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My goals for the three lectures:

— describe technology for tree-level and 1-loop higher point

analytic calculations
— describe technology for higher-loop calculations and field the-

ory conjectures for the resummation of certain amplitudes
— compare the state-of-the art calculation in N =4 SYM with

a string theory inspired conjecture



— describe technology for tree-level and 1-loop higher point
analytic calculations

Initially developed for maximally supersymmetric YM theory in four
dimensions, the methods been improved and generalized to theories
with reduced supersymmetry as well as QCD
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courtesy of L. Dixon
The main messages: it pays to stay on-shell
everything is built from tree amplitudes
simplicity must start at tree-level



Off-shell questions:
— Green’s functions?
— Effective actions?
— Renormalization of composite operators? o

— Recycle

On-shell questions:
— (massless) Scattering amplitudes?
— Effective actions (up to field redefinitions)?

— Renormalization of composite operators? o

Advantages of staying on-shell:
= cancellations due to on-shell condition
= cancellations due to gauge invariance

= use techniques not indigenous to field theories



Source of recent inspiration:

Witten's proposed relation between a certain type of string theory
and the maximally supersymetric Yang-Mills theory in d = 4

= Compute on-shell scattering amplitudes as the scattering ampli-
tudes of a topological string field theory in twistor space

=  Formal expression of string scattering amplitudes

Ao = [lapa gl [ T $(2(00)) doy (J(o1) .. I(@n)y, )
1=1



e First step towards simplicity: organization

Py
122
T TN (o1 = 2dua + Maapa (P2 — P3)as
p
t ? +Nusp (p3 — pl)ug
P a

= Vertex and propagator color flow

Acded eeme

» Color decomposition of a Feynman diagram

Kir‘ii - ,v( _ M b = AZ;'L( + permutations

= End result: A, = > Tr[T%@ . T%M]A,(c(1),...,0(n))

oc€ESn/ln Berends, Giele; Mangano, Parke, Xu:; Bern, Kosower



e First step towards simplicity: organization

More transparent origin: gauge theory amplitudes as a limit of open
string scattering amplitudes

QQ

= End result: Berends, Giele; Mangano, Parke, Xu; Bern, Kosower

Ap= )  Tr[T%® .. . T%M™]A,(c(1),...,0(n)) + multitraces
o€Sn/ln



Second step toward simplicity: “right notation”

= Chinese magic: Xu, Chang, Zhang;
Berends, Kleiss, De Causmaecker, Gastmans, Stirling, Troost, Wu; Gunion, Kunszt

pHt — (p'“au)o‘d — pd pH'py = 0 & det(ptoy) =0 = P = NN\
2p - q = (pq)lqp] (Pq) = €apAINT [pq] = a5>\2‘>\5

= More standard origin:
Z us(p)us(p) = —p +m
s==

take m — O and project onto chiral components

we(p) = w(p) = | PT) = p) = u(®la
+(p) = ;A £r-1)ulp) = { p7) = [p]l = ulp)a



Second step toward simplicity: “right notation”

Xu, Chang, Zhang;

= Chinese magic:
Berends, Kleiss, De Causmaecker, Gastmans, Stirling, Troost, Wu; Gunion, Kunszt

pHt — (p'“au)o‘d — pd pH'py = 0 & det(ptoy) =0 = P = NN\
2p - q = (pq)lqp] (Pq) = €apAINT [pq] = a5>\2‘>\5

Interpretation in terms of standard quantities

U — l U — |p+> = |p) = u(p)a
+(p) = 5 (1 £ y-1)ulp) = { ) = |p] = ulp)q

= Polarization vectors: kfe, (k) = 0 eu(k) ~ eu(k) + xky

et (k,€) = % et (k&) = f&g@
e — [ghl/i|k> — _ >\Oé€a
)= e aa () = =V27 5

. . Mmoo &
where £ is an arbitrary null vector  ¢,o, . = &aés



e Some identities, etc.

e-k=0 e-£=0
Gordon:  2kM = (k|o*|k] = [k|o"|k)
Fierz:  [ilyuls) [klyall) = 2[ik1 (L)

Schouten: (i5)(kl) + (ik)(15) + (i) (jk) = O



Properties of color-ordered amplitudes

Cyclicity:
A(2,3,...,n,1) = A(1,2,...,n).

