Supergravitons from one loop perturbative $\mathcal{N}=4$ SYM

Maciej Trzetrzelewski, Dep. of Mathematics, Stockholm KTH Dep. of Physics, Kraków UJ,

R. Janik, M.T. Phys. Rev. D77, (2008); arXiv:0712.2714

Plan

1. $\mathcal{N}=4 \mathrm{SYM}$
2. BPS states at zero coupling/supergravitons
3. The dilatation operator at one loop
4. BPS states at one loop
5. Finite N, black holes
6. Summary

$\mathcal{N}=4$ SYM

- the $\mathcal{N}=4$ SYM on-shell fields
- gauge field A_{μ}^{a}, scalar field $\phi_{[i j}^{a}$, fermions $\psi_{\alpha, i}^{a}, \bar{\psi}_{\dot{\alpha}, i}^{a}$
$a=1, \ldots, N^{2}-1 \leftrightarrow s u(N)$,
$i, j=1, \ldots, 4 \leftrightarrow s u(4)=s o(6)$

$\mathcal{N}=4$ SYM

- the $\mathcal{N}=4$ SYM on-shell fields
- gauge field A_{μ}^{a}, scalar field $\phi_{[i j]}^{a}$, fermions $\psi_{\alpha, i}^{a}, \bar{\psi}_{\dot{\alpha}, i}^{a}$
$a=1, \ldots, N^{2}-1 \leftrightarrow s u(N)$,
$i, j=1, \ldots, 4 \leftrightarrow s u(4)=s o(6)$
- superconformal - $P_{\mu}, M_{\mu \nu}, K_{\mu}, D, Q^{\alpha i}, \bar{Q}_{i}^{\dot{\alpha}}, S_{\beta}^{i}, \bar{S}_{\dot{\beta}}^{i}$

$\mathcal{N}=4$ SYM

- the $\mathcal{N}=4$ SYM on-shell fields
- gauge field A_{μ}^{a}, scalar field $\phi_{[i j]}^{a}$, fermions $\psi_{\alpha, i}^{a}, \bar{\psi}_{\dot{\alpha}, i}^{a}$
$a=1, \ldots, N^{2}-1 \leftrightarrow s u(N)$,
$i, j=1, \ldots, 4 \leftrightarrow s u(4)=s o(6)$
- superconformal - $P_{\mu}, M_{\mu \nu}, K_{\mu}, D, Q^{\alpha i}, \bar{Q}_{i}^{\dot{\alpha}}, S_{\beta}^{i}, \bar{S}_{\dot{\beta}}^{i}$
- global su(4) R-symmetry

$\mathcal{N}=4$ SYM

- the $\mathcal{N}=4$ SYM on-shell fields
- gauge field A_{μ}^{a}, scalar field $\phi_{[i j]}^{a}$, fermions $\psi_{\alpha, i}^{a}, \bar{\psi}_{\dot{\alpha}, i}^{a}$
$a=1, \ldots, N^{2}-1 \leftrightarrow s u(N)$,
$i, j=1, \ldots, 4 \leftrightarrow s u(4)=s o(6)$
- superconformal - $P_{\mu}, M_{\mu \nu}, K_{\mu}, D, Q^{\alpha i}, \bar{Q}_{i}^{\dot{\alpha}}, S_{\beta}^{i}, \bar{S}_{\dot{\beta}}^{i}$
- global su(4) R-symmetry
- any state $\rightarrow(\Delta, \underbrace{j_{1}, j_{2}}_{s u(2) \times s u(2)}, \underbrace{R_{1}, R_{2}, R_{3}}_{s u(4)})$

BPS operators

- BPS - operators preserving some susy : $[S / \bar{S}, O]=[Q / \bar{Q}, O]=0$ for some $\alpha, \dot{\alpha}, i$

BPS operators

- BPS - operators preserving some susy : $[S / \bar{S}, O]=[Q / \bar{Q}, O]=0$ for some $\alpha, \dot{\alpha}, i$

$$
\left\{S_{\alpha i}, Q^{\beta j}\right\}=\delta_{i}^{j}\left(J_{1}\right)_{\alpha}^{\beta}+\delta_{\alpha}^{\beta} R_{i}^{j}+\frac{1}{2} \delta_{i}^{j} \delta_{\alpha}^{\beta} D
$$

\rightarrow BPS are protected

Oscillator picture

- operators are traces over $D_{\alpha \dot{\beta}}, F_{\alpha \beta}, \bar{F}_{\dot{\alpha} \dot{\beta}}, \phi_{i j}, \psi_{\alpha, i}, \bar{\psi}_{\alpha, i}$

