
Topics in Cusped/Lightcone Wilson Loops

by

Yuri Makeenko (ITEP, Moscow)

Contents:

• Lecture 1. Pedagogical Introduction

Wilson loops with cusps, their renormalization, relation to twist-two operators, the

role in string/gauge correspondence, minimal surface in AdS5⊗S5 for cusped loops

• Lecture 2. Perturbation Theory: two loops and beyond

exact sum of ladders, explicit two loops and the anomaly terms, results in double

logarithmic approximation, problems with planar QFT

• Lecture 3. Cusped Loop Equation

modern formulation of LE, SUSY extension, UV regularization, specifics of cusped

loops, anomalous dimension from LE



Wilson Loops
———————————–

Non-Abelian phase factor

U(C) = P eig
∫

C Aµ(x)dx
µ def

=
∏

x∈C
(1 + igAµ(x)dx

µ)

parallel transporter in non-Abelian Yang–Mills field

trU(C) is gauge-invariant for closed C

Wilson loop v.e.v. (average in Euclidean formulation)

W (C) = Z−1
∫

DAµDψ̄Dψ · · · eiS 1

N
trU(C)

Importance of the Wilson loops (large N):

• observables are expressed via sum-over-path of W (C)

• dynamics is entirely reformulated via W (C)

W (C) obeys the loop equation (closed equation on loop space)

Typical loops essential in the sum-over-path are cusped



Renormalization of smooth Wilson loops
———————————–

For smooth loops Gervais, Neveu (1980)

Polyakov (1980)

Vergeles, Dotsenko (1980)

W (g;C) = e−const. L(C)/a WR(gR;C)

where WR is finite after the charge renormalization g =⇒ gR
and a is a certain (gauge-invariant) UV cutoff

The exponential comes from the renormalization of the mass of a

heavy test particle propagating along the loop.

It does not emerge in dimensional regularization



Renormalization of cusped Wilson loops
———————————–

An additional logarithmic divergency appear for cusped loops
Polyakov (1980)

vu

θ
Segment of a closed loop near the cusp.

θ is the cusp angle formed by the vectors

u and v:

cosh θ = u·v√
u2
√
v2

The cusped Wilson loop is multiplicatively renormalizable
Brandt, Neri, Sato (1981)

W (g; Γ) = Z(g, ; θ)WR(gR; Γ)

where (the divergent factor of) Z(g; θ) depends on the cusp angle θ

This is true if Γ has no light-cone segments



Cusp anomalous dimension
———————————–

The definition

γcusp (g; θ) = −a d

da
lnZ(g; θ)

The limit of large θ

Korchemsky, Radyushkin (1987)

γcusp (g; θ)
θ→∞→ θ

2
f(g)

The same function f appear in the anomalous dimensions of twist

two conformal operators with large spin



Relation to twist-two operators
———————————–
Anomalous dimensions of twist-two operators

O
(F )
J =

1

N
trFµ· (∇·)J−2 Fµ·

O
(Ψ)
J = Ψ̄γ· (∇·)J−1 Ψ

with Lorentz spin J (measurable in deep inelastic)

Also

O
(Φ)
J =

1

N
trΦ (∇·)J Φ

in N = 4 SYM.

Notation: ∇· ≡ ∇µξµ ξ2 = 0
— symmetrization and subtraction of traces

(∇·)J is in fact a (Gegenbauer) polynomial in
←
∇· and

→
∇·

— conformal operators
Brodsky, Frishman, Lepage, Sachrajda (1980)

Y. M. (1981)
Ohrndorf (1982)



Relation to twist-two operators (cont.1)
———————————–

The relation can be understood from open Wilson loops

O(Cy0) = ψ̄(y)P eig
∫ y
0 dξµAµψ(0)

x=0y

Cx0

with matter fields attached at the ends

Standard triangular diagrams comes from
〈

ψ(∞, ~y)O(Cy0)ψ̄(∞, ~0)
〉

∝W (Π)

as mass of matter fields →∞

Π-shaped

Wilson loop

y

u
−u

v
0



Relation to twist-two operators (cont.2)
———————————–

Remember that the propagator in an external field Aµ

〈

ψi(x)ψ̄j(y)
〉

ψ

large N
=

∑

Cyx

[

e
ig
∫

Cyx
dξµAµ

]

ij

mass→∞∝


 e
ig
∫

C
(min)
yx

dξµAµ




ij

and thus straight vertical lines appear in Π

The central segment of Π is near the light-cone

(to kill twists higher than 2).