Reflection:
Aln,n—1,...,1) = (—-1)"A(1,2,...,n).

Dual Ward (or Sub-Cyclic) Identity:
» A(1,2,3,...,n) =0,

Cc(1,....n—1)

n — fixed; C(1,...,n— 1) set of cyclic permutations of {1,...,n— 1}

Generalized dual Ward identity:

Z A(it, .o tm, J1, -5 J,m+ 1) =0, 1<m<n-1, m—+ k =n,
Perm(i,j5)
where the sum is taken over permutations of the set (i1,...,%m,J1,.-., k)

which preserve the order of the (i1,...,4y,) and (j1,...,J:) Separately.



e Conjugation/CPT: invariance under 4+ « — with simultaneous \ < .

A, Niymia) = /d4”¢ exp [’iznm%A AN, Aiy ).

=1

e Soft-Gluon Limit: in the limit p; — 0 any amplitude behaves as
(n2)
(n1)(12)

Atree(1T 2. ... n) Atree(2 . n).

e Collinear Limits: (p1 — zp and p> — (1 — 2)p with p2=0; or z = ¢ - p1 /€ - p)

L
AR(1,2,3,..) — > Y spiit?)(1,2,2) A (X, 3,..)

[=0 x==
1 1
Atree(1t ot 3 ... A(pt,3,. ..
| VE R e N
Atree(1+ o= 3. ) 2 L At 3, )+ (1-2)° 1 A(p~,3,...)
Vz(1—2)[12] Vz(1 —2)(12)



® Multi-particle Poles: Color-ordered amplitudes can only have poles in chan-
nels corresponding to a sum of cyclically adjacent momenta going on-shell.

= [ree level:

A(l,....,n) — ZAm_|_1(1,...,m,p

An—m—i—l(m + 17 SR ,n,p_X)

1m

where p1m = p1 +p2 + -+ + pm With p7, — 0

= 1 |loop:
ATP(L, ) — Y| A (1, m,pY) LA (41 npY)
n 9ttt +1 y P 2 n—m-+1 yeeey P
x=+ 1,m
Aill_?_olp(l , M pX) ! Atrefn+1(m—|— 1,...,n,p %)
1m

F(1...
—l_ Atreel(l 7m,px)?’ ( 2 n)A;Ezrfsn—l—l(m_l_ 17 ce 7nap—)(

1m




Important amplitudes (for the next 3 days):
« A(pL,pd...pf) =0

V1. Use spinor helicity; choose the reference vectors of
likewise-helicity gluons to be the same and equal to the
momentum of an opposite helicity gluon

V2. SUSY Ward identities: act with Q on ATgt...gT
and ATg—...g1. In susy theories they vanish to all orders
in perturbation theory

s MHV and MHV amplitudes

Attt = (ij) and { + - —

[[i—1(s,s+ 1)



e Hidden structure of tree-level on shell (gluon) amplitudes:

= MHV: A4,G,57) = <i.j>.4 MOIPYIEY
[T (i + 1)) -
+_ Quadratic constrain

Fourier-transform X: A,(i™,j7) = /HdQXkeiZl[“bxl]An(i_,j_)

(use integral representation of §-function)

7 i o~ _ [ 4 (ij)* 2/\a
An(™,57) = [ d*% T oy L + Taaid)
L Linear constraints

o in (A, u) space (twistor space) MHV amplitudes are localized on
complex lines

— all but two quadruples (\;, u;) are linearly dependent

o To expose this structure complex momenta are useful



e Probe available amplitudes for such ‘collinearity’
(case by case study of each helicity configuration)

o B 4 i 9 .
0 = Fyji = XA )y — {ig) sz + (k) 557 + (ki) o

0 0 L 0

=0

; : k
gl gl gl

o determine the twistor space representation of known amplitudes

e.g.