Oscillator picture

- operators are traces over $D_{\alpha \dot{\beta}}, F_{\alpha \beta}, \bar{F}_{\dot{\alpha} \dot{\beta}}, \phi_{i j}, \psi_{\alpha, i}, \bar{\psi}_{\alpha, i}$
- in general, linearly dependent (EOM, Bianchi identities)

Oscillator picture

- operators are traces over $D_{\alpha \dot{\beta}}, F_{\alpha \beta}, \bar{F}_{\dot{\alpha} \dot{\beta}}, \phi_{i j}, \psi_{\alpha, i}, \bar{\psi}_{\alpha, i}$
- in general, linearly dependent (EOM, Bianchi identities)
- introduce bosonic $a_{\alpha}^{\dagger}, b_{\dot{\alpha}}^{\dagger}$ and fermionic c_{i}^{\dagger} oscillators (Bars 82')

Oscillator picture

- operators are traces over $D_{\alpha \dot{\beta}}, F_{\alpha \beta}, \bar{F}_{\dot{\alpha} \dot{\beta}}, \phi_{i j}, \psi_{\alpha, i}, \bar{\psi}_{\alpha, i}$
- in general, linearly dependent (EOM, Bianchi identities)
- introduce bosonic a_{α}^{\dagger}, $b_{\dot{\alpha}}^{\dagger}$ and fermionic c_{i}^{\dagger} oscillators (Bars 82')
- dictionary (Beisert 03')

$$
\begin{gathered}
D^{k} F \rightarrow\left(a^{\dagger}\right)^{k+2}\left(b^{\dagger}\right)^{k}|0\rangle, \\
D^{k} \psi \rightarrow\left(a^{\dagger}\right)^{k+1}\left(b^{\dagger}\right)^{k} c^{\dagger}|0\rangle, \\
D^{k} \phi \rightarrow\left(a^{\dagger}\right)^{k}\left(b^{\dagger}\right)^{k} c^{\dagger} c^{\dagger}|0\rangle, \\
D^{k} \bar{\psi} \rightarrow\left(a^{\dagger}\right)^{k}\left(b^{\dagger}\right)^{k+1} c^{\dagger} c^{\dagger} c^{\dagger}|0\rangle \\
D^{k} \bar{F} \rightarrow\left(a^{\dagger}\right)^{k}\left(b^{\dagger}\right)^{k+2} c^{\dagger} c^{\dagger} c^{\dagger} c^{\dagger}|0\rangle
\end{gathered}
$$

Oscillator picture

- operators are traces over $D_{\alpha \dot{\beta}}, F_{\alpha \beta}, \bar{F}_{\dot{\alpha} \dot{\beta}}, \phi_{i j}, \psi_{\alpha, i}, \bar{\psi}_{\alpha, i}$
- in general, linearly dependent (EOM, Bianchi identities)
- introduce bosonic a_{α}^{\dagger}, $b_{\dot{\alpha}}^{\dagger}$ and fermionic c_{i}^{\dagger} oscillators (Bars 82')
- dictionary (Beisert 03')

$$
\begin{gathered}
D^{k} F \rightarrow\left(a^{\dagger}\right)^{k+2}\left(b^{\dagger}\right)^{k}|0\rangle, \\
D^{k} \psi \rightarrow\left(a^{\dagger}\right)^{k+1}\left(b^{\dagger}\right)^{k} c^{\dagger}|0\rangle, \\
D^{k} \phi \rightarrow\left(a^{\dagger}\right)^{k}\left(b^{\dagger}\right)^{k} c^{\dagger} c^{\dagger}|0\rangle, \\
D^{k} \bar{\psi} \rightarrow\left(a^{\dagger}\right)^{k}\left(b^{\dagger}\right)^{k+1} c^{\dagger} c^{\dagger} c^{\dagger}|0\rangle \\
D^{k} \bar{F} \rightarrow\left(a^{\dagger}\right)^{k}\left(b^{\dagger}\right)^{k+2} c^{\dagger} c^{\dagger} c^{\dagger} c^{\dagger}|0\rangle
\end{gathered}
$$

- an example: $D_{\alpha \dot{\beta}} D_{\gamma \dot{\delta}} \phi_{i j} \rightarrow a_{\alpha}^{\dagger} a_{\gamma}^{\dagger} b_{\dot{\beta}}^{\dagger} b_{\dot{\delta}}^{\dagger} c_{i}^{\dagger} c_{j}^{\dagger}|0\rangle$
- in the planar limit \rightarrow single trace operators $\operatorname{Tr}\left(\chi_{1} \ldots \chi_{L}\right)$

$$
\chi_{t}=D^{k} F, D^{k} \psi_{\alpha i}, D^{k} \phi_{i j}, D^{k} \bar{\psi}_{\dot{\alpha} \bar{i}}, D^{k} \bar{F}
$$

