
On two-point correlation functions in AdS/QCD

A. Krikun 1

MIPT and ITEP, Russia, Moscow

1e-mail: krikun.a@gmail.com



References

This talk is mainly based on the work by A.K., [hep-th] 0801.4215,
Phys.Rev.D77 No.12

Model under consideration was developed in J. Erlich, E. Katz, D.
T. Son, M. Stephanov, Phys.Rev.Lett. 95 (2005) 261602.
[arXiv:hep-ph/0501128] and L. Da Rold, A. Pomarol, Nucl.Phys.
B721 (2005) 79-97. [arXiv:hep-ph/0501218]



Table of contents

I Description of the model

I Fixing of the parameters

I Some results



Introduction

The AdS/QCD models are the way to apply methods of the
AdS/CFT correspondence to describe QCD in strong coupling
regime.
The feature of AdS/CFT is the relation between AdS curvature
radius and t’Hooft constant in the gauge theory.

R4

4πα′2
= λ′ = Ncg

2
ym

Our aim is to compute some two-point correlation functions in
QCD in the simplest model with hard wall cut of the AdS and
reveal their dependence of parameters of the QCD, such as number
of colors Nc and t’Hooft constant λ′



The model

I We consider AdS5 space with the hard wall, placed at some
radial coordinate zm

ds2 =
R2

z2
(−dz2 + dxµdxµ); 0 < z ≤ zm

I The fields in AdS are in correspondence with QCD currents:

La
µ ↔ q̄Lγ

µtaqL

Ra
µ ↔ q̄Rγ

µtaqR(
2

z

)
Xαβ ↔ q̄αRqβL

here ta are generators of SU(Nf ) in the adjoint representation. Xαβ is

bifundamental in SUL(Nf )xSUR(Nf ) and we take Nf = 2 in the case of two

light quarks.

I Boundary conditions at zm are: ∂zL(zm) = 0 ; ∂zR(zm) = 0.
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The model

The action is

S =

∫
d5x
√

gTr

{
Λ2(|DX |2 +

3

R2
|X |2)− 1

4g2
5

(F 2
L + F 2

R)

}
where

DBX = ∂BX − ıLBX + ıXRB

L(R) = L(R)ata

F(L)BD = ∂BLD − ∂DLB − ı[LB , LD ],

and we introduce the normalization constant Λ of field X



The model

The classical solution for Xαβ has the form

X0(z) =
1

2
Mz +

1

2
Σz3.

By the AdS/CFT conjecture, one relates M to the quark mass matrix, and Σ

to the VEV of operator 〈q̄q〉, i.e. quark condensates. We choose normalization

such as M = m1; Σ = σ1, assuming the equality of quark masses.

It is convenient to decompose:

X = X0e
ı2πa(ta) = 1

v(z)

2
eı2π

ata
v(z) = mz + σz3

One can see, that in the quadratic order X interacts only with axial field

2A = L− R and not with vector one (2V = R + L). That means X breaks

chiral symmetry.



The model

We take the transverse gauge for Vµ and decompose.Aµ on
longitudinal and transverse parts.:

∂µVµ = 0 Aµ = A⊥µ + ∂µφ

One can relate the pseudoscalar current q̄γ5q with axial vector
current q̄γ5γµq via:

∂µ (q̄γ5γµq) = 2m (q̄γ5q)



The model

This allows us to write down convenient table of correspondence:

Vµ ↔ q̄γµq = JV

Aµ ↔ q̄γ5γ
µq = JA

Q2

2m
φ↔ q̄γ5q = Jπ

Using this correspondance we can compute some current
correlators in QCD via AdS/CFT recipe, for example:

〈JV (q1)JV (q2)〉 =
δ

δV0(q1)

δ

δV0(q2)
S(Vclassic)|V0=0.

V0(q) = Vclassic(q, z)|z=0



Parameter fixing

Equations of motion:[
∂z

(
1

z
∂zV

a
µ

)
+

q2

z
V a
µ

]
⊥

= 0

[
∂z

(
1

z
∂zA

a
µ

)
+

q2

z
Aa
µ −

R2g2
5 Λ2v2

z3
Aa
µ

]
⊥

= 0

∂z

(
1

z
∂zφ

a

)
+

R2g2
5 Λ2v2

z3
(πa − φa) = 0

−q2∂zφ
a +

R2g2
5 Λ2v2

z2
∂zπ

a = 0



Parameter fixing

Equation for V is exactly solvable and gives

V (Q, z) = −V0(Q)
1

I0(Qzm)
Qz [K0(Qzm)I1(Qz)− I0(Qzm)K1(Qz)]