intersecting complex lines; as many as n_ — 1

each of them contains at most two ()\;, ;) quadruples corre-
sponding to negative helicity gluons

consistent with color ordering

in the (— 4+ —+4+---4+ —) amplitude




MHYV diagrams Cachazo, Svrcek, Witten

= interpret each line as an MHV amplitude

— 'invent’ a way to glue together MHV amplit's into NEMHV ones

e Rules and issues

number of “vertices” is k — 2 (nr. of intersecting lines)

assignment of legs consistent color ordering

use Feynman propagators to connect MHV vertices

off-shellness of internal legs

— need holomorphic spinor P, for an off-shell momentum P2 *= 0
— introduce a constant antiholomorphic spinor 7,

— define P, = P|i]



MHYV diagrams Cachazo, Svrcek, Witten

_ MHV 1
An_n, = > Al 11 o2
D|cardD=n_—1 {ij}eLinks ~ ij

= assignment of external legs — consistent with color ordering

= Off-shell leg: constant spinors — similar to light-cone gauge
Example: Ap(———+4---4)

NIV = | (1P)? |4 e
n(l_Pl > o WP+ 1)+ 1,0+ 2) ... (n)] P2L(P2) ... (iP;)
n++\.i: i+1_+./++ n—1 <12>3 1 <34>3
LR +7§3 [<2P,L-)<P,L-,z’—|—1)...<n1>]PZ-2[<PZ-2>...(iPZ->]
MHV diagrams Cachazo, Svrcek, Witten

Gauge theory amplitudes can be computed by sewing together with Feynman
propagators off-shell-continued MHV amplitudes: (kP) = eab)\gP“bﬁb — arbitrary n



Another example: Ag(+—+ —+—) (kP) = eabA%Pabﬁb — arbitrary 7

) » (2p123)* 1 (46)"
) (12)(23)(3p123)(p1231) pips (45)(56) (6p123) (P1234)
1+ : - 3 4 (62)% 1 (4pe12)*
6 . (61)(12)(2pe12) (P6126) Pg12 (34)(45)(5p612) (P6123)
61 2_3 <6p561>4 1 <42>4
) (56)(61)(1pse1)(ps615) Pag1 (23)(34)(4pse1) (Ps612)

_ - . v (2p12)° 1 (46) -
} - (p121)(12) p3, (34)(45)(56) (6p12) (p123) +2x (i —i+2)
T+ _ +2_ g+ <p616>3 1 <24>4 o
} - (61)(1pe1) p2, (23)(34)(45)(5pe61)(pe12) + 2 x ( +2)



e the arbitrary spinor n used to define the off-shell continuation

drops out of the final result — Lorentz inv. is restored
e the unphysical poles 1/(iP) are spurious
e correct multi-particle singularities
e k£ > 3-particle poles are manifest
e Collinear poles without change in n_ also manifest in all trees

e +— — 4+ and —— — — only from 3-point MHV vertices

o Amplitudes computed from MHV vertices have the same poles
and residues as the amplitudes computed from regular Feynman
diagrams — at tree level this guarantees that the two are the same

e possible reorganization in terms of non-MHV diagrams

¢ Vastly more efficient: e.g.
6g adjacent -: 220 Feynman diag. vs. 6 MHV diag.
6g alternating: large # of Feynman diag. vs. 9 MHV diag.



MHYV rules have Lagrangian origin Mansfield
earlier attempts by Gorsky, Rosly

Start with Yang-Mills light-cone Lagrangian:
(Ag = Ap — A3, A5, A, = A1 +iAp, Az)

1
L = Tr [A,045] — Tr [[Az, OgAz] — [Az, 3(‘)AE]]

I5
Oz 0z
— TIr —AZ [Az, 85A5] — Tr [Ag, 8GAZ] —Ag
9% 9%
= Construct unitary/canonical transformation such that
a_
Tr [A,O0Az] — Tr [a—zAz [A., 8C—)A5]] — Tr [B,OB3]
0

0B,

M, = 05Az; = /d3x JgB: (no change in path integral measure)

= Vertices: MHV amplitudes with same p as the off-shell fields
4-dimensional definition introduces 7!



e Still... for given N and n_, number of MHV diagrams grows as
— -3 +n_—3 2n_—4
N = () (M) e