Π has two cusps with θ →∞.

This is how the light-cone Wilson loop appear



Light-cone Wilson Loops
———————————–

For Π-shaped loop (1 light cone)
Korchemsky, Marchesini (1993)

W (Π) = e−
1
2f(λ) ln2 T

a+const.(λ) ln T
a+finite(λ)

with the same f(λ) as before.

vµ is along the light cone (v2 = 0) and yµ = vµT .

For Γ-shaped loop (2 light cones)
Alday, Maldacena (2007)

W (Γ) = e−
1
2f(λ) ln T

a ln S
a+g(λ)(ln T

a+ln S
a)+finite1(λ)

both vµ and uµ are along the light cones (v2 = 0, u2 = 0) and

yµ = vµT , xµ = uµS.

Most probably it gives the same f(λ) but is not proved



SYM Wilson Loops
———————————–

Extension to N = 4 SYM Maldacena (1998)

WSYM(C) =

〈

1

N
tr P eig

∮

C dσ
(

ξ̇µAµ+|ξ̇|niΦi
)

〉

with unit vector ni (n2 = 1) and 6 scalars Φi (i = 1, · · · ,6)
No relative i in Minkowski space

Adjoint Wilson loop

trAU = | trU |2 − 1

Due to factorization at large N
〈

1

N2
trAU(C)

〉

=

〈

1

N
trU(C)

〉2

adjoint fundamental

Same results as in QCD hold and some more

BPS for a straight line inside the light-cone

WSYM(|) = 1



Motivation (since 2002)
———————————–
AdS/CFT prediction for the anomalous dimension of twist-two

operators with large (Lorentz) spin Gubser, Klebanov, Polyakov (2002)

∆− J − 2 = f(λ) lnJ large J (1)

f(λ) =

√
λ

π
large λ = g2YMN (2)

from spectrum of closed folded string which is rotating in AdS5

Same result holds for the cusp anomalous dimension at large θ from

minimal surface in supergravity approximation to AdS/CFT

Kruczenski (2002)

Y.M. (2002)

(2) has been remarkable reproduced recently from the spin chains

(and much more results) Staudacher et al. (2006)

Same f(λ) appears in MHV gluon amplitudes

Bern, Dixon, Smirnov (2005)

and is reproduced for large λ from AdS/CFT
Alday, Maldacena (2007)



AdS/CFT for Wilson Loops
———————————– Maldacena (1998)

Rey, Yee (1998)

The correspondence

WSYM(C) =
∑

S:∂S=C

e
iA
IIB on AdS5⊗S5

)(
S

W =  Σ

C = (xµ(σ),
∫ σ

dσ |ẋ|ni)

— loop in the boundary of AdS5 ⊗ S5

e.g. ni = (1,0,0,0,0,0) ⇒ 4D contour xµ(σ)

Circular loop:

AdS Berenstein, Corrado, Fischler, Maldacena (1998)
Drukker, Gross, Ooguri (1999)

CFT Erickson, Semenoff, Zarembo (2000)
Drukker, Gross (2001)

(perfect agreement)



AdS/CFT for Wilson Loops (cont.)
———————————–

Rectangular loop (or antiparallel lines):

AdS Maldacena (1998)
Rey, Yee (1998)

(minimal surface in AdS5 ⊗ S5)

CFT Erickson, Semenoff, Szabo, Zarembo (1999)
Erickson, Semenoff, Zarembo (2000)

(summation of ladder diagrams)

AdS:

V (R) = − 4π2
√

2λ

Γ4(1/4)R

SYM:

V (R) = −
√
λ

πR

The discrepancy is attributed to interaction diagrams

But the SYM coefficient is what is needed for the cusp anomalous

dimension



Perturbation Theory
———————————–

Order λ (one loop)

