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The plan:

Yesterday: — tree amplitudes
— same for susy and non-susy theories

Today: — (mostly 1-)loop amplitudes
— focus on maximal supersymmetry

Main message: It pays to stay on-shell
Tree-level amplitudes determine “everything”



Structure of 1-loop amplitudes in any D = 4 theory

AY =57d; Box; + S ¢; Triangle; + 3 b; Bubble; 4+ Rat

¢ justified by integral reduction: given any Feynman diagram, one
may bring it to this form by a sequence of transformations:

decompose numerator tensors constructed from loop mo-
menta in a basis of external momenta

construct inverse propagators

reduce scalar integrals using

L X i+ m?) g bl 4 p)? + m?

P b2+ m?) 2 bi(p? + m?)
reduce pentagons to boxes by other means
(van Neerven/Vermasseren)

o SUSY restricts coefficients



Pre-twistor perturbative analytic results in NN = 4 SYM

m‘ On-shell technology:
é’)’ = |[imits of string theory amplitudes
— = (generalized) unitarity method
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Current perturbative analytic results in N =4 SYM

m‘ New on-shell technology:
S = limits of string theory amplitudes
3 = generalized unitarity method
ﬂ = complex momenta (p-analyticity)
5 2006/ m efficient multiple cuts (1 loop)
= = holomorphic anomaly (1 loop)
4 | | 2006 | .
= twistor space structure

3 '2006_ - further multiple cuts (higher loops)
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The “old” unitarity

1=558T = 287 =71T% Unitarity: relation between discontinuity
of amplitude at some |loop order and lower

loop amplitudes
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= Knowing all cuts of an amplitude allows its reconstruction — up
to rational functions of momenta
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¢ A question:

MHYV vertices work at tree-level. Do they also work at loop level?
If so, is there a relation to existing methods?

¢ Various arguments for negative answers across the board

= MHYV vertices are nonlocal; unitarity will be messed up
m Twistor string has extra states Berkovits, Witten

= MHV vertices suggest localization on lines; Cachazo, Svrcek
and Witten studied the twistor space structure of available loop
amplitudes and found deviations from such localization

m ¢ prescription is unclear; needs to be “prescribed”
= twistor formulation is intrinsic to d = 4; regularization?

= Off-shell spinors were ‘“invented’ ; potential problems?

¢ Post factum: MHYV rules have Lagrangian origin



General prescription: Brandhuber, Spence, Travaglini

. H# of MHV vertices equals # of negative helicity gluons

= Similarly to tree amplitudes, sum over possible assignments of ex-
ternal legs consistent with cyclic ordering; sum over internal helicity

= momentum integral

— on-shell and transverse w/ n; phase-space and dispersion integral

d*L  dz [ (+)

dz
Loy = lals + 2mafi;, — —7 = (dlyd?T — [ZdZ]dQ} —4z—d4l5 (1?)

— one dispersion int. per propagator; use lg and [; in MHV vertices

— dimensionally-regularize phase-space integral

dz \ dz
z /z—l-z'e

— 1€ prescription:



Typical contribution to 1-loop MHV ampl.:

_ [ d*L1d%Ly 4 . . . .
A= o720 (it Lotpiqa,. )AL (Lot 1,5, L) AR(=L1,j+1,00,— L)
1 L5

e reorganization of cuts of box integrals

e Identify IR divergences: only if 4-point MHV vertices are present
Bena, Bern, Kosower, RR

e Transform to (A, u): exp. disconnected structure 4 subtleties

e Interesting open problem: derive 6-point NMHYV using this method



The (generalized) unitarity-based method

1=558T = 287 =71T% Unitarity: relation between discontinuity
of amplitude at some |loop order and lower

loop amplitudes
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= Knowing all cuts of an amplitude allows its reconstruction — up
to rational functions of momenta

=  Another way: use unitarity in d dimensions
— rational functions related to (d — 4) x (multivalued functions)