- in the planar limit \rightarrow single trace operators $\operatorname{Tr}\left(\chi_{1} \ldots \chi_{L}\right)$

$$
\chi_{t}=D^{k} F, D^{k} \psi_{\alpha i}, D^{k} \phi_{i j}, \quad D^{k} \bar{\psi}_{\dot{\alpha} \bar{i}}, D^{k} \bar{F}
$$

- site index - $a_{\alpha}^{\dagger}, b_{\dot{\alpha}}^{\dagger}, c_{i}^{\dagger} \rightarrow a_{\alpha, t}^{\dagger}, b_{\dot{\alpha}, t}^{\dagger}, c_{i, t}^{\dagger}$
- in the planar limit \rightarrow single trace operators $\operatorname{Tr}\left(\chi_{1} \ldots \chi_{L}\right)$

$$
\chi_{t}=D^{k} F, D^{k} \psi_{\alpha i}, D^{k} \phi_{i j}, D^{k} \bar{\psi}_{\dot{\alpha} \bar{i}}, D^{k} \bar{F}
$$

- site index - $a_{\alpha}^{\dagger}, b_{\dot{\alpha}}^{\dagger}, c_{i}^{\dagger} \rightarrow a_{\alpha, t}^{\dagger}, b_{\dot{\alpha}, t}^{\dagger}, c_{i, t}^{\dagger}$
- a generic state $=$ combinations of $\left|s_{1}\right\rangle \otimes\left|s_{2}\right\rangle \ldots\left|s_{L}\right\rangle$ $\left|s_{t}\right\rangle=a_{\alpha, t}^{\dagger}, b_{\alpha, t}^{\dagger}, c_{i, t}^{\dagger}$ acting on $|0\rangle_{t}$ + constraint $\# a_{t}^{\dagger}-\# b_{t}^{\dagger}+\# c_{t}^{\dagger}=2$ (central charge)

BPS states at zero coupling/supergravitons

- $\ln \left\{S_{\alpha i}, Q^{\beta j}\right\}=\delta_{i}^{j}\left(J_{1}\right)_{\alpha}^{\beta}+\delta_{\alpha}^{\beta} R_{i}^{j}+\frac{1}{2} \delta_{i}^{j} \delta_{\alpha}^{\beta} D$ take $i, j, \alpha, \beta=1 \quad S=S_{11}, Q=Q^{11}, J_{1}=\left(J_{1}\right)_{1}^{1}$

BPS states at zero coupling/supergravitons

- In $\left\{S_{\alpha i}, Q^{\beta j}\right\}=\delta_{i}^{j}\left(J_{1}\right)_{\alpha}^{\beta}+\delta_{\alpha}^{\beta} R_{i}^{j}+\frac{1}{2} \delta_{i}^{j} \delta_{\alpha}^{\beta} D$ take $i, j, \alpha, \beta=1 \quad S=S_{11}, Q=Q^{11}, J_{1}=\left(J_{1}\right)_{1}^{1}$
- then

$$
\tilde{D}=2\{S, Q\}=D+2 J_{1}-\frac{3}{2} R_{1}-R_{2}-\frac{1}{2} R_{3}
$$

BPS states at zero coupling/supergravitons

- In $\left\{S_{\alpha i}, Q^{\beta j}\right\}=\delta_{i}^{j}\left(J_{1}\right)_{\alpha}^{\beta}+\delta_{\alpha}^{\beta} R_{i}^{j}+\frac{1}{2} \delta_{i}^{j} \delta_{\alpha}^{\beta} D$ take $i, j, \alpha, \beta=1 \quad S=S_{11}, Q=Q^{11}, J_{1}=\left(J_{1}\right)_{1}^{1}$
- then

$$
\tilde{D}=2\{S, Q\}=D+2 J_{1}-\frac{3}{2} R_{1}-R_{2}-\frac{1}{2} R_{3}
$$

- $Q|s\rangle=S|s\rangle=0 \Rightarrow \tilde{D}|s\rangle=0$

BPS states at zero coupling/supergravitons

- In $\left\{S_{\alpha i}, Q^{\beta j}\right\}=\delta_{i}^{j}\left(J_{1}\right)_{\alpha}^{\beta}+\delta_{\alpha}^{\beta} R_{i}^{j}+\frac{1}{2} \delta_{i}^{j} \delta_{\alpha}^{\beta} D$ take $i, j, \alpha, \beta=1 \quad S=S_{11}, Q=Q^{11}, J_{1}=\left(J_{1}\right)_{1}^{1}$
- then

$$
\tilde{D}=2\{S, Q\}=D+2 J_{1}-\frac{3}{2} R_{1}-R_{2}-\frac{1}{2} R_{3}
$$

- $Q|s\rangle=S|s\rangle=0 \Rightarrow \tilde{D}|s\rangle=0$
- \Leftarrow also true since $Q^{\dagger}=S\left(\Longleftarrow P_{\mu}=K_{\mu}^{\dagger}\right)$