W (Γ) = 1− λ
2

+∞
∫

−∞
dσ1

+∞
∫

−∞
dσ2 [ẋµ(σ1)ẋµ(σ2)− |ẋ(σ1)||ẋ(σ2)|]

×D (x(σ1)− x(σ2))
with (scalar) propagator in d-dimensions

D(x) = −Γ(d/2− 1)

4πd/2
[−x2]1−d/2
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(b) (c)(a)

diagrams

of order λ

Diagrams (a) and (c) vanish (gluons are cancelled by scalars)



One-loop perturbation theory
———————————–

Only one diagram is nonvanishing

W (Γ) = 1− λ

4π2
(cosh θ − 1)

∫

ds
∫

dt
1

s2 + 2st cosh θ+ t2

= 1− λ

4π2

cosh θ − 1

sinh θ
θ ln

L

a
large θ→ 1− λ

4π2
θ ln

L

a

which yields =⇒ f(λ) =
λ

2π2

No mass-renormalization term −λ/4πa as is in QCD



One-loop perturbation theory (cont.)
———————————–

Exact formula

W (S, T ; a, b) = 1− λ

4π2
(cosh θ − 1)

∫ S

a
ds
∫ T

b
dt

1

s2 + 2st cosh θ+ t2

= 1− λ

8π2

cosh θ − 1

sinh θ

(

Li2(−
T

S
eθ)− Li2(−

T

S
e−θ)− Li2(−

T

a
eθ)

+Li2(−
T

a
e−θ)− Li2(−

b

S
eθ) + Li2(−

b

S
e−θ) + Li2(−

b

a
eθ)− Li2(−

b

a
e−θ)

)

where Li2 is Euler’s dilogarithm

Li2(z) =
∞
∑

n=1

zn

n2
= −

∫ z

0

dx

x
ln (1− x)

which obeys the relation

Li2
(

−eΩ
)

+ Li2
(

−e−Ω
)

= −1

2
ln2 Ω− π

2

6

It is used to extract the double logarithms



Double-Logarithmic Approximation
———————————–

Again at one loop

W (S, T ; a, b) = 1− λ

4π2
(cosh θ − 1)

∫ S

a
ds
∫ T

b
dt

1

s2 + 2st cosh θ+ t2

The double-logarithmic region of integration, is

t e−θ . s . t eθ or s e−θ . t . s eθ

so write it in DLA

W (S, T ; a, b) = 1− β
T
∫

b

dt

t

min{S,t eθ}
∫

max{a,t e−θ}

ds

s

=⇒ = 1− 2βθ ln
T

b
very large S , very small a

reproducing the above result

=⇒ = 1− β ln
T

b
ln
S

a
very large θ

reproducing the 2 light-cone result



Sum of Ladder Diagrams
———————————–
Bethe–Salpeter equation

S T

s t

G(S, T)

= 1− λ(cosh θ − 1)

4π2

∫ S

a
ds
∫ T

b
dt

G(s, t)
s2 + 2st cosh θ+ t2

1 light-cone limit: Re θ →∞ with fixed Tl.c. = 2T eθ

G (S, T ; a, b) = 1− β
∫ S

a
ds
∫ T

b
dt
G (s, t; a, b)

αs2 + st
(3)

where

β =
λ

8π2
α =

u2

2u · v = ±1

(remember that v2 = 0 for the light-cone direction)

α = 0 for 2 light cones when additionally u2 = 0



The Ladder Equation
———————————–
Differentiating Eq. (3) we obtain

S
∂

∂S
T
∂

∂T
G (S, T ; a, b) = − β

1 + αS/T
G (S, T ; a, b) (4)

and analogously

a
∂

∂a
b
∂

∂b
G (S, T ; a, b) = − β

1 + αa/b
G (S, T ; a, b)

with the boundary conditions

G(a, T ; a, b) = G(S, b; a, b) = 1 . (5)

New variables

X = ln
S

a
− ln

T

b
Y = ln

S

a
+ ln

T

b
Variables separated

(

∂2

∂X2
− ∂2

∂Y 2

)

G =
β

1 + αab e
X
G αS�T

= β G

— similar to equation of Erickson, Semenoff, Szabo, Zarembo (1999)

but with different boundary conditions



Exact Solution for Ladders (α = 0)
———————————–

The solution for α = 0 is a Bessel function

Gα=0 (S, T ; a, b) = J0



2

√

β ln
S

a
ln
T

b





which obviously obeys the boundary condition.

