Bulk viscosity in the gauge-string duality

Fábio Diales da Rocha, Princeton University

Based on work with S. S. Gubser, A. Nellore and S. S. Pufu
[Gubser et al. 2008ab]

Zakopane, June 2008

Bulk viscosity spike

Lattice studies indicate that the bulk viscosity to entropy density ration ζ / s of the quark-gluon plasma increases sharply in the vicinity of the critical temperature [Kharzeev and Tuchin 2007; Karsch et al. 2007; Meyen 2008].

Bulk viscosity spike from gravity?

Will gauge theories with gravity duals have similar spikes?

Bulk viscosity spike from gravity?

Will gauge theories with gravity duals have similar spikes?
$\mathcal{N}=4$ SYM is a conformal field theory \Rightarrow bulk viscosity vanishes for this theory.

Bulk viscosity spike from gravity?

Will gauge theories with gravity duals have similar spikes?
$\mathcal{N}=4$ SYM is a conformal field theory \Rightarrow bulk viscosity vanishes for this theory.

We must consider a deformation of $\mathcal{N}=4$ SYM.

Finite temperature duality

Replace $A d S$ with $A d S$-Schwarzschild, an asymptotically $A d S$ black hole solution of Einstein's equations.

- This geometry has metric

$$
\begin{gathered}
d s^{2}=\frac{L^{2}}{z^{2}}\left(-h(z) d t^{2}+d \vec{x}^{2}+\frac{d z^{2}}{h(z)}\right) \\
h(z)=1-\left(\frac{z}{z_{H}}\right)^{4} .
\end{gathered}
$$

With event horizon at $z=z_{H}$.

- The black hole has Hawking temperature $T=1 /\left(\pi z_{H}\right)$

Scalar sourced backgrounds

We consider the backgrounds with non-zero scalar fields in the bulk. The relevant action is

$$
S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{-g}\left(R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right) .
$$

We will look at geometries of the form

$$
d s^{2}=e^{2 A(r)}\left(-h(r) d t^{2}+d \vec{x}^{2}\right)+\frac{e^{2 B(r)}}{h(r)} d r^{2} \quad \phi=\phi(r) .
$$

Scalar sourced backgrounds

We consider the backgrounds with non-zero scalar fields in the bulk. The relevant action is

$$
S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{-g}\left(R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right) .
$$

We will look at geometries of the form

$$
d s^{2}=e^{2 A(r)}\left(-h(r) d t^{2}+d \vec{x}^{2}\right)+\frac{e^{2 B(r)}}{h(r)} d r^{2} \quad \phi=\phi(r) .
$$

The dual field theories are not conformal \Rightarrow they can have non-zero ζ !

Scalar sourced backgrounds II

Go to gauge $B=0$. Asymptotic $A d S$ means

$$
A(r) \approx r / L \quad h \rightarrow 1 \quad \text { as } r \rightarrow+\infty .
$$

Scalar sourced backgrounds II

Go to gauge $B=0$. Asymptotic $A d S$ means

$$
A(r) \approx r / L \quad h \rightarrow 1 \quad \text { as } r \rightarrow+\infty .
$$

For small ϕ

$$
V(\phi) \approx-\frac{12}{L^{2}}+\frac{1}{2} m^{2} \phi^{2} .
$$

And near the boundary

$$
\phi(r) \approx C_{1} e^{(\Delta-4) A(r)}+C_{2} e^{-\Delta A(r)},
$$

where $\Delta(\Delta-4)=m^{2} L^{2}$.

Scalar sourced backgrounds II

Go to gauge $B=0$. Asymptotic $A d S$ means

$$
A(r) \approx r / L \quad h \rightarrow 1 \quad \text { as } r \rightarrow+\infty .
$$

For small ϕ

$$
V(\phi) \approx-\frac{12}{L^{2}}+\frac{1}{2} m^{2} \phi^{2} .
$$

And near the boundary

$$
\phi(r) \approx C_{1} e^{(\Delta-4) A(r)}+C_{2} e^{-\Delta A(r)},
$$

where $\Delta(\Delta-4)=m^{2} L^{2}$.
C_{1} controls deformation of $\mathcal{N}=4$ given by

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SYM}}+\Lambda^{4-\Delta} \mathcal{O}_{\phi}
$$

