On-shell methods in gauge theories Part 3: a state of the art

Radu Roiban
PennsyIvania State University

> Scattering amplitudes in $\mathcal{N}=4$ super-Yang-Mills at weak and strong coupling
with: Z. Bern, L. Dixon, D. Kosower, M. Spradlin, C. Vergu, A. Volovich

Outline

- Scattering and Wilson loops: a butchered summary and preview
- Scattering at weak coupling
structure of amplitudes
perturbation theory and unitarity
symmetries
cues from strong coupling; large number of legs
- 6-points at 2-Ioops
- BDS vs. Amplitude vs. DHKS/BHT and the remainder function
- Outlook

Scattering amplitudes in CFT

- CFT: . interactions never turn off \rightarrow no free asymptotic states
- IR divergences
- Regularization:
- use dimensional regularization $d=4-2 \epsilon$
- breaks conformal invariance
- allows definition of asymptotic states
- recovered as $\epsilon \rightarrow 0$
- Similarly to QCD: - on-shell gauge invariance
- for " $\mathcal{N}=4$ collider" observables, need to turn them into scattering of gauge singlets
- finiteness exposes properties of amplitudes which hold in any gauge theory
\diamond mathematically - same calculation as for Wilson loops
\mapsto minimal surfaces with prescribed boundary conditions
\mapsto regularization is required
$\mapsto \quad W L=$ closed polygon w/ light-like edges
\diamond In general - difficult problem simplifies for large number of legs
- many gluons moving in alternating directions
- Further approximation: $T \gg L$; find leading term in T / L
- Space-like rectangle

\diamond Leading order: $q \bar{q}$ potential multiplied by distance

$$
\ln \langle W\rangle=\sqrt{\lambda} \frac{4 \pi^{2}}{\Gamma\left(\frac{1}{4}\right)^{4}} \frac{T}{L} \quad \lambda \gg 1
$$

- dependence on T / L suggests that it arises from nontrivial function

Weak coupling implications: New conjecture

$$
\frac{A_{n}^{\mathrm{MHV}}}{A_{n}^{\text {tree, } \mathrm{MHV}}}=\underset{\text { Drummo }}{\left\langle W_{n}\right\rangle}
$$

order by order in perturbation theory Brandhuber, Heslop, Travaglini
\diamond Evidence:

- 4-points at 1-loop
- n-points at 1-loop
$\langle W\rangle_{1 \text { loop }}$ is the same in any gauge theory!
- 4- and 5-points at 2-loop

Drummond, Henn, Korchemsky, Sokatchev

- How far does it go? Why does it work at all?

Current perturbative analytic results in $\mathcal{N}=4$ SYM

Properties of scattering amplitudes

- Two types of IR divergences:
$\left.\begin{array}{ll}\text { - soft : } & \int \frac{d \omega}{\omega^{1+\epsilon}} \propto \frac{1}{\epsilon} \\ \text { - collinear : } \int \frac{d k_{T}}{k_{T}^{1+\epsilon}} \propto \frac{1}{\epsilon}\end{array}\right\} \quad \rightarrow \quad \begin{aligned} & \text { the leading pole at } L \\ & \text { loops is } \frac{1}{\epsilon^{2 L}}\end{aligned}$
- IR pole structure is predictable due to soft/collinear factorization and exponentiation theorem
- Extensive QCD literature: Akhoury (1979), Mueller (1979), Collins (1980), Sen (1981), Sterman (1987), Botts, Sterman (1989), Catani, Trentadue (1989), Korchemsky (1989), Magnea, Sterman (1990), Korchemsky, Marchesini (1992), Catani (1998), Sterman, Tejeda-Yeomans (2002)
- Simplifications at large N : IR in terms of $\beta(\lambda)$, cusp anomaly $\gamma_{K}(\lambda)$ or the large spin limit of the twist-2 anomalous dimension, "collinear" anomalous dimension $\mathcal{G}_{0}(\lambda)$
- $\mathcal{N}=4$ SYM - further simplifications $\beta=0$
\diamond Rescaled amplitude factorizes in three parts:

$$
\mathcal{M}_{n}=S\left(k, \frac{Q}{\mu}, \alpha_{s}(\mu), \epsilon\right) \times\left[\prod_{i=1}^{n} J_{i}\left(\frac{Q}{\mu}, \alpha_{s}(\mu), \epsilon\right)\right] \times h_{n}\left(k, \frac{Q}{\mu}, \alpha_{s}(\mu), \epsilon\right)
$$