The variation of metric with respect to boundary value V0 is

δSV = −
∫

d4x
R

g2
5

[
δVµ

∂zVµ
z

]
z=ε

And the result for current correlator is:

〈Ja
Vµ(q)Jb

V ν(q)〉 = δab(qµqν − q2gµν)ΠV (q2)



Parameter fixing – zm

Here

ΠV (Q2) = − R

g2
5

(
K0(Qzm)− I0(Qzm)[ln(Qε/2) + γ]

)
I0(Qzm)

The poles of euclidean correlator correspond to masses of bound
states, so we can fix zm by the ρ-meson mass:

I0(ıMρzm) = 0 =⇒ zm =
2.4

Mρ



Parameter fixing – g5

In the large Q2 limit we have

ΠV (Q2) = − R

2g2
5

lnQ2ε2

This result can be compared with the QCD sum rules leading term:

ΠV (Q2) = − Nc

24π2
lnQ2ε2

And this fixes g5

g2
5

R
=

12π2

Nc



Parameter fixing – Λ

To compute correlator of Jπ we find solutions for coupled φ and π
near the boundary

φ(z) = φ0(q)QzK1(Qz).

π(z) = −φ0(q)
Q2

g2
5 R2Λ2m2

QzK1(Qz).

The variation of action with respect to φ0(q) gives

δSπ =

∫
d4x

R

g2
5

[
δ∂µφ

∂z∂µφ

z

]
z=ε

− Λ2R3

[
δπ

v2

z3
∂zπ

]
z=ε



Parameter fixing – Λ

And we get for correlator:

〈Jπ(q), Jπ(q)〉 = 2
R

g2
5

1

g2
5 R2Λ2

Q2ln(Q2ε2)

Comparison with the sum rules leading term

〈Jπ(q), Jπ(q)〉QCD =
Nc

16π2
Q2ln(Q2ε2)

gives the value of Λ

Λ2 =
8

3

1

g2
5 R2

=
2Nc

9π2

1

R3



Parameter fixing – σ

It remains us to fix relation between σ and condensate.
In QCD

〈q̄q〉 =
δεQCD

δmq
|mq=0

In AdS it corresponds to:

〈q̄q〉 =
δ S(X0)

δm

∣∣∣∣
m=0

= 3R3Λ2σ =
2Nc

3π2
σ



Results – ΠA

Now all parameters are fixed. And the action looks:

S =
Nc

12π2

∫
d5x

{
− 1

4z
(F 2

A + F 2
V ) +

4

3z3
v(z)2(∂π − A)2 +

4

z5
v(z)2

}

Solving EOM for Aµ in large Q2 limit we can obtain the axial
current correlator, where OPE terms emerge from 1/Q2

corrections of solution:

ΠA(Q2) = − Nc

24π2

[
lnQ2 +

128

15

σ2

Q6
− 64

9

σm

Q4

]



Results – ΠLR

The interesting object is “left-right” correlator ΠLR = ΠA − ΠV

ΠLR = − Nc

9π2

[
16

5

σ2

Q6
− 8

3

σmq

Q4

]
Note here, that it has not powers of R, namely it has the order λ′0.
If we denote coefficients in this formla as f and ρ, we find that at
λ′ →∞ our calculation predicts:

f (λ′) ∼ ρ(λ′) ∼ λ′0

while at weak coupling regime(sum rules):

ρ(λ′) ∼ λ′0 f (λ′) = −4παs ∼ λ′.



Results – fπ

We can also obtain the value of fπ, using the relation:

ΠA(Q)|Q→0 =
f 2
π

Q2

For this purpose we compute solution for Aµ at Q = 0 and get:

f 2
π = − R

g5

∂za(z)

z
|z=0,Q=0 =

≈ R

g5
2.16σ2/3 =

Nc

12π2
2.16

(
3π2

2

〈q̄q〉
Nc

)2/3

∼ 40Mev

Do not coincide with expected 140 Mev



Problems and solutions

I Meson masses do not demonstrate Regge behavior

– Modification of IR boundary

I Coefficients in OPE of correlators differ from sum rules

– Modification of metric

I Incorrect value of fπ

– Modification of scalar potential
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Conclusion

The model under consideration has several free parameters, but
still has some predictive power. It gives qualitatively satisfactory
results, but numbers differ. Study of such simple model gives an
insight on common features of AdS/QCD and proposes
modifications, needed to obtain more realistic results.



Thank you for your attention!