Kubo formulas for viscosities

Bulk and shear viscosities can be computed from stress-energy tensor correlators through the Kubo formulas

$$
\begin{aligned}
\eta & =-\lim _{\omega \rightarrow 0} \frac{1}{\omega} \operatorname{Im} G_{12,12}^{R}(\omega), \\
\zeta & =-\lim _{\omega \rightarrow 0} \frac{1}{9 \omega} \operatorname{Im} G_{i i, j j}^{R}(\omega) .
\end{aligned}
$$

Where

$$
G_{i j, k l}^{R}(\omega) \equiv-i \int d t d^{3} x e^{i \omega t} \theta(t)\left\langle\left[T_{i j}(t, \vec{x}), T_{k l}(0,0)\right]\right\rangle
$$

Computing correlators I

$T_{i j}$ couples to metric perturbations $h_{i j}$ - to compute its correlators we use the fact that in the strong coupling limit

$$
Z=e^{i S^{\text {onn-shell }}},
$$

and take functional derivatives w.r.t. $h_{i j}$.

Computing correlators I

$T_{i j}$ couples to metric perturbations $h_{i j}$ - to compute its correlators we use the fact that in the strong coupling limit

$$
Z=e^{i S^{\text {on }- \text { shell }}}
$$

and take functional derivatives w.r.t. $h_{i j}$.

We are interested in $\vec{k}=0$ correlators, so it is enough to consider

$$
g_{\mu \nu}=g_{\mu \nu}^{0}+h_{\mu \nu}(r, t) \quad h_{\mu \nu}(r, t)=h_{\mu \nu}(r) e^{i \omega t} .
$$

Computing correlators II

Action can be written

$$
S=\int_{r_{\mathrm{hor}}}^{r_{\mathrm{bdy}}} d r \partial_{r} J\left[h_{\mu \nu}\right](r)+\text { terms that vanish on-shell }
$$

Computing correlators II

Action can be written

$$
S=\int_{r_{\mathrm{hor}}}^{r_{\mathrm{bdy}}} d r \partial_{r} J\left[h_{\mu \nu}\right](r)+\text { terms that vanish on-shell }
$$

Integrating by parts,

$$
S^{\text {on-shell }}=J\left[h_{\mu \nu}\right]\left(r=r_{\text {bdy }}\right)-J\left[h_{\mu \nu}\right]\left(r=r_{\text {hor }}\right)
$$

Computing correlators II

Action can be written

$$
S=\int_{r_{\mathrm{hor}}}^{r_{\mathrm{bdy}}} d r \partial_{r} J\left[h_{\mu \nu}\right](r)+\text { terms that vanish on-shell }
$$

Integrating by parts,

$$
S^{\text {on-shell }}=J\left[h_{\mu \nu}\right]\left(r=r_{\text {bdy }}\right)-J\left[h_{\mu \nu}\right]\left(r=r_{\text {hor }}\right)
$$

To compute retarded correlator we keep only boundary term, schematically

$$
G^{R}=J\left[h_{i j}\right]\left(r=r_{\text {bdy }}\right) .
$$

This is the prescription of [Son and Starinets 2002].

Computing correlators III

Near the horizon, solutions behave as

$$
h_{\mu \nu} \approx\left(r_{H}-r\right)^{ \pm i \omega / 4 \pi T}
$$

Computing correlators III

Near the horizon, solutions behave as

$$
h_{\mu \nu} \approx\left(r_{H}-r\right)^{ \pm i \omega / 4 \pi T}
$$

We must take in-falling solutions (-).
Outgoing solutions (+) would give advanced correlator.

Computing correlators III

Near the horizon, solutions behave as

$$
h_{\mu \nu} \approx\left(r_{H}-r\right)^{ \pm i \omega / 4 \pi T}
$$

We must take in-falling solutions (-).
Outgoing solutions (+) would give advanced correlator.

