Bulk viscosity in the gauge-string duality

Fábio Diales da Rocha, Princeton University

Based on work with S. S. Gubser, A. Nellore and S. S. Pufu

[Gubser et al. 2008ab]

Zakopane, June 2008

Bulk viscosity in the gauge-string duality - p. 1/16

Bulk viscosity spike

Lattice studies indicate that the bulk viscosity to entropy density ration ζ/s of the quark-gluon plasma increases sharply in the vicinity of the critical temperature [Kharzeev and Tuchin 2007; Karsch et al. 2007; Meyer 2008].

Bulk viscosity spike from gravity?

Will gauge theories with gravity duals have similar spikes?

Bulk viscosity spike from gravity?

Will gauge theories with gravity duals have similar spikes?

 $\mathcal{N}=4$ SYM is a conformal field theory \Rightarrow bulk viscosity vanishes for this theory.

Bulk viscosity spike from gravity?

Will gauge theories with gravity duals have similar spikes?

 $\mathcal{N}=4$ SYM is a conformal field theory \Rightarrow bulk viscosity vanishes for this theory.

We must consider a deformation of $\mathcal{N} = 4$ SYM.

Finite temperature duality

Replace AdS with AdS-Schwarzschild, an asymptotically AdS black hole solution of Einstein's equations.

This geometry has metric

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-h(z)dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h(z)} \right)$$
$$h(z) = 1 - \left(\frac{z}{z_{H}}\right)^{4}.$$

With event horizon at $z = z_H$.

• The black hole has Hawking temperature $T = 1/(\pi z_H)$

Scalar sourced backgrounds

We consider the backgrounds with non-zero scalar fields in the bulk. The relevant action is

$$S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 - V(\phi) \right)$$

We will look at geometries of the form

$$ds^{2} = e^{2A(r)} \left(-h(r)dt^{2} + d\vec{x}^{2} \right) + \frac{e^{2B(r)}}{h(r)}dr^{2} \quad \phi = \phi(r) \,.$$

Scalar sourced backgrounds

We consider the backgrounds with non-zero scalar fields in the bulk. The relevant action is

$$S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g} \left(R - \frac{1}{2} \left(\partial \phi \right)^2 - V(\phi) \right)$$

We will look at geometries of the form

$$ds^{2} = e^{2A(r)} \left(-h(r)dt^{2} + d\vec{x}^{2} \right) + \frac{e^{2B(r)}}{h(r)}dr^{2} \quad \phi = \phi(r) \,.$$

The dual field theories are not conformal \Rightarrow they can have non-zero ζ !

Scalar sourced backgrounds II

Go to gauge B = 0. Asymptotic AdS means

 $A(r) \approx r/L$ $h \to 1$ as $r \to +\infty$.

Scalar sourced backgrounds II

Go to gauge B = 0. Asymptotic AdS means

$$A(r) \approx r/L$$
 $h \to 1$ as $r \to +\infty$.

For small ϕ

$$V(\phi) \approx -\frac{12}{L^2} + \frac{1}{2}m^2\phi^2$$
.

And near the boundary

$$\phi(r) \approx C_1 e^{(\Delta - 4)A(r)} + C_2 e^{-\Delta A(r)} ,$$

where $\Delta(\Delta - 4) = m^2 L^2$.

Scalar sourced backgrounds II

Go to gauge B = 0. Asymptotic AdS means

$$A(r) \approx r/L$$
 $h \to 1$ as $r \to +\infty$.

For small ϕ

$$V(\phi) \approx -\frac{12}{L^2} + \frac{1}{2}m^2\phi^2$$
.

And near the boundary

$$\phi(r) \approx C_1 e^{(\Delta - 4)A(r)} + C_2 e^{-\Delta A(r)} ,$$

where $\Delta(\Delta - 4) = m^2 L^2$. C_1 controls deformation of $\mathcal{N} = 4$ given by

$$\mathcal{L} = \mathcal{L}_{\rm SYM} + \Lambda^{4-\Delta} \mathcal{O}_{\phi}$$

Kubo formulas for viscosities

Bulk and shear viscosities can be computed from stress-energy tensor correlators through the Kubo formulas

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^R_{12,12}(\omega) \,,$$

$$\zeta = -\lim_{\omega \to 0} \frac{1}{9\omega} \operatorname{Im} G^R_{ii,jj}(\omega) \,.$$

Where

$$G_{ij,kl}^R(\omega) \equiv -i \int dt \, d^3x \, e^{i\omega t} \theta(t) \langle [T_{ij}(t,\vec{x}), T_{kl}(0,0)] \rangle \,.$$

Computing correlators I

 T_{ij} couples to metric perturbations h_{ij} - to compute its correlators we use the fact that in the strong coupling limit

$$Z = e^{iS^{\text{on-shell}}},$$

and take functional derivatives w.r.t. h_{ij} .

Computing correlators I

 T_{ij} couples to metric perturbations h_{ij} - to compute its correlators we use the fact that in the strong coupling limit

$$Z = e^{iS^{\text{on-shell}}} \,,$$

and take functional derivatives w.r.t. h_{ij} .

