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Boost-invariant flow

Bjorken ’83
Assume a flow that is invariant under
longitudinal boosts and does not depend
on the transverse coordinates.

Pass to proper-time/spacetime rapidity coordinates (τ, y , x1.x2).

In a conformal theory, Tµ
µ = 0 and ∂µT

µν = 0 determine, under the above
assumptions, the energy-momentum tensor completely in terms of a single
function ε(τ).

ε(τ) is the energy density at mid-rapidity.

Previous lectures → late-time asymptotics of ε(τ).
Here → subasymptotic behaviour of ε(τ).

Romuald A. Janik (Krakow) Hydrodynamic Flow of QGP and AdS/CFT June 20, 2008 3 / 21



What is the physics of ε(τ)?

Weak coupling – free streaming

ε(τ) =
1

τ

Perfect fluid assumption

ε(τ) =
1

τ
4
3

Fluid with viscosity η = η0

τ

ε(τ) =
1

τ
4
3

(
1− 2η0

τ
2
3

+ . . .

)

Second order viscous hydrodynamics: η, τΠ:

ε(τ) =
1

τ
4
3

(
1− 2η0

τ
2
3

+
B(η, τΠ)

τ
4
3

+ . . .

)
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How to determine ε(τ)?

Consider ε(τ) = 1/τ s + . . .

Construct the dual geometry

ε(τ) −→ ds2 =
gµν(z,τ)dxµdxν+dz2

z2

Take the scaling limit τ →∞, z →∞ keeping v = z

τ
s
4

fixed

The curvature invariant RαβγδR
αβγδ is nonsingular in the scaling limit only

for s = 4
3

This corresponds to perfect fluid behaviour

The resulting geometry is the evolving black hole described in previous
lectures

Is this an exact perfect fluid?

Romuald A. Janik (Krakow) Hydrodynamic Flow of QGP and AdS/CFT June 20, 2008 5 / 21



How to determine ε(τ)?

Consider ε(τ) = 1/τ s + . . .

Construct the dual geometry

ε(τ) −→ ds2 =
gµν(z,τ)dxµdxν+dz2

z2

Take the scaling limit τ →∞, z →∞ keeping v = z

τ
s
4

fixed

The curvature invariant RαβγδR
αβγδ is nonsingular in the scaling limit only

for s = 4
3

This corresponds to perfect fluid behaviour

The resulting geometry is the evolving black hole described in previous
lectures

Is this an exact perfect fluid?

Romuald A. Janik (Krakow) Hydrodynamic Flow of QGP and AdS/CFT June 20, 2008 5 / 21



How to determine ε(τ)?

Consider ε(τ) = 1/τ s + . . .

Construct the dual geometry

ε(τ) −→ ds2 =
gµν(z,τ)dxµdxν+dz2

z2

Take the scaling limit τ →∞, z →∞ keeping v = z

τ
s
4

fixed

The curvature invariant RαβγδR
αβγδ is nonsingular in the scaling limit only

for s = 4
3

This corresponds to perfect fluid behaviour

The resulting geometry is the evolving black hole described in previous
lectures

Is this an exact perfect fluid?

Romuald A. Janik (Krakow) Hydrodynamic Flow of QGP and AdS/CFT June 20, 2008 5 / 21



How to determine ε(τ)?

Consider ε(τ) = 1/τ s + . . .

Construct the dual geometry

ε(τ) −→ ds2 =
gµν(z,τ)dxµdxν+dz2

z2

Take the scaling limit τ →∞, z →∞ keeping v = z

τ
s
4

fixed

The curvature invariant RαβγδR
αβγδ is nonsingular in the scaling limit only

for s = 4
3

This corresponds to perfect fluid behaviour

The resulting geometry is the evolving black hole described in previous
lectures

Is this an exact perfect fluid?

Romuald A. Janik (Krakow) Hydrodynamic Flow of QGP and AdS/CFT June 20, 2008 5 / 21



How to determine ε(τ)?

Consider ε(τ) = 1/τ s + . . .

Construct the dual geometry

ε(τ) −→ ds2 =
gµν(z,τ)dxµdxν+dz2

z2

Take the scaling limit τ →∞, z →∞ keeping v = z

τ
s
4

fixed

The curvature invariant RαβγδR
αβγδ is nonsingular in the scaling limit only

for s = 4
3

This corresponds to perfect fluid behaviour

The resulting geometry is the evolving black hole described in previous
lectures

Is this an exact perfect fluid?

Romuald A. Janik (Krakow) Hydrodynamic Flow of QGP and AdS/CFT June 20, 2008 5 / 21



How to determine ε(τ)?

Consider ε(τ) = 1/τ s + . . .

Construct the dual geometry

ε(τ) −→ ds2 =
gµν(z,τ)dxµdxν+dz2

z2

Take the scaling limit τ →∞, z →∞ keeping v = z

τ
s
4

fixed

The curvature invariant RαβγδR
αβγδ is nonsingular in the scaling limit only

for s = 4
3

This corresponds to perfect fluid behaviour

The resulting geometry is the evolving black hole described in previous
lectures

Is this an exact perfect fluid?