Action has $U(1)$ symmetry with conserved current $\mathcal{F}=\operatorname{Im} \mathcal{J}$. Imaginary part of correlator is given by

$$
\operatorname{Im} G_{R}=\mathcal{F}
$$

Shear viscosity

- Relevant metric perturbations are $h_{12}=e^{2 A} H_{12}$.

$$
H_{12}^{\prime \prime}+\left(4 A^{\prime}-B^{\prime}+\frac{h^{\prime}}{h}\right) H_{12}^{\prime}+\frac{e^{-2 A+2 B}}{h^{2}} \omega^{2} H_{12}=0
$$

Shear viscosity

- Relevant metric perturbations are $h_{12}=e^{2 A} H_{12}$.

$$
H_{12}^{\prime \prime}+\left(4 A^{\prime}-B^{\prime}+\frac{h^{\prime}}{h}\right) H_{12}^{\prime}+\frac{e^{-2 A+2 B}}{h^{2}} \omega^{2} H_{12}=0
$$

- We obtain expected result $\eta / s=1 / 4 \pi$.

Bulk Viscosity

Bulk Viscosity

- Relevant metric perturbations are $h_{i i}=e^{2 A} H_{11}$.

Bulk Viscosity

- Relevant metric perturbations are $h_{i i}=e^{2 A} H_{11}$.
- They couple to h_{00}, h_{55} and $\delta \phi$.

Bulk Viscosity

- Relevant metric perturbations are $h_{i i}=e^{2 A} H_{11}$.
- They couple to h_{00}, h_{55} and $\delta \phi$.
- Can decouple them in gauge $r=\phi$.

$$
\begin{aligned}
H_{11}^{\prime \prime}= & \left(-\frac{1}{3 A^{\prime}}-4 A^{\prime}+3 B^{\prime}-\frac{h^{\prime}}{h}\right) H_{11}^{\prime}+ \\
& +\left(-\frac{e^{2 A-2 B} \omega^{2}}{h^{2}}+\frac{h^{\prime}}{6 h A^{\prime}}-\frac{h^{\prime} B^{\prime}}{h}\right) H_{11}
\end{aligned}
$$

Choosing the scalar potential

As shown in [Gubser and Nellore 2008], if we take

$$
V(\phi)=-\frac{12}{L^{2}} \cosh (\gamma \phi)+\frac{b}{L^{2}} \phi^{2} \quad \gamma \approx 0.606 \quad b \approx 2.057,
$$

we can mimic the equation of state of QCD. (Type I potential)

Choosing the scalar potential

As shown in [Gubser and Nellore 2008], if we take

$$
V(\phi)=-\frac{12}{L^{2}} \cosh (\gamma \phi)+\frac{b}{L^{2}} \phi^{2} \quad \gamma \approx 0.606 \quad b \approx 2.057,
$$

we can mimic the equation of state of QCD. (Type I potential)

We also consider the type II potential

$$
V(\phi)=-\frac{12}{L^{2}}\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh \left(\sqrt{\frac{2}{3}} \phi\right)+\frac{b}{L^{2}} \phi^{2} \quad b \approx 6.86 .
$$

Bulk viscosity results

Viscosity bound

In [Buchel 2008], it was proposed that $\zeta / \eta \geq 2\left(1 / 3-c_{s}^{2}\right)$. Does this hold?

Viscosity bound

In [Buchel 2008], it was proposed that $\zeta / \eta \geq 2\left(1 / 3-c_{s}^{2}\right)$.
Does this hold?

Viscosity bound

In [Buchel 2008], it was proposed that $\zeta / \eta \geq 2\left(1 / 3-c_{s}^{2}\right)$.
Does this hold?

References

Alex Buchel. Bulk viscosity of gauge theory plasma at strong coupling. Phys. Lett., B663: 286-289, 2008.

Steven S. Gubser and Abhinav Nellore. Mimicking the QCD equation of state with a dual black hole. 2008.

Steven S. Gubser, Abhinav Nellore, Silviu S. Pufu, and Fabio D. Rocha. Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics. 2008a.

Steven S. Gubser, Silviu S. Pufu, and Fabio D. Rocha. Bulk viscosity of strongly coupled plasmas with holographic duals. 2008b.

Frithjof Karsch, Dmitri Kharzeev, and Kirill Tuchin. Universal properties of bulk viscosity near the qcd phase transition. 2007.

Dmitri Kharzeev and Kirill Tuchin. Bulk viscosity of QCD matter near the critical temperature. 2007.

Harvey B. Meyer. A calculation of the bulk viscosity in SU(3) gluodynamics. Phys. Rev. Lett.