- $S\left(k, \mu, \alpha_{s}(\mu), \epsilon\right)$ soft function; captures the soft gluon radiation; defined up to overall function
- $J_{i}\left(k, \mu, \alpha_{s}(\mu), \epsilon\right)$ independent of color flow; all collinear dynamics
- $h_{n}\left(\mu, \alpha_{s}(\mu), \epsilon\right)$ is finite as $\epsilon \rightarrow 0$
\diamond Independence of Q : factorization vs. evolution
- Consequences of the large N limit:

1) trivial color structure: S can be absorbed in J
2) planarity: gluon exchange is confined to neighboring legs

M

$$
\mathcal{M}_{n}=\times\left[\prod_{i=1}^{n} \mathcal{M}^{[g g \rightarrow 1]}\left(\frac{s_{i, i+1}}{\mu}, \lambda, \epsilon\right)\right]^{1 / 2} \times h_{n}(k, \lambda, \epsilon)
$$

- Sudakov form factor: decay of a scalar into 2 gluons
- Factorization \mapsto diferential (RG) equation for $\mathcal{M}^{[g g \rightarrow 1]}$

Mueller (1979); Collins (1980); Sen(1981); Korchemsky, Radyushkin (1987);
Korchemsky (1989); Magnea, Sterman (1990)

$$
\begin{aligned}
& \frac{d}{d \ln Q^{2}} \mathcal{M}^{[g g \rightarrow 1]}\left(\frac{Q^{2}}{\mu^{2}}, \lambda, \epsilon\right)=\frac{1}{2}\left[K(\epsilon, \lambda)+G\left(\frac{Q^{2}}{\mu^{2}}, \lambda, \epsilon\right)\right] \mathcal{M}^{[g g \rightarrow 1]}\left(\frac{Q^{2}}{\mu^{2}}, \lambda, \epsilon\right) \\
& \left(\frac{d}{d \ln \mu}+\beta(\lambda) \frac{d}{d g}\right)(K+G)=0 \quad\left(\frac{d}{d \ln \mu}+\beta(\lambda) \frac{d}{d g}\right) K(\epsilon, \lambda)=-\gamma_{K}(\lambda)
\end{aligned}
$$

- Exact solution

- Sudakov form factor: decay of a scalar into 2 gluons
- Factorization \mapsto diferential (RG) equation for $\mathcal{M}^{[g g \rightarrow 1]}$

Mueller (1979); Collins (1980); Sen(1981); Korchemsky, Radyushkin (1987); Korchemsky (1989); Magnea, Sterman (1990)

- Exact solution for $\mathcal{N}=4$ SYM

$$
\mathcal{M}_{n}=\exp \left[-\frac{1}{8} \sum_{l} a^{l}\left(\frac{\gamma_{K}^{(l)}}{(l \epsilon)^{2}}+\frac{2 \mathcal{G}_{0}^{(l)}}{l \epsilon}\right) \sum_{i}\left(\frac{\mu^{2}}{-s_{i, i+1}}\right)^{l \epsilon}\right] \times h_{n}
$$

$$
f(\lambda)=\sum_{l} a^{l} \gamma_{K}^{(l)} \quad \text { universal scaling function }
$$

Technology of choice: generalized unitarity-based method
\diamond 2-loop 4-point amplitudes:

Recall from earlier:

Green, Schwarz, Brink (1982)
$A_{4}^{1 \text { loop }}(1,2,3,4)=i s_{12} s_{23} A_{4}^{\text {tree }}(1,2,3,4) \int \frac{d^{d} q}{q^{2}\left(q-k_{1}\right)^{2}\left(q-k_{12}\right)^{2}\left(q+k_{4}\right)^{2}}$
$\sum_{\mathcal{N}=4} \underbrace{3}_{4}=-i s_{12} s_{23} \times\left(-i s_{12}\left(l_{1} \cdot k_{3}\right)\right)^{3}$

$$
=-s_{12}^{2} s_{23}
$$

- similar in the t-channel

Technology of choice: generalized unitarity-based method
\diamond 2-loop 4-point amplitudes:

- double-two-particle cuts suffice to reconstruct the amplitude

\diamond 2-Ioop splitting amplitude controls the behavior of amplitudes as two adjacent momenta become collinear

$\operatorname{Split}^{(l)}=$ Split $^{(0)} r_{S}^{(l)}\left(z, s_{n-1, n}, \epsilon\right) \quad r_{S}^{(2)}(\epsilon)=\frac{1}{2}\left(r_{S}^{(1)}(\epsilon)\right)^{2}+f^{(2)} r_{S}^{(1)}(2 \epsilon)+\mathcal{O}(\epsilon)$

Technology of choice: generalized unitarity-based method
$\diamond 2$-loop 4-point amplitudes:

\diamond 2-Ioop splitting amplitude
Bern, Dixon, Kosower

Splitting amplitudes may be computed directly!
\diamond Both consistent with:

$$
M_{n}^{(2)}(\epsilon)=\frac{1}{2}\left(M_{n}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) M_{n}^{(1)}(2 \epsilon)+C^{(2)}+\mathcal{O}(\epsilon)
$$

\mapsto ABDK conjecture that it holds for any n at 2-Ioops
\diamond Striking resemblence with the general structure of IR poles

$$
\begin{aligned}
\mathcal{M}_{n} & =\exp \left[-\frac{1}{8} \sum_{l} a^{l}\left(\frac{\gamma_{K}^{(l)}}{(l \epsilon)^{2}}+\frac{2 \mathcal{G}_{0}^{(l)}}{l \epsilon}\right) \sum_{i}\left(\frac{\mu^{2}}{-s_{i, i+1}}\right)^{l \epsilon}\right] \times h_{n} \\
f(\lambda) & =\sum_{l} a^{l} \gamma_{K}^{(l)} \quad \text { universal scaling function } \\
& \frac{1}{\epsilon^{2}} \sum_{i}\left(\frac{\mu^{2}}{-s_{i, i+1}}\right)^{\epsilon}-\text { singular part of the 1-loop n-point amplitude }
\end{aligned}
$$

\diamond Striking resemblence with the general structure of IR poles

$$
\begin{gathered}
\mathcal{M}_{n}=\exp \left[-\frac{1}{8} \sum_{l} a^{l}\left(\frac{\gamma_{K}^{(l)}}{(l \epsilon)^{2}}+\frac{2 \mathcal{G}_{0}^{(l)}}{l \epsilon}\right) \sum_{i}\left(\frac{\mu^{2}}{-s_{i, i+1}}\right)^{l \epsilon}\right] \times h_{n} \\
f(\lambda)=\sum_{l} a^{l} \gamma_{K}^{(l)} \quad \text { universal scaling function } \\
\text { - } \frac{1}{\epsilon^{2}} \sum_{i}\left(\frac{\mu^{2}}{-s_{i, i+1}}\right)^{\epsilon}-\text { singular part of the 1-loop n-point amplitude } \\
\diamond h_{n} \rightarrow \exp \left(\sum_{l} a^{l} h_{n}^{(l)}\right) \text { and combine with the pole part } \\
\text { Bern, Dixon, Smirnov } \\
\mathcal{M}_{n}=\exp \left[-\frac{1}{8} \sum_{l} a^{l} f^{(l)}(\epsilon) \mathcal{M}_{n}^{(1)}(l \epsilon)+C^{(l)}\right] \quad f^{(l)}(\epsilon)=f_{0}^{(l)}+\epsilon f_{1}^{(l)}+\epsilon^{2} f_{2}^{(l)} \\
\text { Captures correctly collinear limit: } M_{n}^{(1)} \mapsto M_{n-1}^{(1)}+r_{S}^{(1)}
\end{gathered}
$$

Nevertheless... not a proof. There is evidence for the conjecture:

