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The plan:

Yesterday: – tree amplitudes

– same for susy and non-susy theories

Today: – (mostly 1-)loop amplitudes

– focus on maximal supersymmetry

Main message: It pays to stay on-shell

Tree-level amplitudes determine “everything”



Structure of 1-loop amplitudes in any D = 4 theory

A
(1)
n =

∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei + Rat

� justified by integral reduction: given any Feynman diagram, one

may bring it to this form by a sequence of transformations:

– decompose numerator tensors constructed from loop mo-

menta in a basis of external momenta

– construct inverse propagators

– reduce scalar integrals using

1 =

∑5
i=1 bi(p

2
i + m2)

∑5
i=1 bi(p

2
i + m2)

=

∑5
i=1 bi(l + pi)

2 + m2

∑5
i=1 bi(p

2
i + m2)

– reduce pentagons to boxes by other means

(van Neerven/Vermasseren)

� SUSY restricts coefficients



Pre-twistor perturbative analytic results in N = 4 SYM
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On-shell technology:

limits of string theory amplitudes

(generalized) unitarity method



Current perturbative analytic results in N = 4 SYM
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New on-shell technology:

limits of string theory amplitudes

generalized unitarity method

complex momenta (p-analyticity)

efficient multiple cuts (1 loop)

holomorphic anomaly (1 loop)

twistor space structure

further multiple cuts (higher loops)



The “old” unitarity

1l = SS† ⇒ 2=T = TT † Unitarity: relation between discontinuity

of amplitude at some loop order and lower

loop amplitudes

1 loop : 2=T1 loop
4 =

1

2 3

4

l1

l2

on−shell

1

2 3

4

= LIPSd

2 loops: 2=T2 loops
4 =

l1

l21

2 3

4

l1

l2

2

1

3

4 1

2 l1l3

l2

Knowing all cuts of an amplitude allows its reconstruction – up

to rational functions of momenta

<T =
1

π
P

∫ ∞

−∞
dw
=T

w − s
− C∞



� A question:

MHV vertices work at tree-level. Do they also work at loop level?

If so, is there a relation to existing methods?

� Various arguments for negative answers across the board

MHV vertices are nonlocal; unitarity will be messed up

Twistor string has extra states Berkovits, Witten

MHV vertices suggest localization on lines; Cachazo, Svrček

and Witten studied the twistor space structure of available loop

amplitudes and found deviations from such localization

iε prescription is unclear; needs to be “prescribed”

twistor formulation is intrinsic to d = 4; regularization?

off-shell spinors were “invented”; potential problems?

� Post factum: MHV rules have Lagrangian origin



General prescription: Brandhuber, Spence, Travaglini

# of MHV vertices equals # of negative helicity gluons

similarly to tree amplitudes, sum over possible assignments of ex-

ternal legs consistent with cyclic ordering; sum over internal helicity

momentum integral

– on-shell and transverse w/ η; phase-space and dispersion integral

Laȧ = lal̃ȧ + z ηaη̃ȧ →
d4L

L2
=

dz

z

[

〈ldl〉d2l̃ − [̃ldl̃]d2l
]

= 4i
dz

z
d4lδ

(+)
(l2)

– one dispersion int. per propagator; use la and l̃ȧ in MHV vertices

– dimensionally-regularize phase-space integral

– iε prescription:
dz

z
→

dz

z + iε



Typical contribution to 1-loop MHV ampl.:

L2

L1

p
i+1

pi

p
j+1

p
j

MHV MHV

A =
∫

d4L1
L2
1

d4L2
L2
2

δ4(L1+L2+pi+1,...,j)AL(L2,i+1,...,j,L1)AR(−L1,j+1,...,i,−L2)

• reorganization of cuts of box integrals

L2

L1

p
i+1

pi

p
j+1

p
j

MHV MHV ←→

• Identify IR divergences: only if 4-point MHV vertices are present
Bena, Bern, Kosower, RR