=  susy theories: rational and multivalued functions come together

= re-interpretation of the meaning of unitarity cut



Various statements and ‘“theorems’ : Bern, Dixon, Dunbar, Kosower
Bern, Morgan

e Any amplitude in any massless theory is fully determined from
D-dimensional tree amplitudes to all loop orders; no off-shell for-
mulation is necessary

e At 1-loop, any amplitude in a massless supersymmetric field theory
is fully constructible from 4-dimensional tree amplitudes, regardless
potential UV and IR singularities

e Amplitudes of N/ = 4 super-Yang-Mills theory are simpler than
they should be. Any 1-loop amplitude is a linear combination of
box integrals



Example: 1-loop 4-point gluon amplitude in N' = 4 super-Yang-Mills

Bern, Dixon, Dunbar, Kosower

two 2-particle cuts: 21)?13 2 (ﬁ _ :Y _____ __ i
. 1 5'2 4 1/52\4

= at least one cut involves a nontrivial sum over all N = 4 states

1 PN
2 | 3 2 3 213 t
L II B I [ - e (24@2( 1)’(22}3’41?
N=41 5'2 4 1 4 i 1ohe 20

= Dboth cuts contain the same information — even though only one
of them involves a nontrivial sum; consequence of susy

2 3 2 3 2 3 fox
] o oX Integre
= collect all cuts: = isy, S, =~ 93 theory
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ddq
— k12)?(q + ka)?
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The generalized unitarity-based method Bern, Dixon, Kosower
Britto, Cachazo, Feng

= cut more than 2 propagators NS
Interpretation: cut propagators = not canceling \ | /

= In the past — primarily used at higher loops
// \\

e Use at 1-loop in conjunction with structure of amplitudes

= N =4 SYM: amplitudes are sums of box integrals

— e.g. these functions are sufficient to account for all factorization properties



The generalized unitarity-based method

= cut more than 2 propagators

Bern, Dixon, Kosower
Britto, Cachazo, Feng

N
Interpretation: cut propagators = not canceling \ | /

= In the past — primarily used at higher loops

//\\

e Use at 1-loop in conjunction with structure of amplitudes

= N =4 SYM: amplitudes are sums of box integrals

— e.g. these functions are sufficient to account for all factorization properties

A

Ny{

s

i
|31, N3N, g ]

nl{ |

l1m[1,n—3]
Ny { 13
L 1y

|11, 1%, |

Ny {

Ny 7
o1y,

1

L

lomd 1N,



Further restrictions on the amplitude:
A =) (coefficients) x (box integrals)
e IR equation — important guide — simplifies life

A+l -2 | tree

1loop —
Ap - T2 2—e€ n
singular €< (4m)<—I (1 — 2¢)

= relations between coefficients and tree-level amplitudes

e box integrals are multi-valued function; position of branch cuts
depend on invariants; no overlap! e.d.

(4] [14]
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More observations

= Jl one box integral whose external momenta correspond to each
decomposition of the ordered external legs in four groups

(1,....n) — [(4,...,i4+n1—1), (i4+n1...i4+n12—1), (i+ni2...14+n123— 1), rest]
= [ ocalization

on-shell condition on the 4 internal propagators of the box integral
— freezes loop momentum up to (sum over) discrete choices

=0 (-K{)?’=0 ((U-K{—-K»)?’=0 ((+Kz)?=0

e Useful and forgotten:
= (very) complicated solutions; luckily, often not needed explicitly

= 1,2,3—mass boxes — solution exists only for complex momenta
— Paa = Aarg With Xy # (Aa)*i.e. A(++—-) #0and A(++-) #0

= Feynman diagrams underlie all amplitudes +— on each side of gen-
eralized cut there is a tree-level amplitude



The algorithm:

1) start with ansatz

An=Y|  cin-slinlin -3l
. h .
+ Cze,nl,nQIQme [7’7 ni, TLQ] + Ci,nl,?”LQIth [7’7 ni, 7’2,2]