- 3-loop 4-points

Bern, Dixon, Smirnov

- Strong coupling limit of the 4-gluon amplitude
- 2-loop 5-points

Cachazo, Spradlin, Volovich Bern, Czakon, Dixon, Kosower, RR, Smirnov

$$
\begin{aligned}
& -\frac{1}{2} A_{5}^{\text {tree }} \epsilon\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \sum_{\text {сус }}\left\{c_{1}\right. \\
& \overbrace{3}^{4}
\end{aligned}
$$

$$
+c_{8}\left(q+k_{1}\right)^{2}
$$

The (anti-cronologically) emerging puzzle

- Large coupling limit of n-gluon amplitude in the large n limit and a special kinematic configuration

$$
\ln \left\langle W_{n \rightarrow \infty}\right\rangle=\frac{\sqrt{\lambda}}{4} \frac{16 \pi^{2}}{\Gamma\left(\frac{1}{4}\right)^{4}} \frac{T}{L}+\ldots
$$

$$
\sum_{l} a^{l} f^{(l)}(\epsilon) \mathcal{M}_{n}^{(1)}(l \epsilon)=\sum_{l} a^{l} f^{(l)}(\epsilon)\left\langle W_{n}\right\rangle{ }^{(1)}(l \epsilon) \stackrel{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{\lambda}}{4} \frac{T}{L}+\ldots
$$

- Hexagon Wilson loop to 2-loops differs from BDS ansatz by nontrivial function of momenta

Drummond, Henn, Korchemsky, Sokatchev

- Difficulties with multi-Regge limits

4-point amplitudes: sum of integrals with definite properties under dual conformal transformations if regularized by staying in $d=4$ and continuing external momenta off-shell

Solve momentum conservation: $k_{i}=x_{i}-x_{i+1}$ (constraint \rightarrow invariance)
Can define inversion: I : $x_{i}^{\mu} \mapsto \frac{x_{i}^{\mu}}{x_{i}^{2}} ; \mathrm{I}: x_{i j}^{2} \mapsto \frac{x_{i j}^{2}}{x_{i}^{2} x_{j}^{2}}, \mathrm{I}: d^{d} x_{i} \mapsto \frac{d^{d} x_{i}}{\left(x_{i}^{2}\right)^{d}}$

- Graphical representation of transformations

(a)

(b)

(c)

(d)
- solid line: denominator
dashed line: numerator

Invariance under inversion: result is function of $u_{i j k l}=\frac{x_{i j}^{2} x_{k l}^{2}}{x_{i k}^{2} x_{j l}^{2}}$

- Dimensional regularization breaks dual conformal invariance
- Dimensional regularization only finite rations may appear
- Potential anomalies
- Wilson Ioop expectation value obeys an anomalous Ward identity for finite part, determined by IR poles

Drummond, Henn, Korchemsky Sokatchev

$$
\mathbb{K}^{\mu} \ln F_{n}^{W}=\frac{1}{2} f(\lambda) \sum_{i=1}^{n} x_{i, i+1}^{\mu} \ln \frac{x_{i, i+2}^{2}}{x_{i-1, i+1}^{2}}
$$

- Subtracted BDS ansatz obeys Ward identity!

$$
\ln F_{n}^{B D S}=\frac{1}{4} f(\lambda) F_{n}^{(1)}(0)
$$

- BDS $\neq\left\langle W_{6}\right\rangle$; What about amplitudes?

Define 2-Ioop "remainder":

$$
R_{n}^{(2)} \equiv \lim _{\epsilon \rightarrow 0}\left[M_{n}^{(2)}(\epsilon)-\left(\frac{1}{2}\left(M_{n}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) M_{n}^{(1)}(2 \epsilon)+C^{(2)}\right)\right]
$$

- 6-pt kinematics - first homogeneous solution of W.I.
\mapsto first potential departure from BDS $=W \mathrm{~W}$

If believe that dual conformal symmetry holds to all loops -
$\mapsto R_{6}^{(2)}$ is the first potentially-nonzero remainder

- expressed in terms of

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}}, \quad, \quad u_{2}=\frac{x_{24}^{2} x_{51}^{2}}{x_{25}^{2} x_{41}^{2}}=\frac{s_{23} s_{56}}{s_{234} s_{123}}, \quad u_{3}=\frac{x_{35}^{2} x_{62}^{2}}{x_{36}^{2} x_{52}^{2}}=\frac{s_{34} s_{61}}{s_{345} s_{234}}
$$

- finite
- trivial collinear limits

6-point amplitude at 2-Ioops Bern, Dixon, Kosower, RR, Spradlin, Vergu, Volovich

- use genrealized unitarity
- no-triangle constraint \mapsto double-two-particle cuts suffice Relevant generalized cuts:

