On two-point correlation functions in AdS/QCD

A. Krikun ${ }^{1}$
MIPT and ITEP, Russia, Moscow

References

This talk is mainly based on the work by A.K., [hep-th] 0801.4215, Phys.Rev.D77 No. 12

Model under consideration was developed in J. Erlich, E. Katz, D. T. Son, M. Stephanov, Phys.Rev.Lett. 95 (2005) 261602. [arXiv:hep-ph/0501128] and L. Da Rold, A. Pomarol, Nucl.Phys. B721 (2005) 79-97. [arXiv:hep-ph/0501218]

Table of contents

- Description of the model
- Fixing of the parameters
- Some results

Introduction

The AdS/QCD models are the way to apply methods of the AdS/CFT correspondence to describe QCD in strong coupling regime.
The feature of AdS/CFT is the relation between AdS curvature radius and t'Hooft constant in the gauge theory.

$$
\frac{R^{4}}{4 \pi \alpha^{\prime 2}}=\lambda^{\prime}=N_{c} g_{y m}^{2}
$$

Our aim is to compute some two-point correlation functions in QCD in the simplest model with hard wall cut of the AdS and reveal their dependence of parameters of the QCD, such as number of colors N_{c} and t'Hooft constant λ^{\prime}

The model

- We consider $A d S_{5}$ space with the hard wall, placed at some radial coordinate z_{m}

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(-d z^{2}+d x^{\mu} d x_{\mu}\right) ; \quad 0<z \leq z_{m}
$$

The model

- We consider $A d S_{5}$ space with the hard wall, placed at some radial coordinate z_{m}

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(-d z^{2}+d x^{\mu} d x_{\mu}\right) ; \quad 0<z \leq z_{m}
$$

- The fields in AdS are in correspondence with QCD currents:

$$
\begin{aligned}
L_{\mu}^{a} & \leftrightarrow \bar{q}_{L} \gamma^{\mu} t^{a} q_{L} \\
R_{\mu}^{a} & \leftrightarrow \bar{q}_{R} \gamma^{\mu} t^{a} q_{R} \\
\left(\frac{2}{z}\right) X^{\alpha \beta} & \leftrightarrow \bar{q}_{R}^{\alpha} q_{L}^{\beta}
\end{aligned}
$$

here t^{a} are generators of $\operatorname{SU}\left(N_{f}\right)$ in the adjoint representation. $X^{\alpha \beta}$ is bifundamental in $S U_{L}\left(N_{f}\right) \times S U_{R}\left(N_{f}\right)$ and we take $N_{f}=2$ in the case of two light quarks.

The model

- We consider $A d S_{5}$ space with the hard wall, placed at some radial coordinate z_{m}

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(-d z^{2}+d x^{\mu} d x_{\mu}\right) ; \quad 0<z \leq z_{m}
$$

- The fields in AdS are in correspondence with QCD currents:

$$
\begin{aligned}
L_{\mu}^{a} & \leftrightarrow \bar{q}_{L} \gamma^{\mu} t^{a} q_{L} \\
R_{\mu}^{a} & \leftrightarrow \bar{q}_{R} \gamma^{\mu} t^{a} q_{R} \\
\left(\frac{2}{z}\right) X^{\alpha \beta} & \leftrightarrow \bar{q}_{R}^{\alpha} q_{L}^{\beta}
\end{aligned}
$$

here t^{a} are generators of $\operatorname{SU}\left(N_{f}\right)$ in the adjoint representation. $X^{\alpha \beta}$ is bifundamental in $S U_{L}\left(N_{f}\right) \times S U_{R}\left(N_{f}\right)$ and we take $N_{f}=2$ in the case of two light quarks.

- Boundary conditions at z_{m} are: $\partial_{z} L\left(z_{m}\right)=0 ; \partial_{z} R\left(z_{m}\right)=0$.