Romuald A. Janik (Krakow) Hydrodynamic Flow of QGP and AdS/CFT June 20, 2008 5 / 21



Is ε(τ) = 1/τ
4
3 exact?

At subleading order we find 4th order pole singularities in the curvature

RαβγδR
αβγδ = R0(v)︸ ︷︷ ︸

nonsingular

+
1

τ
4
3

R2(v)︸ ︷︷ ︸
singular !

+ . . .

Set ε(τ) = 1

τ
4
3

(
1− 2A

τ r

)
Solve for geometry and compute the curvature [Nakamura,Sin;RJ]

RαβγδR
αβγδ = R0(v)︸ ︷︷ ︸

nonsingular

+
1

τ r
R1(v)︸ ︷︷ ︸

nonsingular

+
1

τ 2r
R̃2(v)︸ ︷︷ ︸
singular !

+
1

τ
4
3

R2(v)︸ ︷︷ ︸
singular !

+ . . .

The singular terms may cancel with each other only when r = 2
3 and

A = 2−
1
2 3−

3
4

This correspond exactly to corrections coming from viscosity with the
numerical coefficient exactly corresponding to η/s = 1

4π [See Son’s lecture].

This is a very nontrivial consistency check that the nonlinear dynamics is
given by viscous hydrodynamics
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Go to higher order [Heller,RJ]

ε(τ) =
1

τ
4
3

(
1− 2η0

τ
2
3

+
B

τ
4
3

+ . . .

)

Curvature

RαβγδR
αβγδ = R0(v) +

1

τ
2
3

R1(v) +
1

τ
4
3

R2(v)︸ ︷︷ ︸
nonsingular

+
1

τ 2
R3(v) + . . .

R3(v) has 4th order poles which can be cancelled by a definite choice of B
which fixes the relaxation time τΠ.

B is uniquely fixed. The value of τΠ depends on the type of 2nd order
hydrodynamic theory used to describe ε(τ). Subsequent work fixed uniquely
this theory → Son’s lectures

After fixing R3(v) there remains a logarithmic singularity. This is probably
due to a pathology of Fefferman-Graham coordinate expansion → see talk by
M. Heller
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Assumptions

We picked boost-invariant setup with full transverse symmetry

Energy-momentum tensor completely expressed in terms of ε(τ)

AdS/CFT computation

Construct dual geometry – solve Einstein’s equations

Fix ε(τ) from nonsingularity

Link with hydrodynamics

Take ε(τ) from AdS/CFT

Plug it into phenomenological hydrodynamic equations

Find that ε(τ) can be a solution

Fix parameters in these equations (viscosity, relaxation time etc.)
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Question

Can one lift the symmetry assumptions?

Is it possible to see hydrodynamic equations more directly?
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General hydrodynamic equations from AdS/CFT

The approach of [Bhattacharyya,Hubeny,Minwalla,Rangamani]

Start from a static black hole with fixed temperature T which describes a
fluid at rest, uµ = (1, 0, 0, 0) with constant energy density

Perform a boost to obtain a uniform fluid moving with constant velocity uµ

The resulting metric (in Eddington-Finkelstein coordinates) is

ds2 = −2uµdxµdr − r2

(
1− T 4

π4r4

)
uµuνdxµdxν + r2(ηµν + uµuν)dxµdxν

where r =∞ corresponds to the boundary, r = T/π is the horizon while
r = 0 is the position of the singularity.

Promote T and uµ to (slowly-varying) functions of xµ

Caveat: The metric is no longer an exact solution of Einstein’s equations
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Perform an expansion of the Einstein equations in gradients of spacetime
fields.

Find corrections to the metric at first and second order

Require nonsingularity to fix integration constants

Read off the resulting energy-momentum tensor Tµν

Tµν is expressed in terms uµ and T and their derivatives

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)

(
log 2Tµν

2a + 2Tµν
2b + (2− log 2)

(
1

3
Tµν

2c + Tµν
2d + Tµν

2e

))
︸ ︷︷ ︸

second order hydrodynamics

Full nonlinear hydrodynamic equations follow now from ∂µT
µν = 0
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Going beyond hydrodynamics

The most interesting (and most difficult) open problems are beyond the reach of
hydrodynamics.