- Main advantage: for $d=4$ cuts each tree is MHV
- no guarantee that $d=4$ suffice
- Split in $d=4$ cuts and $d \neq 4$ cuts $\quad M_{6}^{(2)}(\epsilon)=M_{6}^{(2), D=4}(\epsilon)+M_{6}^{(2), \mu}(\epsilon)$

6-point amplitude at 2-loops: use dual conformal symmetry to organize integrals

- 26 possible dual conformal integrals

The integrand:

$$
\begin{aligned}
& M_{6}^{(2), D=4-2 \epsilon}(\epsilon)=M_{6}^{(2), D=4}(\epsilon)+M_{6}^{(2), \mu}(\epsilon) \\
& M_{6}^{(2), D=4}(\epsilon)=\frac{1}{16} \sum_{12} \sum_{\text {perms. }}[{\left[\frac{1}{4} c_{1} I^{(1)}(\epsilon)+c_{2} I^{(2)}(\epsilon)+\frac{1}{2} c_{3} I^{(3)}(\epsilon)+\frac{1}{2} c_{4} I^{(4)}(\epsilon)+c_{5} I^{(5)}(\epsilon)\right.} \\
&+c_{6} I^{(6)}(\epsilon)+\frac{1}{4} c_{7} I^{(7)}(\epsilon)+\frac{1}{2} c_{8} I^{(8)}(\epsilon)+c_{9} I^{(9)}(\epsilon) \\
&\left.+c_{10} I^{(10)}(\epsilon)+c_{11} I^{(11)}(\epsilon)+\frac{1}{2} c_{12} I^{(12)}(\epsilon)+\frac{1}{2} c_{13} I^{(13)}(\epsilon)\right] \\
& M_{6}^{(2), \mu}(\epsilon)=\frac{1}{16} \sum_{12} \sum_{\text {perms. }}[{\left[\frac{1}{4} c_{14} I^{(14)}(\epsilon)+\frac{1}{2} c_{15} I^{(15)}(\epsilon)\right] }
\end{aligned}
$$

- Strategy: multiply trees; reorganize to expose propagators; identify integrals; alternatively, match numerically onto target expression
- c_{15} may be obtained from a partial $d=4$ cut
- The coefficients:

$$
\begin{aligned}
c_{1} & =s_{16} s_{34} s_{123} s_{345}+s_{12} s_{45} s_{234} s_{345}+s_{345}^{2}\left(s_{23} s_{56}-s_{123} s_{234}\right) \\
c_{2} & =2 s_{12} s_{23}^{2} \\
c_{3} & =s_{234}\left(s_{123} s_{234}-s_{23} s_{56}\right) \\
c_{4} & =s_{12} s_{234} \\
c_{5} & =s_{34}\left(s_{123} s_{234}-2 s_{23} s_{56}\right) \\
c_{6} & =-s_{12} s_{23} s_{234} \\
c_{7} & =2 s_{123} s_{234} s_{345}-4 s_{16} s_{34} s_{123}-s_{12} s_{45} s_{234}-s_{23} s_{56} s_{345} \\
c_{8} & =2 s_{16}\left(s_{234} s_{345}-s_{16} s_{34}\right) \\
c_{9} & =s_{23} s_{34} s_{234} \\
c_{10} & =s_{23}\left(2 s_{16} s_{34}-s_{234} s_{345}\right) \\
c_{11} & =s_{12} s_{23} s_{234} \\
c_{12} & =s_{345}\left(s_{234} s_{345}-s_{16} s_{34}\right) \\
c_{13} & =-s_{345} s_{56} \\
c_{14} & =-2 s_{126}\left(s_{123} s_{234} s_{345}-s_{16} s_{34} s_{123}-s_{12} s_{45} s_{234}-s_{23} s_{56} s_{345}\right) \\
c_{15} & =2 s_{16}\left(s_{123} s_{234} s_{345}-s_{16} s_{34} s_{123}-s_{12} s_{45} s_{234}-s_{23} s_{56} s_{345}\right)
\end{aligned}
$$