=+ Ci,nl,ng,n:gl?)m [7’7 ni,n, n3] + Ci,nl,ng,n3l4m [7’7 ni,n2,ns, TL4:

2) Isolate one coefficient via the appropriate quadruple cut

3) compute the coefficient by multiplying the appropriate tree am-
plitudes (complex momenta are implicitely used if one encounters
3-point tree amplitudes)



= sum over different allowed helicity assignments for internal lines

Ka + K3
— G nKlanK27nK37nK4>< _____:_____
K1 l K4
i (A1)(A2)(A3)(As)
LI UK UK gy #sol h%; sol. to on—shell condition

= cancellation of Jacobian from integral of on-shell condition
m extract one coefficient at a time

» tree-level simplicity translates into 1-loop simplicity



(Not too many) tips for solving the on-shell condition
e |f possible, find spinors
e solve conditions at 3-point corners (up to scale freedom)

e choose representation of tree amplitudes; expose loop momenta(?

e sSearch for inconsistencies implied by these solutions
— vanishing contributions (or vanishing coefficients)

e turn holomorphic spinor into antiholomorphic spinor (or vice versa)

| 1] X
—(IX) = [lI1X) for some external line 3

[4l]

(X))

e ratios of the type —— may sometimes be simplified

(Y')

e coffee might help

e If nothing works, reconstruct loop momenta; use explicit sol.



Example: 5-points MHV amplitude: five I1,, (incoming momenta)

(115)3 [1302]3 314]3 (l114)3

a) <<zgzl><511>) ([122] [213]> ([1413] [z33]> (<z44><45><5zl>)
[1201]3 (212)3 [314]° (l1l4)3

b) ([1l2] [l1 1]) <<2l3><l312>> ([l4l3] [l33]) (<l44><45><5l1>>

a) [lilp] = [I11] =[I>1] =0 Al X AL A, o< Aq
(Iol3) = (Ip2) = (2I3) =0 Aly X A2 5 Ajg 0 A2 inconsistent
(I3lg) = (133) = (3la) =0 A3 x Az A, x A3

b) (l1lp) = (l11) = (l21) =0 Al X AL 5 A, X AL
[[513] = [122] = [213] = O ALy X A2 5 A o< Ao proceed
(I3la) = (I133) = (Blg) =0 Ay x Az A, X A3



Reorganize factors using momentum conservation:

[1214]> (212)° [314]° (l1la)’
([1z22] [111 1]) ((2l3>?l3l2>> ([1413] [z33]> (<z44><145><511>)

21\ [lal1] = (2|11 + 1|11] = (21)[114]

l1|ll_4_5|3] — —<l1|(4—|—5)|3] 2 [12]<34><45><213>2[3l3]2<5l1:

A1) [lals] = (4|13 + 3|I3] = —(43)[313]

C123(45) — <
l1l4) [143] =

( <
(Islo)[l21] = (Is|ls + 2|1] = (132)[21] 1 (12)°[1]*(U|(4 + 5)[3]°
( (
( {

Last: leftover spinors < momentum conservation and constraints

A, = a1d1 A\, = B2

AL = A1+ A, a1\, = A1+ B,
AL = Ao + AL, BoA;, = A2 + a2, = Ao + af1 A1
| 1 (12)3
Homogeneity (no o and 3): C123(45) = — 5512523

2 (23)(34)(45)(51)



A general vanishing result:

= T he coefficient of a 1-mass box integral vanishes if there are two
adjacent corners with the same helicity configuration

3 3 2
(<12<111l>2<31 1>) ([l£l23]l[2;l3]) ([z 4[Zlﬁ133]> Ap—3

[l1lo] = [111] =[I21] =0 A, & Aq 5 A, o< Aq
(Iol3) = (122) = (23) =0 A, < A2 ; A5 o< A2
(I3la) = (I33) = (3la) =0 A5 x Az 5 A, o A3