• Transform to (λ, µ): exp. disconnected structure + subtleties

• Interesting open problem: derive 6-point NMHV using this method



The (generalized) unitarity-based method

1l = SS† ⇒ 2=T = TT † Unitarity: relation between discontinuity

of amplitude at some loop order and lower

loop amplitudes

1 loop : 2=T1 loop
4 =

1

2 3

4

l1

l2

on−shell

1

2 3

4

= LIPSd

2 loops: 2=T2 loops
4 =

l1

l21

2 3

4

l1
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2
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2 l1l3
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Knowing all cuts of an amplitude allows its reconstruction – up

to rational functions of momenta

Another way: use unitarity in d dimensions

– rational functions related to (d− 4)× (multivalued functions)

susy theories: rational and multivalued functions come together

re-interpretation of the meaning of unitarity cut



Various statements and “theorems”: Bern, Dixon, Dunbar, Kosower
Bern, Morgan

• Any amplitude in any massless theory is fully determined from

D-dimensional tree amplitudes to all loop orders; no off-shell for-

mulation is necessary

• At 1-loop, any amplitude in a massless supersymmetric field theory

is fully constructible from 4-dimensional tree amplitudes, regardless

potential UV and IR singularities

• Amplitudes of N = 4 super-Yang-Mills theory are simpler than

they should be. Any 1-loop amplitude is a linear combination of

box integrals



Example: 1-loop 4-point gluon amplitude in N = 4 super-Yang-Mills
Bern, Dixon, Dunbar, Kosower

two 2-particle cuts:
l1

l2

q1
q2

1

2 3

4 1

2

4

3

at least one cut involves a nontrivial sum over all N = 4 states

∑

N=4

l1

l21

2 3

4

= −is12s23

l1

l2

3

41

2 2

1

3

4

= −i s12s23
Atree

4 (1,2,3,4)

(2l1 · k2)(2l2 · k4

both cuts contain the same information – even though only one
of them involves a nontrivial sum; consequence of susy

collect all cuts:
3

41

2

12s s23i

3

41

2 3

4

2

1

Box integral in

theory3Φ
=

A1 loop
4 (1,2,3,4) = is12s23 Atree

4 (1,2,3,4)

∫

ddq

q2(q − k1)
2(q − k12)

2(q + k4)
2



The generalized unitarity-based method Bern, Dixon, Kosower

Britto, Cachazo, Feng

cut more than 2 propagators

Interpretation: cut propagators = not canceling

In the past – primarily used at higher loops

• Use at 1-loop in conjunction with structure of amplitudes

N = 4 SYM: amplitudes are sums of box integrals

– e.g. these functions are sufficient to account for all factorization properties



The generalized unitarity-based method Bern, Dixon, Kosower

Britto, Cachazo, Feng

cut more than 2 propagators

Interpretation: cut propagators = not canceling

In the past – primarily used at higher loops

• Use at 1-loop in conjunction with structure of amplitudes

N = 4 SYM: amplitudes are sums of box integrals

– e.g. these functions are sufficient to account for all factorization properties

n1{ i

n2

n1{ i

{

I1m[i,n−3]

n3n2

n1{

n3

n4

n2

n1{

n2

n1{

I2mh

I3m[i,n ,n ,n ]1 2 3 I4m[i,n ,n ,n ,n ]1 2 3 4 I2me[i,n ,n ]21

}{

i

}

}

{

i

}

i

[i,n ,n ]1 2



Further restrictions on the amplitude:

A =
∑

(coefficients)× (box integrals)

• IR equation – important guide – simplifies life

A1 loop
n

∣

∣

∣

∣

singular
=

Γ(1 + ε)Γ(1− ε)2

ε2 (4π)2−εΓ(1− 2ε)
Atree

n

relations between coefficients and tree-level amplitudes

• box integrals are multi-valued function; position of branch cuts

depend on invariants; no overlap! e.g.

I2me[i, n1, n2] ∝ · · ·+ Li2

(

1−
t
[n1]
i

t
[n1+1]
i−1

)

+ Li2

(

1−
t
[n1]
i

t
[n1+1+1]
i

)

+ . . .