The model

The action is

$$
S=\int d^{5} x \sqrt{g} \operatorname{Tr}\left\{\Lambda^{2}\left(|D X|^{2}+\frac{3}{R^{2}}|X|^{2}\right)-\frac{1}{4 g_{5}^{2}}\left(F_{L}^{2}+F_{R}^{2}\right)\right\}
$$

where

$$
\begin{gathered}
D_{B} X=\partial_{B} X-\imath L_{B} X+\imath X R_{B} \\
L(R)=L(R)^{a} t^{a} \\
F_{(L) B D}=\partial_{B} L_{D}-\partial_{D} L_{B}-\imath\left[L_{B}, L_{D}\right],
\end{gathered}
$$

and we introduce the normalization constant Λ of field X

The model

The classical solution for $X^{\alpha \beta}$ has the form

$$
X_{0}(z)=\frac{1}{2} M z+\frac{1}{2} \Sigma z^{3} .
$$

By the AdS/CFT conjecture, one relates M to the quark mass matrix, and Σ to the VEV of operator $\langle\bar{q} q\rangle$, i.e. quark condensates. We choose normalization such as $M=m \mathbf{1} ; \Sigma=\sigma \mathbf{1}$, assuming the equality of quark masses. It is convenient to decompose:

$$
X=X_{0} e^{i 2 \pi^{a}\left(t^{a}\right)}=\mathbf{1} \frac{v(z)}{2} e^{\imath 2 \pi^{a} t^{a}} \quad v(z)=m z+\sigma z^{3}
$$

One can see, that in the quadratic order X interacts only with axial field $2 A=L-R$ and not with vector one $(2 V=R+L)$. That means X breaks chiral symmetry.

The model

We take the transverse gauge for V_{μ} and decompose. A_{μ} on longitudinal and transverse parts.:

$$
\partial_{\mu} V_{\mu}=0 \quad A_{\mu}=A_{\perp \mu}+\partial_{\mu} \phi
$$

One can relate the pseudoscalar current $\bar{q} \gamma_{5} q$ with axial vector current $\bar{q} \gamma_{5} \gamma_{\mu} q$ via:

$$
\partial_{\mu}\left(\bar{q} \gamma_{5} \gamma_{\mu} q\right)=2 m\left(\bar{q} \gamma_{5} q\right)
$$

The model

This allows us to write down convenient table of correspondence:

$$
\begin{aligned}
V_{\mu} & \leftrightarrow \bar{q} \gamma^{\mu} q=J_{V} \\
A_{\mu} & \leftrightarrow \bar{q} \gamma_{5} \gamma^{\mu} q=J_{A} \\
\frac{Q^{2}}{2 m} \phi & \leftrightarrow \bar{q} \gamma_{5} q=J_{\pi}
\end{aligned}
$$

Using this correspondance we can compute some current correlators in QCD via AdS/CFT recipe, for example:

$$
\begin{gathered}
\left.\left\langle J_{V}\left(q_{1}\right) J_{V}\left(q_{2}\right)\right\rangle=\frac{\delta}{\delta V_{0}\left(q_{1}\right)} \frac{\delta}{\delta V_{0}\left(q_{2}\right)} S\left(V_{\text {classic }}\right) \right\rvert\, V_{0}=0 . \\
V_{0}(q)=\left.V_{\text {classic }}(q, z)\right|_{z=0}
\end{gathered}
$$

Parameter fixing

Equations of motion:

$$
\begin{gathered}
{\left[\partial_{z}\left(\frac{1}{z} \partial_{z} V_{\mu}^{a}\right)+\frac{q^{2}}{z} V_{\mu}^{a}\right]_{\perp}=0} \\
{\left[\partial_{z}\left(\frac{1}{z} \partial_{z} A_{\mu}^{a}\right)+\frac{q^{2}}{z} A_{\mu}^{a}-\frac{R^{2} g_{5}^{2} \Lambda^{2} v^{2}}{z^{3}} A_{\mu}^{a}\right]_{\perp}=0} \\
\partial_{z}\left(\frac{1}{z} \partial_{z} \phi^{a}\right)+\frac{R^{2} g_{5}^{2} \Lambda^{2} v^{2}}{z^{3}}\left(\pi^{a}-\phi^{a}\right)=0 \\
-q^{2} \partial_{z} \phi^{a}+\frac{R^{2} g_{5}^{2} \Lambda^{2} v^{2}}{z^{2}} \partial_{z} \pi^{a}=0
\end{gathered}
$$