We can do better with on-shell recursion relations

P2
D, = A
Pn = Pt o
P2
D1 = A
P1=PL = oip MY
/]\
no effect on
Convoluted history: momentum conservation

= examples based on constraints following from 1-loop amplitudes
Bern, DelDuca, Dixon, Kosower; RR, Spradlin, Volovich

= derived from 1—|OOD IR Britto, Cachazo, Feng
= proved using basic field theory—+cpx Britto, Cachazo, Feng, Witten
=  proved using largest time equation Vaman, Yao



e Massless fields:
Key observation: momenta may be complex

pi — pi(2) = p; + 21 pi +p; = pi(z) + pi(2)

such that n = AN\,
pj — pj(z) = pj — 21 pi(2)? =0 = p;(2)? v
A A
= Amplitude and propagators: 1.n = AL.n(2)
B itk P ik(2)
— A(0)— original amplitude . . |z
dz ° ’
A = iy} (Y




Properties:

= A(z) is a rational function of z

= A(z) has only simple poles in z

— at z = z;,,, for which

P(2)?

l...J...I+m

Py igm(zm)? =0

» limy_ o0 A(z) = 0 nontrivial step: use MHV vertices and count z

= rotate contour: A(z) = ch—m

Im & = Rlm

® c;,, are products of amplitudes evaluated at z = z;,,

. p2

L —h [...7..m
A= > Al(ym) AR"(z1m) Zlm = = .
[,m;h " Plzjm " . " 2[J|Pl...j...mlz>



Example: split-helicity (— — — + 4+4) amplitude

e determine z from on-shell condition of internal leg

Just shake...

(232 1 (1p23)3 _ P3s
(3p23) (P232) P33 (P234)(45)(56)(61) (4] Pr3|3]
O

[p256]° 1 [45)° _ Pis
[7236][61][12][23][3p23] P25 [5pas) [pas4] (4]pas|3]

Aj-o-3-a+5+e+ = (

5|p34|2]

1 ( (1|p23]4]3 + (3|pas|6]> )
[23][34](56)(61)p25,  [61][12](34)(45)p3,c



Main feature: generality

= WoOrks the same way with fields of different spins
— Spinors
— scalars

— massive
= simplicity related to appearence of spurious singularities

= jssues with numerical implementation due to shifts, but simple
enough for many-point analytic calculations

= &9 Aympym Aymmn-) (e A-)s

Homework:

Find A(+_)n for generall n

Completely determines the tree-level S-matrix!



e Massive fields:

— No difference of principle
1 | 1
2 T 5D 2
+ Mf o, Pl...j...l—l—m(z) + Mf

2
Pl...j...l—l—m

ARM(2)

1
A A(z) = ) A}Ll(z) 5 5
l,m,h Py '...l—I—m(Z) + Mf o,

More complicated building blocks and residues but same principle

Badger, Glover, Khoze, Svrcek

p; — pi(2) = p; + 21

= Shifts:
p; — pj(z) =pj —2n

2
— n-pi=n-pj=n"=0
= simple solution if m; =0 or m; = O; otherwise complicated

2 2
Pl...j...l—l—m + Ml...m
2m - Pl...j...l—l—m

d
A= f—ZA(z) use instead poles at z;_; j4m = —
<



Example: ggo¢ with massive scalars my 7 0 (say Higgs-glue e.t.)
Badger, Dixon, Glover, Khoze
. : _ 1
Minimal coupling — off-shell vertex: V3(l+,k“,l2) = \ﬁ(lg —17)

k|l _
e As(f 1) = As(y, k) = I e g =

(q1k)
P /?
A4(lil_71+72+7l5) — O: — :
P

I 1
= A (7,1, P
4( )PQ_I_

SA4(P1,27,15)
e

(2[11]1])(1}i2|2] _ Tr [Euh1Kola]
(12)2((l1 + k)2 +m3)  (12)2((I1 + k1)? +

A2+ k)2 +m3)




Summary
e Spinor helicity; relation to twistors and curves

e MHYV rules
- efficient; expose factorization properties
- vield relatively compact expressions

- Lagrangian

e On-shell recursion relations
- efficient for analytic calculation; compact expressions
- simplicity comes with potential spurious poles

- generality

Next step: loops from trees