I2mh[i, n1, n2] ∝ · · ·+
1

2
ln2

(

t
[2]
i−2

t
[n1+1]
i−1

)

+ Li2

(

1−
t
[n1]
i

t
[n1+1]
i−1

)

+ Li2

(

1−
t
[n1+2]
i−2

t
[n1+1]
i−1

)

+ . . .



More observations

∃! one box integral whose external momenta correspond to each
decomposition of the ordered external legs in four groups

(1, . . . , n) 7→ [(i, . . . , i+n1−1), (i+n1 . . . i+n12−1), (i+n12 . . . i+n123−1), rest]

Localization

on-shell condition on the 4 internal propagators of the box integral

7→ freezes loop momentum up to (sum over) discrete choices

l2 = 0 (l −K1)
2 = 0 (l −K1 −K2)

2 = 0 (l + K4)
2 = 0

• Useful and forgotten:

(very) complicated solutions; luckily, often not needed explicitly

1,2,3−mass boxes – solution exists only for complex momenta

– paȧ = λaλ̃ȧ with λ̃ȧ 6= (λa)∗ i.e. A(++−) 6= 0 and A(++−) 6= 0

Feynman diagrams underlie all amplitudes 7→ on each side of gen-

eralized cut there is a tree-level amplitude



The algorithm:

1) start with ansatz

An =
∑

[

ci,n−3I1m[i, n− 3]

+ ce
i,n1,n2

I2me[i, n1, n2] + ch
i,n1,n2

I2mh[i, n1, n2]

+ ci,n1,n2,n3
I3m[i, n1, n2, n3] + ci,n1,n2,n3

I4m[i, n1, n2, n3, n4]

2) Isolate one coefficient via the appropriate quadruple cut

K2

K1 K4

K3

1A

2A 3A

4A
= ci,nK1

,nK2
,nK3

,nK4
×

K1

K2 K3

K4

3) compute the coefficient by multiplying the appropriate tree am-

plitudes (complex momenta are implicitely used if one encounters

3-point tree amplitudes)



sum over different allowed helicity assignments for internal lines

K2

K1 K4

K3

1A

2A 3A

4A
= ci,nK1

,nK2
,nK3

,nK4
×

K1

K2 K3

K4

ci,nK1
,nK2

,nK3
,nK4

=
1

#sol

∑

hel′s

(A1)(A2)(A3)(A4)

∣

∣

∣

∣

sol. to on−shell condition

cancellation of Jacobian from integral of on-shell condition

extract one coefficient at a time

tree-level simplicity translates into 1-loop simplicity



(Not too many) tips for solving the on-shell condition

• if possible, find spinors

• solve conditions at 3-point corners (up to scale freedom)

• choose representation of tree amplitudes; expose loop momenta(?)

• search for inconsistencies implied by these solutions

→ vanishing contributions (or vanishing coefficients)

• turn holomorphic spinor into antiholomorphic spinor (or vice versa)

– 〈lX〉 =
[i|l|X〉

[il]
for some external line i

• ratios of the type
〈lX〉

〈lY 〉
may sometimes be simplified

. . .

• coffee might help

• If nothing works, reconstruct loop momenta; use explicit sol.



Example: 5-points MHV amplitude: five I1m (incoming momenta)

a)

4+
5+ 1−

2−

l1

l2

l 3

l 4
+

+

−
−

+
−

−
+

3+

( 〈1l2〉3

〈l2l1〉〈l11〉

)( [l3l2]3

[l22][2l3]

)( [3l4]3

[l4l3][l33]

)( 〈l1l4〉3

〈l44〉〈45〉〈5l1〉

)

b)

4+
5+ 1−

2−

l1

l2

l 3

l 4

−
−

+

+

3+
− +

+

−

( [l2l1]3

[1l2][l11]

)( 〈2l2〉3

〈2l3〉〈l3l2〉

)( [3l4]3

[l4l3][l33]