This can be easily shown by iterative solution of

Gα=0 (S, T ; a, b) = 1− β
∫ S

a

ds

s

∫ T

b

dt

t
Gα=0 (s, t; a, b)

where the integrals over s and t decouple and both are logarithmic

Gα=0 (S, T ; a, b) =
∞
∑

n=0

(−β)n
(

ln S
a

)n

n!

(

ln T
b

)n

n!
= J0



2

√

β ln
S

a
ln
T

b





Asymptotically

Jk(z) ∼ cos z large z

which is not of the type expected for renormalization



Exact Solution for Ladders (α 6= 0)
———————————– Olesen, Semenoff, Y.M. (2006)

The ansatz

G (S, T ; a, b) =

∮

C

dω

2πiω

(

S

a

)

√
βω (T

b

)−√βω−1

F

(

−ω,αa
b

)

F

(

ω, α
S

T

)

,

where C is a contour in the complex ω-plane.

Motivated by the integral representation of the Bessel function J0 at

α = 0 (=⇒F = 1).

The substitution into Eq. (4) reduces it to the hypergeometric equa-

tion (ξ = αS/T)

ξ(1 + ξ)F ′′ξξ + [1 +
√

β(ω+ ω−1)](1 + ξ)F ′ξ + βF = 0

whose solution is given by hypergeometric functions.

The main difficulty (solved) is how to draw the contour C to satisfy

the boundary conditions (5).



Great Simplification at S = T
———————————–

and a = b, α = −1:

Gα=−1(T, T ; a, a) =
1

√

βτ(τ − 2πi)
J1

(

2
√

βτ(τ − 2πi)

)

with

ln
T

a
= τ ln

(

−T
a

)

= τ − iπ

The Bessel function is similar to Erickson, Semenoff, Zarembo (2000) for

a circular Wilson loop that has a random matrix model origin.

This is J1 rather than I1 because of Minkowski space.

Nothing good for the contribution of ladders to the cusp anomalous

dimension. It is not of the form prescribed by renormalizability

W (Γl.c.) ∝ e−
1
4f(β) ln2 T

ε

Miniconclusion: diagrams with interaction have to contribute



Two-Loop Ladder Diagram
———————————– Korchemsky, Radyushkin (1987)

Contribution to cusp anomalous dimension

γ
(lad)
cusp =

λ2

128π4

(cosh θ − 1)2

sinh2 θ

∫ ∞

0

dσ

σ
ln

(

1 + σ eθ

1 + σ e−θ

)

ln

(

σ+ eθ

σ+ e−θ

)

→ λ2

96π4

(

θ3 +
π2

2
θ+O(1)

)

S T

θ3 should be cancelled by interaction !!!

=⇒ not only ladder diagrams are essential

Similar results for the light-cone Wilson loop:

Gladd.
l.c. = 1− β

2
ln2 T

ε
+
β2

12
ln4 T

ε
− β

2π2

12
ln2 T

ε

ln4 T
ε is to be cancelled by diagrams with interaction



Surface Term
———————————– Olesen, Semenoff, Y.M. (2006)

Cancellation between three-gluon vertex and propagators is not com-

plete

(c)

+ +

(b) (d)

=

(a)

Surface term comes from integration by parts

γanom
cusp = − λ2

16π4

cosh θ − 1

cosh θ

(

∫ θ

0
+

∫ π/2

0

) dψ ψ

1− cosh2ψ/ cosh2 θ
ln

cosh2 θ

cosh2ψ

→ − λ2

96π4

(

θ3 + π2θ+O(1)
)

Two-loop cusp anomalous dimension

γcusp =
θ

2

(

λ

2π2
− λ2

96π2

)

+O(θ0)

reproduces the known results



Higher-Order Surface Terms
———————————–
A question arises whether the surface term of order β2 is the only one

(like an anomaly in QFT) or next order surface terms also appear.

It can be answered in DLA.