- Some comments
- $M_{6}^{(2), \mu}$ nonvanishing while integrand vanishes in $D=4$
- $M_{6}^{(2), D=4}$ is constructed out of pseudo-conformal integrals
- Unlike $\mathrm{n}=4$ and $\mathrm{n}=5$, relative weights are not $0, \pm 1$
- Features of the result
- IR divergences should be the same as in BDS
- subtract BDS \longrightarrow find conformal invariance?

$$
u_{1}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \quad u_{2}=\frac{s_{23} s_{56}}{s_{234} s_{123}} \quad u_{3}=\frac{s_{34} s_{61}}{s_{345} s_{234}}
$$

- Evaluate numerically
- How important is $D=4$? (det $k_{i} \cdot k_{j}=0, i, j=1, \cdots, 5$)?
- Comparison with expectation value of hexagon Wilson loop?
\diamond "Direct" integration \mapsto departure from BDS ansatz

$$
\begin{aligned}
R_{A} & \equiv \mathcal{M}_{6}^{(2)}-\mathcal{M}_{6}^{(2) B D S} \\
R_{A}^{0} & \equiv R_{A}\left(K^{(0)}\right)=1.0937 \pm 0.0057
\end{aligned}
$$

kinematics	$\left(u_{1}, u_{2}, u_{3}\right)$	$R_{A}-R_{A}^{0}$
$K^{(1)}$	$(1 / 4,1 / 4,1 / 4)$	-0.018 ± 0.023
$K^{(2)}$	$(0.547253,0.203822,0.881270)$	-2.753 ± 0.015
$K^{(3)}$	$(28 / 17,16 / 5,112 / 85)$	-4.7445 ± 0.0075
$K^{(4)}$	$(1 / 9,1 / 9,1 / 9)$	4.12 ± 0.10
$K^{(5)}$	$(4 / 81,4 / 81,4 / 81)$	10.00 ± 0.50

\diamond Comparison with hexagon Wilson Ioop

$$
\begin{aligned}
R_{A} & \equiv \mathcal{M}_{6}^{(2)}-\mathcal{M}_{6}^{(2) B D S} \\
R_{A}^{0} & \equiv R_{A}\left(K^{(0)}\right)=1.0937 \pm 0.0057
\end{aligned}
$$

$$
R_{W}^{0}=13.26530
$$

kinematics	$\left(u_{1}, u_{2}, u_{3}\right)$	$R_{A}-R_{A}^{0}$	$R_{W}-R_{W}^{0}$
$K^{(1)}$	$(1 / 4,1 / 4,1 / 4)$	-0.018 ± 0.023	$<10^{-5}$
$K^{(2)}$	$(0.547253,0.203822,0.881270)$	-2.753 ± 0.015	-2.7553
$K^{(3)}$	$(28 / 17,16 / 5,112 / 85)$	-4.7445 ± 0.0075	-4.7446
$K^{(4)}$	$(1 / 9,1 / 9,1 / 9)$	4.12 ± 0.10	4.0914
$K^{(5)}$	$(4 / 81,4 / 81,4 / 81)$	10.00 ± 0.50	9.7255

- Agreement within errors!
- $\mathcal{M}_{n}=\left\langle W_{n}\right\rangle \neq \mathcal{M}_{n}^{\mathrm{BDS}}$

Where else does $R_{6}^{(2)}$ crop up?
Does it have another (more physical) interpretation?

Where else does $R_{6}^{(2)}$ crop up? More physical interpretation?
Yes; a triple-collinear splitting amplitude

- triple-collinear limit:

$$
\left.\begin{array}{cc}
k_{a}=z_{1} P & k_{b}=z_{2} P \quad k_{c}=z_{3} P \quad P^{2} \rightarrow 0 \\
z_{1}+z_{2}+z_{3}=1, & 0 \leq z_{i} \leq 1
\end{array} A_{n}^{(l)}\left(k_{1}, \ldots, k_{n-2}, k_{n-1}, k_{n}\right) \mapsto \sum_{\lambda= \pm} \sum_{s=0}^{l} A_{n}^{(l-s)}\left(k_{1}, \ldots, P^{\lambda}\right) \text { Split }_{-\lambda}^{(s)}\left(k_{n-2} k_{n-1} k_{n} ; P\right)\right] \begin{aligned}
& \text { s-loop triple-collinear } \\
& \text { splitting amplitude }
\end{aligned}
$$