Parameter fixing

Equation for V is exactly solvable and gives
$V(Q, z)=-V_{0}(Q) \frac{1}{I_{0}\left(Q z_{m}\right)} Q z\left[K_{0}\left(Q z_{m}\right) I_{1}(Q z)-I_{0}\left(Q z_{m}\right) K_{1}(Q z)\right]$
The variation of metric with respect to boundary value V_{0} is

$$
\delta S_{V}=-\int d^{4} \times \frac{R}{g_{5}^{2}}\left[\delta V_{\mu} \frac{\partial_{z} V_{\mu}}{z}\right]_{z=\epsilon}
$$

And the result for current correlator is:

$$
\left\langle J_{V \mu}^{a}(q) J_{V \nu}^{b}(q)\right\rangle=\delta^{a b}\left(q_{\mu} q_{\nu}-q^{2} g_{\mu \nu}\right) \Pi_{V}\left(q^{2}\right)
$$

Parameter fixing $-z_{m}$

Here

$$
\Pi_{V}\left(Q^{2}\right)=-\frac{R}{g_{5}^{2}} \frac{\left(K_{0}\left(Q z_{m}\right)-I_{0}\left(Q z_{m}\right)[\ln (Q \epsilon / 2)+\gamma]\right)}{I_{0}\left(Q z_{m}\right)}
$$

The poles of euclidean correlator correspond to masses of bound states, so we can fix z_{m} by the ρ-meson mass:

$$
I_{0}\left(\imath M_{\rho} z_{m}\right)=0 \quad \Longrightarrow \quad z_{m}=\frac{2.4}{M_{\rho}}
$$

Parameter fixing - g_{5}

In the large Q^{2} limit we have

$$
\Pi_{V}\left(Q^{2}\right)=-\frac{R}{2 g_{5}^{2}} \ln Q^{2} \epsilon^{2}
$$

This result can be compared with the QCD sum rules leading term:

$$
\Pi_{V}\left(Q^{2}\right)=-\frac{N_{c}}{24 \pi^{2}} \ln Q^{2} \epsilon^{2}
$$

And this fixes g_{5}

$$
\frac{g_{5}^{2}}{R}=\frac{12 \pi^{2}}{N_{c}}
$$

Parameter fixing $-\Lambda$

To compute correlator of J_{π} we find solutions for coupled ϕ and π near the boundary

$$
\begin{gathered}
\phi(z)=\phi_{0}(q) Q z K_{1}(Q z) \\
\pi(z)=-\phi_{0}(q) \frac{Q^{2}}{g_{5}^{2} R^{2} \Lambda^{2} m^{2}} Q z K_{1}(Q z) .
\end{gathered}
$$

The variation of action with respect to $\phi_{0}(q)$ gives

$$
\delta S_{\pi}=\int d^{4} x \frac{R}{g_{5}^{2}}\left[\delta \partial_{\mu} \phi \frac{\partial_{z} \partial_{\mu} \phi}{z}\right]_{z=\epsilon}-\Lambda^{2} R^{3}\left[\delta \pi \frac{v^{2}}{z^{3}} \partial_{z} \pi\right]_{z=\epsilon}
$$

Parameter fixing $-\Lambda$

And we get for correlator:

$$
\left\langle J_{\pi}(q), J_{\pi}(q)\right\rangle=2 \frac{R}{g_{5}^{2}} \frac{1}{g_{5}^{2} R^{2} \Lambda^{2}} Q^{2} \ln \left(Q^{2} \epsilon^{2}\right)
$$

Comparison with the sum rules leading term

$$
\left\langle J_{\pi}(q), J_{\pi}(q)\right\rangle_{Q C D}=\frac{N_{c}}{16 \pi^{2}} Q^{2} \ln \left(Q^{2} \epsilon^{2}\right)
$$

gives the value of Λ

$$
\Lambda^{2}=\frac{8}{3} \frac{1}{g_{5}^{2} R^{2}}=\frac{2 N_{c}}{9 \pi^{2}} \frac{1}{R^{3}}
$$

Parameter fixing - σ

It remains us to fix relation between σ and condensate. In QCD

$$
\langle\bar{q} q\rangle=\left.\frac{\delta \varepsilon_{Q C D}}{\delta m_{q}}\right|_{m_{q}=0}
$$