We are interested in $\vec{k} = 0$ correlators, so it is enough to consider

$$g_{\mu\nu} = g^0_{\mu\nu} + h_{\mu\nu}(r,t) \qquad h_{\mu\nu}(r,t) = h_{\mu\nu}(r)e^{i\omega t}$$

Computing correlators II

Action can be written

$$S = \int_{r_{\rm hor}}^{r_{\rm bdy}} dr \partial_r J \left[h_{\mu\nu} \right] (r) + \text{terms that vanish on-shell}$$

Computing correlators II

Action can be written

 $S = \int_{r_{\rm hor}}^{r_{\rm bdy}} dr \partial_r J \left[h_{\mu\nu} \right] (r) + \text{terms that vanish on-shell}$

Integrating by parts,

$$S^{\text{on-shell}} = J[h_{\mu\nu}](r = r_{\text{bdy}}) - J[h_{\mu\nu}](r = r_{\text{hor}})$$

Computing correlators II

Action can be written

 $S = \int_{r_{\rm hor}}^{r_{\rm bdy}} dr \partial_r J \left[h_{\mu\nu} \right] (r) + \text{terms that vanish on-shell}$

Integrating by parts,

$$S^{\text{on-shell}} = J[h_{\mu\nu}](r = r_{\text{bdy}}) - J[h_{\mu\nu}](r = r_{\text{hor}})$$

To compute retarded correlator we keep only boundary term, schematically

$$G^R = J[h_{ij}](r = r_{bdy}).$$

This is the prescription of [Son and Starinets 2002].

Computing correlators III

Near the horizon, solutions behave as

$$h_{\mu\nu} \approx (r_H - r)^{\pm i\omega/4\pi T}$$

Computing correlators III

Near the horizon, solutions behave as

$$h_{\mu\nu} \approx (r_H - r)^{\pm i\omega/4\pi T}$$

We must take in-falling solutions (-). Outgoing solutions (+) would give advanced correlator.

Computing correlators III

Near the horizon, solutions behave as

$$h_{\mu\nu} \approx (r_H - r)^{\pm i\omega/4\pi T}$$

We must take in-falling solutions (-). Outgoing solutions (+) would give advanced correlator.

Action has U(1) symmetry with conserved current $\mathcal{F} = \operatorname{Im} \mathcal{J}$. Imaginary part of correlator is given by

$$\operatorname{Im} G_R = \mathcal{F}$$

Shear viscosity

Selevant metric perturbations are $h_{12} = e^{2A}H_{12}$.

$$H_{12}'' + \left(4A' - B' + \frac{h'}{h}\right)H_{12}' + \frac{e^{-2A + 2B}}{h^2}\omega^2 H_{12} = 0$$

Shear viscosity

Selevant metric perturbations are $h_{12} = e^{2A}H_{12}$.

$$H_{12}'' + \left(4A' - B' + \frac{h'}{h}\right)H_{12}' + \frac{e^{-2A + 2B}}{h^2}\omega^2 H_{12} = 0$$

• We obtain expected result $\eta/s = 1/4\pi$.

Relevant metric perturbations are $h_{ii} = e^{2A}H_{11}$.

- Selevant metric perturbations are $h_{ii} = e^{2A}H_{11}$.
- They couple to h_{00} , h_{55} and $\delta\phi$.

- Solution Relevant metric perturbations are $h_{ii} = e^{2A}H_{11}$.
- They couple to h_{00} , h_{55} and $\delta\phi$.
- **Solution** Can decouple them in gauge $r = \phi$.

$$H_{11}'' = \left(-\frac{1}{3A'} - 4A' + 3B' - \frac{h'}{h}\right)H_{11}' + \left(-\frac{e^{2A - 2B}\omega^2}{h^2} + \frac{h'}{6hA'} - \frac{h'B'}{h}\right)H_{11}$$

Choosing the scalar potential

As shown in [Gubser and Nellore 2008], if we take

$$V(\phi) = -\frac{12}{L^2}\cosh(\gamma\phi) + \frac{b}{L^2}\phi^2 \qquad \gamma \approx 0.606 \qquad b \approx 2.057 \,,$$

we can mimic the equation of state of QCD. (Type I potential)

Choosing the scalar potential

As shown in [Gubser and Nellore 2008], if we take

$$V(\phi) = -\frac{12}{L^2}\cosh(\gamma\phi) + \frac{b}{L^2}\phi^2 \qquad \gamma \approx 0.606 \qquad b \approx 2.057 \,,$$

we can mimic the equation of state of QCD. (Type I potential)

We also consider the type II potential

$$V(\phi) = -\frac{12}{L^2} \left(1 + \phi^2\right)^{\frac{1}{4}} \cosh\left(\sqrt{\frac{2}{3}}\phi\right) + \frac{b}{L^2}\phi^2 \qquad b \approx 6.86 \,.$$

Bulk viscosity results

Viscosity bound

In [Buchel 2008], it was proposed that $\zeta/\eta \ge 2(1/3 - c_s^2)$. Does this hold?

Viscosity bound

In [Buchel 2008], it was proposed that $\zeta/\eta \ge 2(1/3 - c_s^2)$. Does this hold?

Viscosity bound

In [Buchel 2008], it was proposed that $\zeta/\eta \ge 2(1/3 - c_s^2)$. Does this hold?

References

- Alex Buchel. Bulk viscosity of gauge theory plasma at strong coupling. *Phys. Lett.*, B663: 286–289, 2008.
- Steven S. Gubser and Abhinav Nellore. Mimicking the QCD equation of state with a dual black hole. 2008.
- Steven S. Gubser, Abhinav Nellore, Silviu S. Pufu, and Fabio D. Rocha. Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics. 2008a.
- Steven S. Gubser, Silviu S. Pufu, and Fabio D. Rocha. Bulk viscosity of strongly coupled plasmas with holographic duals. 2008b.
- Frithjof Karsch, Dmitri Kharzeev, and Kirill Tuchin. Universal properties of bulk viscosity near the qcd phase transition. 2007.
- Dmitri Kharzeev and Kirill Tuchin. Bulk viscosity of QCD matter near the critical temperature. 2007.

Harvey B. Meyer. A calculation of the bulk viscosity in SU(3) gluodynamics. *Phys. Rev. Lett.*, Bulk viscosity in the gauge-string duality – p. 16/16