is governed by

$$\oint_{\mathcal{C}_i} \frac{\rho(x)}{z-x} = -\oint_{\text{other}} \frac{\rho(x)}{z-x} + \cdots$$

where $z \in \mathcal{C}_i$ and the integral on the right is over all other cuts and condensates.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

UNIVERSITET

Finite size giant magnons and interactions

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections from finite gap equations

- A N magnon configuration is described by a genus 2N - 1 Riemann surface.
- In general we would expect hyperelliptic solutions.
 - The density for the cut \mathcal{C}_i is governed by

$$\oint_{\mathcal{C}_i} \frac{\rho(x)}{z-x} = -\oint_{\text{other}} \frac{\rho(x)}{z-x} + \cdots$$

where $z \in C_i$ and the integral on the right is over all other cuts and condensates.

• Since the cuts are small, we can treat all integrands except for the closest condensate as constant in z.

UNIVERSITET

Finite size giant magnons and interactions

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections from finite gap equations

- A N magnon configuration is described by a genus 2N - 1 Riemann surface.
- In general we would expect hyperelliptic solutions.
 - The density for the cut \mathcal{C}_i is governed by

$$\oint_{\mathcal{C}_i} \frac{\rho(x)}{z-x} = -\oint_{\text{other}} \frac{\rho(x)}{z-x} + \cdots$$

where $z \in C_i$ and the integral on the right is over all other cuts and condensates.

- Since the cuts are small, we can treat all integrands except for the closest condensate as constant in z.
- The problem is reduced to a one-cut problem which gives an algebraic solution.

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections from finite gap equations

• For M magnons with momenta p_i , energy E_i

$$\Delta(E_i - J) = -\frac{4}{e^2} \frac{\sqrt{\lambda}}{\pi} \sin^3 \frac{p_i}{2} e^{-2\frac{J}{E_i - J}}$$
$$\times \prod_{k \neq i}^m \frac{\sin^2 \frac{p_i + p_k}{4}}{\sin^2 \frac{p_i - p_k}{4}} e^{-2\frac{E_k - J}{E_i - J}}$$

.

3

イロト 不得下 不同下 不同下

This is singular as $p_i \rightarrow p_j$.

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Finite size corrections from finite gap equations

• For M magnons with momenta p_i , energy E_i

$$\Delta(E_i - J) = -\frac{4}{e^2} \frac{\sqrt{\lambda}}{\pi} \sin^3 \frac{p_i}{2} e^{-2\frac{J}{E_i - J}}$$
$$\times \prod_{k \neq i}^m \frac{\sin^2 \frac{p_i + p_k}{4}}{\sin^2 \frac{p_i - p_k}{4}} e^{-2\frac{E_k - J}{E_i - J}}$$

This is singular as $p_i \rightarrow p_j$. • For *M* magnons with $p = 2\pi m/M$

$$\Delta(E-J) = -\frac{4}{e^2} \frac{\sqrt{\lambda}}{\pi} \sin^3 \frac{p}{2} e^{-2\frac{J/M}{E-J}}.$$

This agrees exactly with the result for one magnon on a \mathbb{Z}_M orbifold.

◆□▶ ◆□▶ ★□▶ ★□▶ □ の ()

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Pohlmeyer reduction

• The classical equations of motion for the O(3) sigma model – i.e. for the gauge fixed string – together with the Virasoro constraints are equivalent to the sine-Gordon equation.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Sac

• The giant magnon solution corresponds to the fundamental solitonic solution – the kink.

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Multi-magnon states from sine-Gorgon

Interacting two-magnon states can be constructed from kink-kink and kink-anti-kink scattering solutions to the sine-Gordon equation.

Finite size solutions can be constructed by considering periodic generalizations of these solutions. [Klose and McLoughlin]

Summary

Finite size giant magnons and interactions

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

- For infinite *J*, multi-magnon state can be either non-interacting or interacting.
- For finite J, multi-magnon states are always interacting.
- Explicit finite size interacting two-magnon states have been constructed from two-phase solutions to the sine-Gordon equation.
- The leading order finite size corrections for interacting states with *any* number of magnons have been computed using the finite gap equations.
- The finite gap computation can straightforwardly be extended to two-spin magnons on $\mathbb{R} \times S^3$.

イロア 人間 ア イヨア イヨア しゅくの

Outlook

Finite size giant magnons and interactions

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

- Can the sine-Gordon calculations be generalized to describe magnons on $\mathbb{R} \times S^3$? This would give a nice check of the finite gap results, but would require finding periodic solutions to the complex sine-Gordon model.
- Can the algebraic curve formalism be used to explicitly reconstruct the string solutions from the finite gap results?

◆□▶ ◆□▶ ★□▶ ★□▶ □ の ()

Olof Ohlsson Sax

Giant magnons

Finite size corrections

Magnons from finite gap

Magnons from sine-Gordon

Summary

Thank you!