BPS states at zero coupling/supergravitons

- $\ln \left\{S_{\alpha i}, Q^{\beta j}\right\}=\delta_{i}^{j}\left(J_{1}\right)_{\alpha}^{\beta}+\delta_{\alpha}^{\beta} R_{i}^{j}+\frac{1}{2} \delta_{i}^{j} \delta_{\alpha}^{\beta} D$ take $i, j, \alpha, \beta=1 \quad S=S_{11}, Q=Q^{11}, J_{1}=\left(J_{1}\right)_{1}^{1}$
- then

$$
\tilde{D}=2\{S, Q\}=D+2 J_{1}-\frac{3}{2} R_{1}-R_{2}-\frac{1}{2} R_{3}
$$

- $Q|s\rangle=S|s\rangle=0 \Rightarrow \tilde{D}|s\rangle=0$
- \Leftarrow also true since $Q^{\dagger}=S\left(\Longleftarrow P_{\mu}=K_{\mu}^{\dagger}\right)$
- hence $I=\operatorname{Tr}(-1)^{F} e^{-\beta \tilde{D}+M},[M, \tilde{D}]=0$ is an index (Kinney, Maldacena, Minwalla, Raju 05')

BPS states at zero coupling/supergravitons

- $\ln \left\{S_{\alpha i}, Q^{\beta j}\right\}=\delta_{i}^{j}\left(J_{1}\right)_{\alpha}^{\beta}+\delta_{\alpha}^{\beta} R_{i}^{j}+\frac{1}{2} \delta_{i}^{j} \delta_{\alpha}^{\beta} D$ take $i, j, \alpha, \beta=1 \quad S=S_{11}, Q=Q^{11}, J_{1}=\left(J_{1}\right)_{1}^{1}$
- then

$$
\tilde{D}=2\{S, Q\}=D+2 J_{1}-\frac{3}{2} R_{1}-R_{2}-\frac{1}{2} R_{3}
$$

- $Q|s\rangle=S|s\rangle=0 \Rightarrow \tilde{D}|s\rangle=0$
- \Leftarrow also true since $Q^{\dagger}=S\left(\Longleftarrow P_{\mu}=K_{\mu}^{\dagger}\right)$
- hence $I=\operatorname{Tr}(-1)^{F} e^{-\beta \tilde{D}+M},[M, \tilde{D}]=0$ is an index (Kinney, Maldacena, Minwalla, Raju 05')
- explicitly the index is

$$
I=\sum_{\tilde{D}=0}(-1)^{F} t^{2 D+2 J_{1}} y^{2 J_{2}} v^{R_{2}} w^{R_{3}}, \quad Z=\sum_{\tilde{D}=0} x^{2 D} z^{2 J_{1}} y^{2 J_{2}} v^{R_{2}} w^{R_{3}}
$$

- Z and $/$ can be calculated exactly at $g=0$
- for $g \gg 1$ we can use the strong/weak coupling duality of AdS/CFT
- symm. of $\mathcal{N}=4 \mathrm{SYM}=$ symm. of $A d S_{5} \times S_{5}$ superstring
BPS states \longleftrightarrow supergravity fields annihilated by Q and S
- Z and $/$ can be calculated exactly at $g=0$
- for $g \gg 1$ we can use the strong/weak coupling duality of AdS/CFT
- symm. of $\mathcal{N}=4 \mathrm{SYM}=$ symm. of $A d S_{5} \times S_{5}$
superstring
BPS states \longleftrightarrow supergravity fields annihilated by Q and S
- result: I's match but Z's don't \Rightarrow overcounting at $\mathrm{g}=0$?
- Construction of $Z,(\lambda=0, N=\infty)$ letters:

$$
z^{\text {lett. }}(t)=z_{B}(t)+z_{F}(t), \quad t=(x, z, y, v, w)
$$

- Construction of $Z,(\lambda=0, N=\infty)$ letters:

$$
z^{\text {lett. }}(t)=z_{B}(t)+z_{F}(t), \quad t=(x, z, y, v, w)
$$

- single trace (Polya theorem):

$$
Z_{\text {s.t }}=-\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left(1-z_{B}\left(t^{n}\right)-(-1)^{n+1} z_{F}\left(t^{n}\right)\right)
$$