)( 〈l1l4〉3

〈l44〉〈45〉〈5l1〉

)

a) [l1l2] = [l11] = [l21] = 0

〈l2l3〉 = 〈l22〉 = 〈2l3〉 = 0

〈l3l4〉 = 〈l33〉 = 〈3l4〉 = 0

λ̃l1
∝ λ̃1 ; λ̃l2

∝ λ̃1

λl2
∝ λ2 ; λl3

∝ λ2

λl3
∝ λ3 ; λl4

∝ λ3

inconsistent

b) 〈l1l2〉 = 〈l11〉 = 〈l21〉 = 0

[l2l3] = [l22] = [2l3] = 0

〈l3l4〉 = 〈l33〉 = 〈3l4〉 = 0

λl1
∝ λ1 ; λl2

∝ λ1

λ̃l2
∝ λ̃2 ; λ̃l3

∝ λ̃2

λl3
∝ λ3 ; λl4

∝ λ3

proceed



Reorganize factors using momentum conservation:

b)

4+
5+ 1−

2−

l1

l2

l 3

l 4

−
−

+

+

3+
− +

+

−

( [l2l1]3

[1l2][l11]

)( 〈2l2〉3

〈2l3〉〈l3l2〉

)( [3l4]3

[l4l3][l33]

)( 〈l1l4〉3

〈l44〉〈45〉〈5l1〉

)

〈2l2〉[l2l1] = 〈2|l1 + 1|l1] = 〈21〉[1l1]

〈l3l2〉[l21] = 〈l3|l3 + 2|1] = 〈l32〉[21]

〈l1l4〉[l43] = 〈l1|l1−4−5|3] = −〈l1|(4+5)|3]

〈4l4〉[l4l3] = 〈4|l3 + 3|l3] = −〈43〉[3l3]

c123(45) =
1

2

〈12〉3[1l1]2〈l1|(4 + 5)|3]3

[12]〈34〉〈45〉〈2l3〉2[3l3]2〈5l1〉

Last: leftover spinors ↔ momentum conservation and constraints

λl1 = α1λ1 λ̃l3 = β2λ̃2

λl1λ̃l1 = λ1λ̃1 + λl2λ̃l2 α1λ̃l1 = λ̃1 + β1λ̃l2

λl3λ̃l3 = λ2λ̃2 + λl2λ̃l2 β2λl3 = λ2 + α2λl2 = λ2 + α2β1λ1

Homogeneity (no α and β): c123(45) = −
1

2
s12s23

[

〈12〉3

〈23〉〈34〉〈45〉〈51〉

]



A general vanishing result:

The coefficient of a 1-mass box integral vanishes if there are two

adjacent corners with the same helicity configuration

1−

2−

An−3

+
+

−
−

+
−

−
+

3+

(

〈1l2〉
3

〈l2l1〉〈l11〉

)(

[l3l2]
3

[l22][2l3]

)(

[3l4]
3

[l4l3][l33]

)

An−3

[l1l2] = [l11] = [l21] = 0

〈l2l3〉 = 〈l22〉 = 〈2l3〉 = 0

〈l3l4〉 = 〈l33〉 = 〈3l4〉 = 0

λ̃l1
∝ λ̃1 ; λ̃l2

∝ λ̃1

λl2
∝ λ2 ; λl3

∝ λ2

λl3
∝ λ3 ; λl4

∝ λ3

� cannot solve on-shell conditions for generic external momenta



4+
5+ 1−

2−

l1

l2

l 3

l 4

−
−

+

+

3+
− +

+

−
c123(45) = −

1

2
s12s23

[

〈12〉3

〈23〉〈34〉〈45〉〈51〉

]

(12345)→ (51234)

Remaining nonvanishing coefficients

1− 5+

4+2−
+3

l2

l1

l 3

l 4
−

+

+

−

+ −

−+

c451(23) = −
1

2
s45s51

[

〈12〉3

〈23〉〈34〉〈45〉〈51〉

]

(12345)→ (45123)

1−
2− +3

4+5+

l2

l 4

l 3

l1

+

−

+ −

−+

+

−

c345(12) = −
1

2
s34s45

[

〈12〉3

〈23〉〈34〉〈45〉〈51〉

]



Comments

• Algorithmic; yields any 1-loop amplitude in N = 4 SYM

• Simplicity due to new structures: [a|b . . . c|d〉

• IR equations feed this simplicity back to trees → rec. rel.

