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Problem

Consider a scalar field theory given by Lagrange density
function

L = ∂µψ∂
µψ̄ − U

(
ψψ̄

)
,

where U is a potential term. Due to the phase invariance the
charge Q

Q = i
∫

dV
(
∂0ψψ̄ − ∂0ψ̄ψ

)
is constant during the field evolution.
Q-ball is a field configuration that minimizes energy functional
for the given charge Q > 0.



Q-ball Ansatz
The energy functional for the given charge Q has the form:

E =

∫
dV

[
∂0ψ∂0ψ̄ + ∂iψ∂i ψ̄ + U

(
ψψ̄

)]
+

+ω

(
Q − i

∫
dV

[
∂0ψψ̄ − ∂0ψ̄ψ

])
.

ω is a Lagrange multiplier. Some manipulations suggest the
Q-ball Ansatz

ψ = eiωx0F (r).

F is supposed to be a spherical symmetric function, hence to
depend on radial coordinate r only. The equation for the profile
function F is following

M F = −ω2F +
∂U(F )

∂F
.

For some values of charge Q the solutions of the above
equation, called also nontopological solitons, are absolutely
stable.



Complex Signum Gordon - Models

Complex signum-Gordon model (CsGM) is a scalar field theory
defined by the Lagrange function

L = ∂µψ∂
µψ̄ − λ|ψ|, λ > 0.

The potential term may be regarded as a limiting case of
smooth potential, e.g.

U(ψ) ∼ lim
κ→0+

√
κ+ |ψ|2

Such a regularization fixes the meaning of the term ∂|ψ|/∂ψ̄
which appears in equation derived from the L.

∂|ψ|
∂ψ̄

=

{
0 if ψ = 0
ψ

2|ψ| otherwise.



Q-ball in CsGM

The discussion of Q-ball Ansatz applies to the model.
Substitution ψ = F (r)exp(iωx0) results in the equation (in three
spatial dimensions)

F ′′(r) +
2
r

F ′(r) =
λ

2
sgn(F )− ω2F

(sgn(0) = 0). New variable and function

y = ωr f (y) = 2ω2

λ F (r)

make the equation free of parameters

f ′′ +
2
y

f ′ = sgn(f )− f .



E(Q) relation

The charge Q and energy E may then be expressed as follows

Q = π
λ2

ω6

∫ ∞

0
f 2 y2dy ,

E = π
λ2

ω5

∫ ∞

0

[
f 2 + (∂y f )2 + 2|f |

]
y2dy .

Note that the integrals in the above formulas merely give
numerical coefficients.
The formulas make also evident the relation between energy
and charge

E ∼ Q5/6.

This favours one (big) Q-ball configuration over any other
(multi) Q-ball configuration.



The Solution

The conditions for physically relevant solution are:
I f ′(0) = 0 ,
I finitness of the energy and the charge.

Such a solution has the form

f (y) =

{
1− y0

sin(y0)
sin(y)

y 0 < y < y0,

0 y > y0,

where y0 ≈ 4.4934 (tan y0 = y0).

-

6
f (y)

yy0



Remarks

1. The solution illustrates a distinctive feature of the signum
Gordon models: the field reaches its vacuum value on a
finite distance. The way solutions approach the vacuum
value is determined by the mass term in the theory.
Compactness of solutions in CsGM can be intuitively
interpreted as a consequence of "infinite mass".

2. There is an infinite family of other ("excited") single Q-ball
solutions.

3. Putting any number of Q-balls far apart from each other (so
that they do not overlap) generates new solutions.



CsGM with gauge symmetry

Natural extension of the presented model is a generalization of
the global symmetry to the local one. In that case the
Lagrangian has the form

L = (∂µ − ieAµ) ψ̄ (∂µ + ieAµ)ψ − U
(
ψ̄ψ

)
− 1

4
FµνFµν ,

where Aµ is gauge field.
The Ansatz is now as follows

ψ = F (r) exp(iωx0),
A0 = A0(r),

Aj = 0.

The equation for A0 expresses (nonlinear) Gauss law.
The condition for energy minimum sets the equation for F .



Field equations
The equations are

4A0(r) = 2e (ω + eA0(r)) F 2(r),

4F (r) = − (ω + eA0(r))
2 F (r) +

dU
dF

.

In our case U(ψ) = 2λ|ψ|. Then it is convenient to introduce
new functions and to rescale the r variable:

G(y) = 3
√

2e2

λ F (r), B(y) = ω+eA(r)
3
√√

2λe
, y = r 3

√√
2λe.

In this notation the equations have the form

d2G
dr2 +

2
r

dG
dr

= sgn(G)−GB2,

d2B
dr2 +

2
r

dB
dr

= BG2.



Solutions

For the same reasons as in the previous model compact
solutions are expected, i.e. there exists a point y0 such that
G(y) = 0 for y > y0. In that region the electric potential is
known

B(y) = ω − Q
y , y > y0.

The matching condition is again continuity of the solutions and
their first derivatives.
No analytical solution of the equations is known so far. To get
some insight in the theory we have investigated them
numerically.



Solutions for small Q

The figure shows the plane (B(0),G(0)). The plotted points
correspond to the "initial" values of the functions B(y), G(y) for
which solutions exist.
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One can find solutions for arbitrarily large B(0). They have
small charges and energies. They weakly interact with the
gauge field, thus may be described in terms of the model with
global symmetry.



Solutions for medium values of Q
The solutions starting from small B(0) are much harder to
explore. If we knew how to solve the system, we could draw a
curve interpolating between plotted points (previous slide). The
curve would have a striking feature: a "dead end" at G(0) = 0,
B(0) ∼= 1.317. The corresponding solution has roughly the
largest energy E and charge Q (see below) of the solutions
from the dotted curve.
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Solutions for large Q
The profile function G close to the "dead end" solution does not
resemble much a ball configuration with maximal matter density
in the middle.

This motivated conjecture about existence of Q-shell solutions.
It has turned out to be true.



Remarks

I The relations E(Q) and R(Q) (with R being the external
radius of a solution) make clear that the Q-shell solutions
are a natural continuation of the Q-ball solutions.

I The shell solutions admit arbitrarily large charges and
energies.

I The reasoning based on E(Q) relation indicates instability
for larger Q-balls. The dynamics of an energetically
possible collapse is complex and the solutions may turn
out to be stable against small disturbances.

I There is a huge variety of "excited" Q-balls and Q-shells.
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