(Sundborg 99', Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03')

- Construction of $Z,(\lambda=0, N=\infty)$ letters:

$$
z^{\text {lett. }}(t)=z_{B}(t)+z_{F}(t), \quad t=(x, z, y, v, w)
$$

- single trace (Polya theorem):

$$
Z_{\text {s.t }}=-\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left(1-z_{B}\left(t^{n}\right)-(-1)^{n+1} z_{F}\left(t^{n}\right)\right)
$$

(Sundborg 99', Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03')

- single trace \rightarrow multiple trace
- $\lambda=0$, finite N :

$$
Z=\int D \operatorname{Uexp}\left\{\sum_{n=1}^{\infty}\left[z_{B}\left(t^{n}\right)+(-1)^{n+1} z_{F}\left(t^{n}\right)\right] \frac{\operatorname{Tr} U^{n} \operatorname{Tr} U^{-n}}{n}\right\}
$$

- $\lambda=0$, finite N :

$$
Z=\int D \operatorname{Uexp}\left\{\sum_{n=1}^{\infty}\left[z_{B}\left(t^{n}\right)+(-1)^{n+1} z_{F}\left(t^{n}\right)\right] \frac{\operatorname{Tr} U^{n} \operatorname{Tr} U^{-n}}{n}\right\}
$$

- conf./deconf. phase transition (deconfinement phase $\rightarrow \ln Z_{m . t} \sim N^{2}$)
- $\lambda=0$, finite N :

$$
Z=\int D U \exp \left\{\sum_{n=1}^{\infty}\left[z_{B}\left(t^{n}\right)+(-1)^{n+1} z_{F}\left(t^{n}\right)\right] \frac{\operatorname{Tr} U^{n} \operatorname{Tr} U^{-n}}{n}\right\}
$$

- conf./deconf. phase transition (deconfinement phase $\rightarrow \ln Z_{m . t} \sim N^{2}$)
- only qualitative agreement with BPS black holes solutions (given by Gutowski, Real 2×04 ', Chong, Cvetic, Lu, Pope 05')

The dilatation operator at one loop

- two point correlator $\langle O(x) \bar{O}(y)\rangle \propto|x-y|^{-2 \Delta}$, $\Delta=\Delta_{0}+\gamma=$ bare+anomalus

The dilatation operator at one loop

- two point correlator $\langle O(x) \bar{O}(y)\rangle \propto|x-y|^{-2 \Delta}$, $\Delta=\Delta_{0}+\gamma=$ bare + anomalus
- the one loop result in the oscillator picture for single trace states

$$
\gamma=\frac{\lambda}{8 \pi^{2}} \operatorname{spect}(H), \quad H=\sum_{a=1}^{L} H_{k, k+1}, \quad \lambda=g^{2} N
$$

The dilatation operator at one loop

- two point correlator $\langle O(x) \bar{O}(y)\rangle \propto|x-y|^{-2 \Delta}$, $\Delta=\Delta_{0}+\gamma=$ bare + anomalus
- the one loop result in the oscillator picture for single trace states

$$
\gamma=\frac{\lambda}{8 \pi^{2}} \operatorname{spect}(H), \quad H=\sum_{a=1}^{L} H_{k, k+1}, \quad \lambda=g^{2} N
$$

$$
H|s\rangle=\underbrace{\left|s_{1}\right\rangle\left|s_{2}\right\rangle}_{H_{12}}\left|s_{3}\right\rangle \ldots\left|s_{L}\right\rangle+\left|s_{1}\right\rangle \underbrace{\left|s_{2}\right\rangle\left|s_{3}\right\rangle}_{H_{12}}\left|s_{4}\right\rangle \ldots\left|s_{L}\right\rangle+\ldots
$$

The harmonic action H_{12}

- consider two (initial) neighboring sites (i and $i+1$)

$$
|v\rangle=\left|n_{a_{1}}, \ldots, n_{c_{4}}\right\rangle \otimes\left|m_{a_{1}}, \ldots, m_{c_{4}}\right\rangle,
$$

The harmonic action H_{12}

- consider two (initial) neighboring sites (i and $i+1$)

$$
|v\rangle=\left|n_{a_{1}}, \ldots, n_{c_{4}}\right\rangle \otimes\left|m_{a_{1}}, \ldots, m_{c_{4}}\right\rangle,
$$