In AdS it corresponds to:

$$
\langle\bar{q} q\rangle=\left.\frac{\delta S\left(X_{0}\right)}{\delta m}\right|_{m=0}=3 R^{3} \Lambda^{2} \sigma=\frac{2 N_{c}}{3 \pi^{2}} \sigma
$$

Results - Π_{A}

Now all parameters are fixed. And the action looks:

$$
S=\frac{N_{c}}{12 \pi^{2}} \int d^{5} x\left\{-\frac{1}{4 z}\left(F_{A}^{2}+F_{V}^{2}\right)+\frac{4}{3 z^{3}} v(z)^{2}(\partial \pi-A)^{2}+\frac{4}{z^{5}} v(z)^{2}\right\}
$$

Solving EOM for A_{μ} in large Q^{2} limit we can obtain the axial current correlator, where OPE terms emerge from $1 / Q^{2}$ corrections of solution:

$$
\Pi_{A}\left(Q^{2}\right)=-\frac{N_{c}}{24 \pi^{2}}\left[\ln Q^{2}+\frac{128}{15} \frac{\sigma^{2}}{Q^{6}}-\frac{64}{9} \frac{\sigma m}{Q^{4}}\right]
$$

Results $-\Pi_{L R}$

The interesting object is "left-right" correlator $\Pi_{L R}=\Pi_{A}-\Pi_{V}$

$$
\Pi_{L R}=-\frac{N_{c}}{9 \pi^{2}}\left[\frac{16}{5} \frac{\sigma^{2}}{Q^{6}}-\frac{8}{3} \frac{\sigma m_{q}}{Q^{4}}\right]
$$

Note here, that it has not powers of R , namely it has the order $\lambda^{\prime 0}$. If we denote coefficients in this formla as f and ρ, we find that at $\lambda^{\prime} \rightarrow \infty$ our calculation predicts:

$$
f\left(\lambda^{\prime}\right) \sim \rho\left(\lambda^{\prime}\right) \sim \lambda^{\prime 0}
$$

while at weak coupling regime(sum rules):

$$
\rho\left(\lambda^{\prime}\right) \sim \lambda^{\prime 0} \quad f\left(\lambda^{\prime}\right)=-4 \pi \alpha_{s} \sim \lambda^{\prime}
$$

Results $-f_{\pi}$

We can also obtain the value of f_{π}, using the relation:

$$
\left.\Pi_{A}(Q)\right|_{Q \rightarrow 0}=\frac{f_{\pi}^{2}}{Q^{2}}
$$

For this purpose we compute solution for A_{μ} at $Q=0$ and get:

$$
\begin{aligned}
f_{\pi}^{2} & =-\left.\frac{R}{g_{5}} \frac{\partial_{z} a(z)}{z}\right|_{z=0, Q=0}= \\
& \approx \frac{R}{g_{5}} 2.16 \sigma^{2 / 3}=\frac{N_{c}}{12 \pi^{2}} 2.16\left(\frac{3 \pi^{2}}{2} \frac{\langle\bar{q} q\rangle}{N_{c}}\right)^{2 / 3} \sim 40 \mathrm{Mev}
\end{aligned}
$$

Do not coincide with expected 140 Mev

Problems and solutions

- Meson masses do not demonstrate Regge behavior
- Coefficients in OPE of correlators differ from sum rules
- Incorrect value of f_{π}

Problems and solutions

- Meson masses do not demonstrate Regge behavior
- Modification of IR boundary
- Coefficients in OPE of correlators differ from sum rules
- Incorrect value of f_{π}

Problems and solutions

- Meson masses do not demonstrate Regge behavior
- Modification of IR boundary
- Coefficients in OPE of correlators differ from sum rules
- Modification of metric
- Incorrect value of f_{π}

Problems and solutions

- Meson masses do not demonstrate Regge behavior
- Modification of IR boundary
- Coefficients in OPE of correlators differ from sum rules
- Modification of metric
- Incorrect value of f_{π}
- Modification of scalar potential

Conclusion

The model under consideration has several free parameters, but still has some predictive power. It gives qualitatively satisfactory results, but numbers differ. Study of such simple model gives an insight on common features of AdS/QCD and proposes modifications, needed to obtain more realistic results.

Thank you for your attention!