¢ cannot solve on-shell conditions for generic external momenta



1

(12)°

C123(45) — — 5512523

= (12345) — (51234)

Remaining nonvanishing coefficients

_ 1 (12)3
“451(23) = T 5745751 [<23><34><45><51>
« (12345) — (45123)
_ 1 (12)3
€345(12) = 75734945 [<23><34><45><51>

2 (23)(34)(45)(51)

|

|



Comments

e Algorithmic; yields any 1-loop amplitude in NN =4 SYM
e Simplicity due to new structures: [alb...c|d)

e IR equations feed this simplicity back to trees — rec. rel.
e EXisting explicit results:

— all MHV amplitudes Bern, Dixon, Dunbar, Kosower

— all < 7-point amplitudes Britto, Cachazo, Feng
Bern, del Duca, Dixon, Kosower

— all split-helicity NMHV amplitudes Bern, Dixon, Kosower
e Other fields of N/ = 4 SYM on external lines

e EXxtension to reduced susy and no susy; phenomenology



On to higher loops...



Brief comparison — or “Why are higher-loop calculations hard?”

1-loop

technology: quadruple cuts
freeze integral

very efficient complete basis

same basis for any number of
external legs

cuts easy to disentangle (even
without quadruple cuts)

4d algebra suffices

higher loops

no general analog;
too few propagators

over-complete or under-
complete
basis; naive guess insufficient

limited experience;
4pt— 5pt new integrals

new structures: O(e) and O(e2)
in 1-loop amplitude are relevant

(very) nontrivial zeroes;

many ways to reorganize cuts
hard to choose; some more use-
ful than others

unclear; safety requires D—dim.



Generalized unitarity continues to work; strategy:
— cut at least L + 1 and at most 4L — 1 propagators
— recognize integral functions containing the cut propagators
— test all relevant cuts for missed terms

m Cross-check against all sources of information
— (partial) localization (Buchbinder, Cachazo)
— IR properties (Sterman, Magnea; Catani)

— collinear, soft and multi-particle factorization

= declare victory (invoking D-dimensional nature of calculation)



Case by case discussion: 4-point amplitudes seem the simplest
=  work toward a effective rules capturing cut calculation

Recall from earlier:

2 3 2 3 2 3
Box integral in
e —_—————
' S12 %23 @3 theory
1 4 1 4 1 4

(Green, Schwarz, Brink (1982))
ddq
q%(q — k1)2(q — k12)?(q + ka)?

Az'°%P(1,2,3,4) = is10503 A§(1,2,3,4) /

An observation: for 4-particle amplitudes, 2-particle cuts iterate to
all orders (Bern, Rozowsky, Yan)

3
Z :O::@: — 1512523 X (—i512(l1 - k3)) :O: I:[
T

= similar in the t-channel




2—loo
Ay 0%P = —8128231412{%{ 5192 + s23 }
1 4

(Bern, Rozowsky, Yan)

2-particle cuts < add all possible rungs and corresponding numera-
tor factor (total momentum crossing the rung) (Bern, Rozowsky, Yan)

g

>
> >

N (|1+|2)2

I
e at 3-loops gives the complete answer (6 diagrams plus cyclic)

e Ssimilar methods vield the 5-point 2-loop amplitude



Comments and summary:

= 1-loop S-matrix is analytically known in any massless gauge theory

m Unitarity-based calculations can produce analytic expressions for
the integrands of higher loop scattering amplitudes

= Overcomplete basis; Care is needed to avoid overcounting

Tomorrow: Some of the implications of these results
the state of the art for multi-leg and multi-loop calct



Summary: 5-gluon 2-loop amplitude in N =4 SYM

2loops;even __ 1 tree
Ag ——§A5 >
CycC
> 4 Yoo ° . 5
{512523 +515515 +510534545(q—k1)< 4
4
3 2 3 2

: 1 $19892824845S
AQIoops,odd — _Atree—l—r 129023534545551
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