S T

order β2 surface term dressed by a ladder + the

ladder with 3 rungs do not provide exponentiation

required for

Wl.c. (Γ) = e−
β
2T 2

αS � T

S T

most probably the surface term like this is required

for the exponentiation in DLA

What is the equation which sums this kind of the sur-

face terms and provides the exponentiation in DLA?



Loop equation in QCD
———————————–

Schwinger–Dyson equation for Wilson loops

∇abµ F bµν(x)
w.s.
= ~

δ

δAaν(x)

can be translated as N →∞ to the loop equation

Migdal, Yu.M. (1979)

∂xµ
δ

δσµν(x)
W (C) = λ

∮

C

dyν δ
(d)(x− y)W (Cyx)W (Cxy)

which includes path and area derivatives



Vocabulary for translation into loop space
———————————–

Ordinary space Loop space

Φ[A] Phase factor Φ(C) Loop functional

Fµν(x) Field strength
δ

δσµν(x)
Area derivative

∇xµ Covariant derivative ∂xµ Path derivative

∇ ∧ F = 0 Bianchi identity Stokes functionals

−∇µFµν Schwinger–Dyson Loop
= δ/δAν equations equations



Loop-space Laplace equation
———————————–
One more contour integration over y

∆W (C) = λ
∮

C

dxµ

∮

C

dyµ δ
(d)(x− y)W (Cyx)W (Cxy)

Loop-space Laplacian

∆ ≡
∮

C

dxν ∂
x
µ

δ

δσµν(x)
=

σf
∫

σi

dσ

σ+0
∫

σ−0

dσ′
δ

δxµ(σ′)
δ

δxµ(σ)

is defined for much wider class of functionals than Stokes
This is important for SUSY extension

It is associated with the second-order Schwinger–Dyson equation
∫

ddx∇µF aµν (x)
δ

δAaν(x)

w.s.
= ~

∫

ddxddy δ(d)(x− y) δ

δAaν(y)

δ

δAaν(x)

A non-perturbative gauge-invariant regularization Halpern, Yu.M. (1989)

δabδ(d)(x− y) reg.
=⇒

〈

y

∣

∣

∣

∣

∣

(

ea
2∇2/2

)ab
∣

∣

∣

∣

∣

x

〉



Smearing of loop-space Laplacian
———————————–

Smearing of loop-space Laplacian is needed to invert it, i.e. to produce

the Green function

Smearing procedure (gets second-order operator from the first order)

∆(G) =

1
∫

0

dσ

1
∫

0

dσ′G(σ, σ′)
δ

δxµ(σ′)
δ

δxµ(σ)

=

1
∫

0

dσ

1
∫

0

6 dσ′G(σ, σ′)
δ

δxµ(σ′)
δ

δxµ(σ)
+ ∆

with parametric-invariant

G(σ1, σ2) = e
−| ∫ σ2σ1 dσ

√

ẋ2(σ)|/ε
(ε� L)

ε has the meaning of stiffness



Green function of functional Laplacian
———————————– Yu.M. (1988)

Loop-space Laplacian can be inverted to produce the Green function

(useful for iterative solution)

The functional Laplace equation (with given J[x])

∆(G)W [x] = J[x]

with the proper choice of boundary conditions can be solved to give

W [x] = 1− 1

2

∫ ∞

0
dA

{

〈

J[x+
√
Aξ]

〉(G)

ξ
−
〈

J[
√
Aξ]

〉(G)

ξ

}

The average over the loops ξ(σ) is given by the path integral

〈F [ξ]〉(G)
ξ =

∫

ξ(0)=ξ(1)Dξ e
−SF [ξ]

∫

ξ(0)=ξ(1)Dξ e
−S

with the local action

S =
1

4

∫ 1

0
dσ{ ε

√

ẋ2(σ)
ξ̇
2
(σ) +

√

ẋ2(σ)

ε
ξ2(σ)}

It extends the results of Gateux (early 1900’s) for functional Laplacian



Iterative solution
———————————–

In large-N Yang–Mills the regularized J[x] is as above bilinear in W :

J(G)[x] = λ
∫ 1

0

∫ 1

0
dσ1dσ2(1−G(σ1 − σ2))ẋµ(σ1)ẋµ(σ2)