Key questions:

why is thermalization/isotropisation so fast?

can we understand the thermalization time?

how does thermalization occur?
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Modeling a heavy-ion collision

Find a model for the projectile

Assume no dependence on transverse coordinates

The configuration should depend only on one light cone coordinate

Tracelessness and conservation of energy-momentum tensor leads to

T−− = f (x−) all other components vanish

The dual geometry can be found exactly [RJ,Peschanski]

ds2 =
−2dx+dx− + z4f (x−)dx−

2
+ dx2

⊥ + dz2

z2

When f (x−) = µδ(x−) we are dealing with a shock-wave

Consider the collision of two such shockwaves
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A 1 + 1 dimensional toy model

[Kajantie,Louko,Tahkokallio] considered a collision in a 1+1 dimensional CFT
dual to 2+1 dimensional gravity

Advantage (but also a disadvantage...) is that 2+1 gravity is often easy to
solve exactly

Consider two shockwaves (or more general projectiles) coming on two
light-cone directions:

(∗) T−− = f (x−) T++ = g(x+)

Dual geometry can be found exactly:

ds2 =
−(2 + z4

2 f (x−)g(x+))dx+dx− + z2f (x−)dx−
2

+ z2g(x+)dx+2
+ dz2

z2

Problem: The projectiles pass through each other and after the collision are
unaffected by the presence of each other

Reason: The distribution (∗) is the most general one possible in a 1+1D CFT. No
place for nontrivial dynamics of thermalization etc.
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The 3+1 dimensional problem

In order to study more realistic physics we have to tackle the full 3+1
dimensional setup

No longer solvable

The existence of exact plane-wave collision metrics in 4D general relativity
does not help – one more coordinate!

Pioneering work by Grumiller, Romatschke: small time expansion – but
problems with energy positivity

Different expansion: Albacete, Kovchegov, Taliotis

Entropy production through a trapped surface formation
[Gubser,Pufu,Yarom] (somewhat different setup)

Lots of open questions remain!
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Physics in the expanding plasma

It is interesting to ask questions about gauge theory physics influenced by the
expanding and cooling plasma system.

Use the ‘moving black-hole’ geometry instead of the usual AdS5 or
AdS black hole.

New feature: explicit time-dependence

Study the physics of flavours and mesons
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Fundamental flavours and mesons in AdS/CFT

Consider N = 4 SYM + one additional flavour (N = 2)

No chiral symmetry breaking!

AdS/CFT description:
Embed a D7 brane in the geometry

Lightest mesons ≡ fluctuations of the D7 brane embedding (or D7 gauge
fields)
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Finite temperature case (static plasma)

Embed a D7 brane in the black hole geometry

Two types of embeddings:
1 ‘Minkowski embeddings’ : the D7 brane does not reach the horizon – heavy

quarks – stable mesons
2 ‘Black hole embeddings’ : the D7 brane touches the horizon – light quarks –

mesons dissociate

Procedure:
1 Fix the current quark mass m by boundary conditions for the embedding at

the boundary
2 Solve for the embedding from DBI EOM
3 Read off

˙
ψ̄ψ

¸
from subasymptotics of the embedding

4 Study fluctuations of the embedding

δφ(xµ, ρ) = e ikµxµ

fkµ (ρ)

5 Obtain meson masses from M2 = k2 for which the solution fkµ (ρ) is
nonsingular
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mesons dissociate

Procedure:
1 Fix the current quark mass m by boundary conditions for the embedding at

the boundary
2 Solve for the embedding from DBI EOM
3 Read off

˙
ψ̄ψ

¸
from subasymptotics of the embedding

4 Study fluctuations of the embedding

δφ(xµ, ρ) = e ikµxµ

fkµ (ρ)

5 Obtain meson masses from M2 = k2 for which the solution fkµ (ρ) is
nonsingular
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Fundamental flavours and mesons in an expanding plasma system

Study the setup in the expanding plasma J. Grosse, RJ, P. Surowka

Use late time expansion −→ ‘Minkowski embedding’

Embed D7 brane into plasma geometry (including viscosity)

y6(ρ, τ) = m − f1(ρ)

τ
8
3

+
f2(ρ)

τ
10
3

+ . . .

Read off the condensate 〈
ψ̄ψ
〉
∝ ε2(τ)

m5

Look at fluctuations −→ mesons

Major complication: Lack of separability
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Ansatz for mesonic fluctuations:

δφ =

√∫
ω(τ)dτ

ω(τ)τ
J0

(∫
ω(τ)dτ

){
g0(ρ) +

1

τ
4
3

g1(ρ) +
1

τ 2
g2(ρ) + . . .

}

Determine τ -dependent frequency

ω(τ) =
4π

λ

(
m +

. . .

τ
4
3

+
. . .

τ 2
+ . . .

)

Time-dependent frequencies suggest particle production – but difficult to
control in this approximation scheme...
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Summary

AdS/CFT predicts hydrodynamic behaviour of N = 4 plasma

This extends to the nonlinear regime!

Expanding plasma is stable against small perturbations

Very general framework for studying time-dependent dynamical processes or
out-of-equilibrium configuration

Use gravity backgrounds to study physics influenced by the expanding plasma
system

Outlook

Early stage of the collision??
Initial thermalization??
Isotropisation?? Plasma instabilities?? see talk by P. Witaszczyk
Lifting the constraints of N = 4 SYM...
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