• Existing explicit results:

– all MHV amplitudes Bern, Dixon, Dunbar, Kosower

– all ≤ 7-point amplitudes Britto, Cachazo, Feng
Bern, del Duca, Dixon, Kosower

– all split-helicity NMHV amplitudes Bern, Dixon, Kosower

• other fields of N = 4 SYM on external lines

• Extension to reduced susy and no susy; phenomenology



On to higher loops...



Brief comparison – or “Why are higher-loop calculations hard?”

1-loop higher loops

technology: quadruple cuts

freeze integral

no general analog;

too few propagators

very efficient complete basis over-complete or under-

complete

basis; naive guess insufficient

same basis for any number of

external legs

limited experience;

4pt→ 5pt new integrals

new structures: O(ε) and O(ε2)

in 1-loop amplitude are relevant

cuts easy to disentangle (even

without quadruple cuts)

(very) nontrivial zeroes;

many ways to reorganize cuts;

hard to choose; some more use-

ful than others

4d algebra suffices unclear; safety requires D−dim.



Generalized unitarity continues to work; strategy:

– cut at least L + 1 and at most 4L− 1 propagators

– recognize integral functions containing the cut propagators

– test all relevant cuts for missed terms

Cross-check against all sources of information

– (partial) localization (Buchbinder, Cachazo)

– IR properties (Sterman, Magnea; Catani)

– collinear, soft and multi-particle factorization

declare victory (invoking D-dimensional nature of calculation)



Case by case discussion: 4-point amplitudes seem the simplest

work toward a effective rules capturing cut calculation

Recall from earlier:
3

41

2

12s s23i

3

41

2 3

4

2

1

Box integral in

theory3Φ
=

A1 loop
4 (1,2,3,4) = is12s23 Atree

4 (1,2,3,4)

∫

ddq

q2(q − k1)
2(q − k12)

2(q + k4)
2

(Green, Schwarz, Brink (1982))

An observation: for 4-particle amplitudes, 2-particle cuts iterate to

all orders (Bern, Rozowsky, Yan)

∑

N=4

l1

l21

2 3

4

= − is12s23× (−is12(l1 ·k3))
3

41

2
l1

l2

2

1

3

4 l2

l1 3

4

= − s2
12s23

3

41

2
l1

l2

3

4

2

1

similar in the t-channel



A2−loop
4 = −s12s23Atree

4

{

s12

1

2

4

3

+ s23

2

1 4

3

}

(Bern, Rozowsky, Yan)

2-particle cuts ↔ add all possible rungs and corresponding numera-

tor factor (total momentum crossing the rung) (Bern, Rozowsky, Yan)

1l

l2

1l

l2 1l +( l
2

)2i

• at 3-loops gives the complete answer (6 diagrams plus cyclic)

• similar methods yield the 5-point 2-loop amplitude



Comments and summary:

1-loop S-matrix is analytically known in any massless gauge theory

Unitarity-based calculations can produce analytic expressions for

the integrands of higher loop scattering amplitudes

Overcomplete basis; Care is needed to avoid overcounting

Tomorrow: Some of the implications of these results

the state of the art for multi-leg and multi-loop calculations



Summary: 5-gluon 2-loop amplitude in N = 4 SYM

A2 loops;even
5 = −

1

2
Atree

5

∑

cyc
{

s212s23

1

2

5
4

3

+s212s15

1

2
4

5

3

+s12s34s45(q−k1)
2

1

2
3

4

5 q }

A2 loops;odd
5 =

1

32
Atree

5 Tr (γ5k/1k/2k/3k/4)
s12s23s34s45s51

G(1,2,3,4)

∑

cyc

×
{ 1

2

54

3

+2s12

1

2
3

4

5

−s12(s12s15−s12s23+s23s34−s15s45+s34s45)
s23s34s45

1

2
4

5

3

+s12(−s12s51+s12s23−s23s34+s45s51+s34s45)
s34s45s51

1

2

5
4

3

+(s12s51+s12s23−s23s34+s45s34−s45s51)
s23s51

(q + k1)
2

1

2
3

4

5 q }