×
∫ r(a2)=x(σ2)

r(0)=x(σ1)
Dr e−1

2

∫ a2

0 dτ ṙ2(τ)

×W (Cx(σ1)x(σ2)
rx(σ2)x(σ1)

)W (Cx(σ2)x(σ1)
rx(σ1)x(σ2)

)

Iterative solution in λ recovers perturbation theory

All that can be deduced from the general formula

〈

ei
√
A
∫

dσṗ(σ)ξ(σ)
〉(G)

ξ
= e−A

∫

dσ
∫

dσ′ṗ(σ)G(σ−σ′)ṗ(σ′)/2

where pµ(σ) (pµ(0) = pµ(1)) represents a momentum-space loop

The triple gluon vertex appears from the uncertainty ε× 1/ε



Cusped Loop Equation
———————————–

Cusped loop equation for N = 4 SYM Drukker, Gross, Ooguri (1999)

for supersymmetric loops C = {xµ(σ), Yi(σ); ζ(σ)} ( ζ(σ) denotes the

Grassmann odd component)

∆ lnW (C)|C=Γ = λ
∫

dσ1

∫

dσ2 (ẋµ(σ1)ẋµ(σ2)− |ẋµ(σ1)||ẋµ(σ2)|)

× δ(4)(x1 − x2)
W (Γx1x2)W (Γx2x1)

W (Γ)

where

∆ = lim
η→0

∫

ds
∫ s+η

s−η
ds′

(

δ2

δxµ(s′)δxµ(s)
+

δ2

δY i(s′)δYi(s)
+

δ2

δζ(s′)δζ̄(s)

)

is the supersymmetric extension of the loop-space Laplacian and

Ẏ 2 = ẋ2, ζ = 0 after acting by ∆.

The RHS ∼ (La)−1 for smooth loops but ∼ a−2 for cusped loops

(was L/a3 in QCD)



Cusped Loop Equation (cont.1)
———————————–

It can be shown for cusped Wilson loops

∆ lnW (C)|C=Γ = − d

da2
lnW (Γ)

=⇒ 2

a2
γcusp (θ, λ) = λ

∫

dσ1

∫

dσ2 (ẋµ(σ1)ẋµ(σ2)− |ẋµ(σ1)||ẋµ(σ2)|)

× δ(4)
a (x1 − x2)

W (Γx1x2)W (Γx2x1)

W (Γ)

• is observed to order λ by Drukker, Gross, Ooguri (1999)

• is verified to order λ2 for arbitrary θ Olesen, Semenoff, Yu.M. (2006):

The ladder diagram of order λ2 comes iteratively from the ladder

diagram of order λ



Cusped Loop Equation (cont.2)
———————————–

The anomaly diagram is reproduced when gluon is attached to the

regularizing path rx1x2 by the formula Migdal, Yu.M. (1981)

∫

z(0)=x
z(τ)=y

Dz(t) e−
∫ τ
0 dt ż2(t)/2

∫ y

x
dzµδ(d)(z − u)

=
1

2

∫ ∞

0
dτ1

∫ ∞

0
dτ2 δ (τ − τ1 − τ2)

× 1

(2πτ1)
d/2

e−(x−u)2/2τ1
↔
∂

∂uµ

1

(2πτ2)
d/2

e−(y−u)2/2τ2

The loop equation may be useful for next orders in λ



Some comments about large-N QCD
———————————–

|ẋ| can be neglected near the light-cone =⇒ same cusped loop equa-

tion as in QCD

This may indicate that γcusp coincide while the difference is absorbed

by charge renormalization

This may be because SUSY is broken by construction

(the presence of a cusp)



Conclusions
———————————–
• Cusped Wilson loops are convenient for study anomalous dimen-
sions

• Minimal surface of open string reproduces GKP closed string cal-
culation

• Ladder diagrams themselves do not give a reasonable result
(the need of diagrams with interaction)

• Cancellation of interaction diagram to order λ2 is not complete for
N = 4 SYM (a surface term remains)

• Results in DLA indicate that higher-order interaction diagrams are
also essential

• Loop equation has specific features for cusped loops

• There are indications that cusp anomalous dimension could be the
same as for QCD

• Challenging problem to obtain
√
λ for large λ by perturbation theory