- MHV amplitudes \mapsto four triple-collinear splitting amplitudes

$$
\text { Split }_{+}\left(k_{a}^{+} k_{b}^{+} k_{c}^{+} ; P\right)=0
$$

$$
\text { Split_}_{-}\left(k_{a}^{+} k_{b}^{+} k_{c}^{+} ; P\right) ; \operatorname{Split}_{+}\left(k_{a}^{-} k_{b}^{+} k_{c}^{+} ; P\right) ; \operatorname{Split}_{+}\left(k_{a}^{+} k_{b}^{-} k_{c}^{+} ; P\right)
$$

- $\frac{\text { Split }_{-}\left(k_{a}^{+} k_{b}^{+} k_{c}^{+} ; P\right)}{\text { Split }_{-}^{\text {tree }}\left(k_{a}^{+} k_{b}^{+} k_{c}^{+} ; P\right)}=r_{S}\left(\frac{s_{a b}}{s_{a b c}}, \frac{s_{b c}}{s_{a b c}}, z_{1}, z_{3}\right)$
- first time for 6-point kinematics $\quad k_{a}=z_{1} P, k_{b}=z_{2} P, k_{c}=z_{3} P$
\diamond cross ratios are arbitrary! $\rightarrow R$ survives

$$
\bar{u}_{1}=\frac{s_{45}}{s_{456}} \frac{1}{1-z_{3}} \quad \bar{u}_{2}=\frac{s_{56}}{s_{456}} \frac{1}{1-z_{1}} \quad \bar{u}_{3}=\frac{z_{1} z_{3}}{\left(1-z_{1}\right)\left(1-z_{3}\right)}
$$

- triple-collinear factorization vs. corrected BDS at 2-loops

$$
\begin{aligned}
M_{6}^{(2)} & \mapsto M_{4}^{(2)}+M_{4}^{(1)} r_{S}^{(1)}+r_{S}^{(2)} \\
& \mapsto M_{4}^{(2) B D S}+M_{4}^{(1) \mathrm{BDS}} r_{S}^{(1) \mathrm{BDS}}+r_{S}^{(2) \mathrm{BDS}}+R_{6}^{(2)}(\bar{u})
\end{aligned}
$$

\diamond remainder function \leftrightarrow triple-collinear splitting amplitude

$$
R_{6}^{(2)}(\bar{u})=r_{S}^{(2)}\left(\frac{s_{a b}}{s_{a b c}}, \frac{s_{b c}}{s_{a b c}}, z_{1}, z_{3}, \epsilon\right)-r_{S}^{(2) \mathrm{BDS}}\left(\frac{s_{a b}}{s_{a b c}}, \frac{s_{b c}}{s_{a b c}}, z_{1}, z_{3}, \epsilon\right)
$$

\diamond Advantage: potentially simpler integrals
\diamond All-Ioop remainder function vs. triple-collinear splitting amplitude

$$
R_{6}^{(l)}\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right)=\sum_{s=2}^{l} M_{4}^{(l-s)}\left[r_{S}^{(s)}\left(\frac{s_{45}}{s_{455}}, \frac{s_{56}}{s_{455}}, z_{1}, z_{3}, \epsilon\right)-r_{S}^{(s) \mathrm{BDS}}\left(\frac{s_{45}}{s_{456}}, \frac{s_{56}}{s_{456}}, z_{1}, z_{3}, \epsilon\right)\right]
$$

- resummable

Summary

- rescaled 6pt MHV amplitude=Wilson loop; BDS needs correction
- correction visible in triple-collinear limit; equals splitting amplitude

Summary and open questions

- rescaled 6pt MHV amplitude=Wilson loop; BDS needs correction
- correction visible in triple-collinear limit; equals splitting amplitude
- Is it possible to find the analytic form of the remainder?
- Why are MHV amplitudes related to null Wilson loops? What about non-MHV amplitudes?
- Who ordered dual conformal invariance? What are the allowed types of contributions that break it?
- What other implications does it have? Is it relevant for non-MHV amplitudes and in what sense?
- Is dual conformal invariance restricted to the planar theory? What theories exhibit it? Does it have any relation to integrability of the dilatation operator?
- ...