- and two (final)

$$
\left|v^{\prime}\right\rangle=\left|n_{a_{1}}^{\prime}, \ldots, n_{c_{4}}^{\prime}\right\rangle \otimes\left|m_{a_{1}}^{\prime}, \ldots, m_{c_{4}}^{\prime}\right\rangle,
$$

The harmonic action H_{12}

- consider two (initial) neighboring sites (i and $i+1$)

$$
|v\rangle=\left|n_{a_{1}}, \ldots, n_{c_{4}}\right\rangle \otimes\left|m_{a_{1}}, \ldots, m_{c_{4}}\right\rangle
$$

- and two (final)

$$
\left|v^{\prime}\right\rangle=\left|n_{a_{1}}^{\prime}, \ldots, n_{c_{4}}^{\prime}\right\rangle \otimes\left|m_{a_{1}}^{\prime}, \ldots, m_{c_{4}}^{\prime}\right\rangle
$$

- -to calculate $\left\langle v^{\prime}\right| H|v\rangle$ consider all oscillator hopping so that $|v\rangle \rightarrow\left|v^{\prime}\right\rangle$ (c.c.c., -1 factors included)
-associate a probability,
-sum over all possibilities

BPS states at one loop

- the tree level $\tilde{D}_{\text {tree }}=2 n_{a_{1}}+2 n_{c_{1}}=0 \Rightarrow n_{a_{1}}=n_{c_{1}}=0$

BPS states at one loop

- the tree level $\tilde{D}_{\text {tree }}=2 n_{a_{1}}+2 n_{c_{1}}=0 \Rightarrow n_{a_{1}}=n_{c_{1}}=0$
- one loop $\tilde{D}_{1-\text { loop }}=2 n_{a_{1}}+2 n_{c_{1}}+\frac{\lambda}{8 \pi^{2}} H$

BPS states at one loop

- the tree level $\tilde{D}_{\text {tree }}=2 n_{a_{1}}+2 n_{c_{1}}=0 \Rightarrow n_{a_{1}}=n_{c_{1}}=0$
- one loop $\tilde{D}_{1-\text { loop }}=2 n_{a_{1}}+2 n_{c_{1}}+\frac{\lambda}{8 \pi^{2}} H$
- we are looking for

$$
\begin{gathered}
Z_{L}\left(a_{2}, b_{1}, b_{2}, c_{2}, c_{3}, c_{4}\right)= \\
\sum D_{n_{a_{2}} n_{b_{1}} n_{b_{2}} c_{c_{2}} n_{c_{3}} n_{4}} a_{2}^{n_{a_{2}}} b_{1}^{n_{b_{1}}} b_{2}^{n_{b_{2}}} c_{2}^{n_{c_{2}}} c_{3}^{n_{c_{3}}} c_{4}^{n_{c_{4}}},
\end{gathered}
$$

BPS states at one loop

- the tree level $\tilde{D}_{\text {tree }}=2 n_{a_{1}}+2 n_{c_{1}}=0 \Rightarrow n_{a_{1}}=n_{c_{1}}=0$
- one loop $\tilde{D}_{1 \text {-loop }}=2 n_{a_{1}}+2 n_{c_{1}}+\frac{\lambda}{8 \pi^{2}} H$
- we are looking for

$$
\begin{gathered}
Z_{L}\left(a_{2}, b_{1}, b_{2}, c_{2}, c_{3}, c_{4}\right)= \\
\sum D_{n_{a_{2}} n_{b_{1}} n_{b_{2}} n_{c_{2}} n_{c_{3}} n_{c_{4}} L} a_{2}^{n_{a_{2}}} b_{1}^{n_{b_{1}}} b_{2}^{n_{b_{2}}} c_{2}^{n_{c_{2}}} c_{3}^{n_{c_{3}}} c_{4}^{n_{c_{4}}}
\end{gathered}
$$

- we can determine only finite number of $D_{n_{a_{2}}, \ldots, n_{c_{4}}, L}$. Can we guess Z_{L} ?
- ...after some guess work

$$
\begin{gathered}
Z_{L}\left(a_{2}, b_{1}, b_{2}, c_{2}, c_{3}, c_{4}\right)=\frac{P}{\left(1-a_{2} b_{1}\right)\left(1-a_{2} b_{2}\right)} \\
P=\sigma_{L, L, 0}+a_{2} \sigma_{L, L-1,0}+a_{2}^{2} \sigma_{L-1, L-1,0} \\
+\left(b_{1}+b_{2}\right)\left(\sigma_{L, L, 1}+a_{2} \sigma_{L, L-1,1}+a_{2}^{2} \sigma_{L-1, L-1,1}\right) \\
+b_{1} b_{2}\left(\sigma_{L, L, 2}+a_{2} \sigma_{L, L-1,2}+a_{2}^{2} \sigma_{L-1, L-1,2}\right)
\end{gathered}
$$

- ...after some guess work

$$
\begin{gathered}
Z_{L}\left(a_{2}, b_{1}, b_{2}, c_{2}, c_{3}, c_{4}\right)=\frac{P}{\left(1-a_{2} b_{1}\right)\left(1-a_{2} b_{2}\right)} \\
P=\sigma_{L, L, 0}+a_{2} \sigma_{L, L-1,0}+a_{2}^{2} \sigma_{L-1, L-1,0} \\
+\left(b_{1}+b_{2}\right)\left(\sigma_{L, L, 1}+a_{2} \sigma_{L, L-1,1}+a_{2}^{2} \sigma_{L-1, L-1,1}\right) \\
+b_{1} b_{2}\left(\sigma_{L, L, 2}+a_{2} \sigma_{L, L-1,2}+a_{2}^{2} \sigma_{L-1, L-1,2}\right)
\end{gathered}
$$

- where

$$
\sigma_{n_{1}, n_{2}, n_{3}}=\left|\begin{array}{ccc}
c_{2}^{n_{1}+2} & c_{3}^{n_{1}+2} & c_{4}^{n_{1}+2} \\
c_{2}^{n_{2}+1} & c_{3}^{n_{2}+1} & c_{4}^{n_{2}+1} \\
c_{2}^{n_{3}} & c_{3}^{n_{3}} & c_{4}^{n_{3}}
\end{array}\right| /\left|\begin{array}{ccc}
c_{2}^{2} & c_{3}^{2} & c_{4}^{2} \\
c_{2} & c_{3} & c_{4} \\
1 & 1 & 1
\end{array}\right|
$$

- checked for

$$
\begin{aligned}
& L=2,3,4,5 \\
& \rightarrow 0 \leq n_{a_{2}}, n_{b_{1}}, n_{b_{2}} \leq 10 \text { and } 0 \leq n_{c_{2}}, n_{c_{3}}, n_{c_{4}} \leq L
\end{aligned}
$$

- checked for

$$
\begin{aligned}
& L=2,3,4,5 \\
& \rightarrow 0 \leq n_{a_{2}}, n_{b_{1}}, n_{b_{2}} \leq 10 \text { and } 0 \leq n_{c_{2}}, n_{c_{3}}, n_{c_{4}} \leq L
\end{aligned}
$$

- \rightarrow single trace \rightarrow multi trace

$$
Z_{\text {s.t }}=Z_{\text {lett. }}+\sum_{L=2}^{\infty} Z_{L} \rightarrow Z_{m . t}
$$

- checked for

$$
\begin{aligned}
& L=2,3,4,5 \\
& \rightarrow 0 \leq n_{a_{2}}, n_{b_{1}}, n_{b_{2}} \leq 10 \text { and } 0 \leq n_{c_{2}}, n_{c_{3}}, n_{c_{4}} \leq L
\end{aligned}
$$

\rightarrow single trace \rightarrow multi trace

$$
Z_{\text {s.t }}=Z_{\text {lett. }}+\sum_{L=2}^{\infty} Z_{L} \rightarrow Z_{m . t}
$$

- another check $-Z_{1}=Z_{\text {lett. }}$!
- old/new variables

$$
\begin{aligned}
& Z=\sum_{\tilde{D}=0} x^{2 D} z^{2 J_{1}} y^{2 J_{2}} v^{R_{2}} w^{R_{3}}= \\
& \sum_{\tilde{D}=0, \text { c.c.c }} a_{2}^{n_{a_{2}}} b_{1}^{n_{b_{1}}} b_{2}^{n_{b_{2}}} c_{2}^{n_{c_{2}}} c_{3}^{n_{c_{3}}} c_{4}^{n_{c_{4}}}
\end{aligned}
$$

- old/new variables

$$
\begin{gathered}
Z=\sum_{\tilde{D}=0} x^{2 D} z^{2 J_{1}} y^{2 J_{2}} v^{R_{2}} w^{R_{3}}= \\
\sum_{\tilde{D}=0, \text { c.c.c }} a_{2}^{n_{a_{2}}} b_{1}^{n_{b_{1}}} b_{2}^{n_{b_{2}}} c_{2}^{n_{c_{2}}} c_{3}^{n_{c_{3}}} c_{4}^{n_{c_{4}}}
\end{gathered}
$$

- hence the dictionary

$$
\begin{gathered}
a 2=x^{2} z, \quad b 1=1 / y \quad b 2=y \\
c 2=x / v \quad c 3=x v / w \quad c 4=x w
\end{gathered}
$$

- old/new variables

$$
\begin{aligned}
& Z=\sum_{\tilde{D}=0} x^{2 D} z^{2 J_{1}} y^{2 J_{2}} v^{R_{2}} w^{R_{3}}= \\
& \sum_{\tilde{D}=0, \text { c.c.c }} a_{2}^{n_{a_{2}}} b_{1}^{n_{b_{1}}} b_{2}^{n_{b_{2}}} c_{2}^{n_{c_{2}}} c_{3}^{n_{c_{3}}} c_{4}^{n_{c_{4}}}
\end{aligned}
$$

- hence the dictionary

$$
\begin{array}{ccc}
a 2=x^{2} z, & b 1=1 / y & b 2=y \\
c 2=x / v & c 3=x v / w & c 4=x w
\end{array}
$$

- substituting to our result \rightarrow exact supergravity prediction!

Finite N, black holes
 - 1) $Z_{m . t .}$ has no singularities for $a, b, c<1$

Finite N , black holes

- 1) $Z_{m . t}$. has no singularities for $a, b, c<1$
- 2)no (meaning of) letters when $\lambda>0 \rightarrow$ effective letters

$$
Z_{s . t .}=-\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left[1-z_{B}^{\text {eff. }}\left(t^{n}\right)-(-1)^{n+1} z_{F}^{\text {eff. }}\left(t^{n}\right)\right]
$$

Finite N, black holes

- 1) $Z_{m . t}$. has no singularities for $a, b, c<1$
- 2)no (meaning of) letters when $\lambda>0 \rightarrow$ effective letters

$$
Z_{\text {s.t. }}=-\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left[1-z_{B}^{\text {eff. }}\left(t^{n}\right)-(-1)^{n+1} z_{F}^{\text {eff. }}\left(t^{n}\right)\right]
$$

- coeff. of $z_{B}^{\text {eff. }}(x),\left(a_{n}\right)$ and $z_{F}^{\text {eff. }}(x),\left(b_{n}\right)$: negative integers \rightarrow commutative letters

Finite N, black holes

- 1) $Z_{m . t}$. has no singularities for $a, b, c<1$
- 2)no (meaning of) letters when $\lambda>0 \rightarrow$ effective letters

$$
Z_{\text {s.t. }}=-\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left[1-z_{B}^{\text {eff. }}\left(t^{n}\right)-(-1)^{n+1} z_{F}^{\text {eff. }}\left(t^{n}\right)\right]
$$

- coeff. of $z_{B}^{\text {eff. }}(x),\left(a_{n}\right)$ and $z_{F}^{\text {eff. }}(x),\left(b_{n}\right)$: negative integers \rightarrow commutative letters
- choice: $a_{2}=x^{3}, c_{2}=c_{3}=c_{4}=x, b_{1}=b_{2}=1$ reason: \# BH BPS parameters $=$ \# BPS parameters -1 parameter constraint $\Rightarrow C=n_{a_{2}}+n_{c} / 3$

Finite N, black holes

- 1) $Z_{m . t}$. has no singularities for $a, b, c<1$
- 2)no (meaning of) letters when $\lambda>0 \rightarrow$ effective letters

$$
Z_{\text {s.t. }}=-\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left[1-z_{B}^{\text {eff. }}\left(t^{n}\right)-(-1)^{n+1} z_{F}^{\text {eff. }}\left(t^{n}\right)\right]
$$

- coeff. of $z_{B}^{\text {eff. }}(x),\left(a_{n}\right)$ and $z_{F}^{\text {eff. }}(x),\left(b_{n}\right)$: negative integers \rightarrow commutative letters
- choice: $a_{2}=x^{3}, c_{2}=c_{3}=c_{4}=x, b_{1}=b_{2}=1$ reason: \# BH BPS parameters $=$ \# BPS parameters -1 parameter constraint $\Rightarrow C=n_{a_{2}}+n_{c} / 3$
- plethystic formalisms (Benvenuti, Feng, Hanany, He 06')

$$
\prod_{n=1}^{\infty} \frac{\left(1+g x^{n}\right)^{a_{n}}}{\left(1-g x^{n}\right)^{b_{n}}}=\sum_{N=1}^{\infty} Z_{N}(x) g^{N} \rightarrow \ln Z_{N} \sim N
$$

Summary

- BPS protected $\Rightarrow \mathrm{Z}$ is λ independent Z at $\lambda=0$ different from Z at $\lambda \gg 1$ (from AdS/CFT)
- overcounting??

Turn on $0<\lambda \ll 1 \Rightarrow$ full agreement! BPS states vs.BPS black holes \rightarrow non planar analysis required

