Partons and jets at strong coupling (III)

Edmond Iancu IPhT Saclay & CNRS

Cracow School of Theoretical Physics, XLVIII Course, 2008: Aspects of Duality, June 13-22, 2008

Outline

Conclusions

Current in the plasma

Outline

Lecture I : Partons and jets in QCD at weak coupling

- Introduction & Motivations
- The situation at weak coupling (pQCD, phenomenology)
- Lecture II : A high–energy current in AdS/CFT
 - Invitation towards strong coupling
 - Methodology (black hole, wave equations)
 - The vacuum problem as a warm up
- Lecture III : R-current in a strongly-coupled plasma
 - Results & Physical discussion
 - > Medium induced branching
 - Parton saturation at strong coupling
 - > Jet energy loss & momentum broadening
 - General consequences for high—energy scattering

Maxwell wave in a Black Hole

■ $\mathcal{N} = 4$ SYM at temperature $T \iff$ a Black Hole in the 'radial' dimension of AdS_5 : horizon at $\chi_0 = 1/\pi T$ or $\tilde{\chi}_0 = 2$

• Abelian current J_{μ} in 4D \leftrightarrow Maxwell wave falling into AdS_5

Outline

Current in the plasma

Black Hole

- Current in a plasma
- EOM
- Potential
- Space–like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Electromagnetic current in a plasma

- Abelian \mathcal{R} -current : $J_{\mu}(x) \propto e^{-i\omega t + ikz}$ with $q^2 = \omega^2 k^2$
- Retarded polarization tensor: thermal expectation value

$$\Pi_{\mu\nu}(q) \equiv \int \mathrm{d}^4 x \,\mathrm{e}^{-iq \cdot x} \,i\theta(x_0) \,\langle \left[J_{\mu}(x), J_{\nu}(0)\right] \,\rangle_T$$

• 'Hard probe' :
$$Q^2 \equiv |q^2| \gg T^2 \Longrightarrow$$
 short distances

- **High energy** : $\omega \simeq k \gg Q$ (most interesting)
 - Im $\Pi_{\mu\nu}$: absorption of the current by the plasma
 - time-like current ($q^2 > 0$) : jets, meson
 - space–like current ($q^2 < 0$) : DIS & parton structure
- 'The fall of the Maxwell wave in the Black Hole'
- The trajectory of this fall (+ the UV/IR correspondence)
 - \Longrightarrow the physical mechanism responsible for absorption

- Current in the plasma
- Black Hole
- Current in a plasmaEOM
- Potential
- Space-like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
 Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Conclusions

Wave equation in the AdS BH

Outline

- Current in the plasma
- Black Hole
- Current in a plasma

● EOM

- Potential
- Space–like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–likeEarly times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Conclusions

The most interesting dynamics at high Q^2 takes place near the Minkowski boundary : $\chi \lesssim 1/Q \ll \chi_0$

 $\psi'' + \frac{1}{4\chi^2}\psi + \frac{\omega^2 - k^2f}{f^2}\psi + \frac{f'}{f}\left(\psi' - \frac{1}{\nu}\psi\right) = 0$

 $f = 1 - \left(\frac{\tilde{\chi}}{\tilde{\chi}_0}\right)^4$ where $\tilde{\chi}_0 = 2$ or $\chi_0 = 1/\pi T$

 \Longrightarrow one can replace $f \to 1$ everywhere except in the piece amplified by the energy :

$$\omega^2 - k^2 f = q^2 + k^2 \left(\frac{\chi}{\chi_0}\right)^4 = \mp Q^2 + \frac{k^2 \chi^4}{16}$$

upper sign: space–like ($q^2 < 0$); lower sign: time–like ($q^2 > 0$)

Competition between Q^2 (virtuality) and $k^2\chi^4$ (interactions in the plasma) \implies critical point $\chi_{cr} \sim \sqrt{Q/k} \ll \chi_0$

Effective potential

 $(K \equiv Q \text{ in all the figures})$

Effective "Schrödinger equation" : $-\psi'' + V_{\pm}(\chi)\psi = 0$

Momentum broadening

(A)

- The potential becomes attractive at sufficiently large χ
 - small $\chi \ll \chi_{cr}$: same dynamics as in the vacuum
 - larger χ : accelerated fall into the black hole

\mathbb{C}

Space–like current

• After an early diffusion ($L \sim \sqrt{t}$) at times $t \lesssim \omega/Q^2$, the wave gets stuck near the boundary: $\chi \lesssim 1/Q \ll 1/T$

No interaction with the BH ... except through tunneling

Outline

- Current in the plasma
- Black Hole
- Current in a plasma
- EOM
- Potential

Space–like

- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

'Perfect color transparency'

• A small color dipole ('meson') with size $L \sim 1/Q$ propagate through the strongly–coupled plasma without interactions !

Outline

- Current in the plasma
- Black Hole
- Current in a plasma
- EOM
- Potential
- Space-like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Conclusions

■ pQCD: the dipole cross-section vanishes too, but much more slowly : $\sigma_{\text{dipole}} \sim 1/Q^2$ as $Q^2 \rightarrow \infty$ (twist-2 operator)

Increasing the energy

By increasing the energy ω , the interactions in the plasma become stronger and stronger

$V(\chi)$ Current in the plasma $V(\chi)$ V_{C} Black Hole V_{A} V_{R} V_{A} V_{C} Current in a plasma EOM Potential $1/k^{1/3}$ $\sqrt{K/k}$ 1/KSpace-like χ $-1/k^{1/3}$ Small meson $1/k^{1/3}$ $\sqrt{K/k}$ 1/KHigh energy Saturation momentum Large x Trailing string Partons Saturation Time–like Early times Jets The fall Branching diffusion medium branching diffusion Energy loss Heavy Quark moderate energy high energy Momentum broadening Conclusions

 $(K \equiv Q \text{ in all the figures})$

The barrier disappears when the penetration length $\chi \sim 1/Q$ gets close to the 'point of no return' $\chi_{\rm cr} \sim \sqrt{Q/k}$

(A)

Outline

High energy

• This requires a minimal energy ω_s (for given Q^2 and T)

Outline

Current in the plasma

 (Δ)

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space-like
- Small meson

High energy

- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Conclusions

• For $\omega > \omega_s$, the wave is falling into the BH \Longrightarrow energy loss

The virtuality plays no role => the high-energy dynamics is the same for both space-like and time-like currents

Saturation momentum

$$\omega_s \sim \frac{Q^3}{T^2} \iff Q_s \simeq (\omega T^2)^{1/3} \simeq \frac{T}{x}$$

- Bjorken's x for a plasma (plasma rest frame) : $x = \frac{Q^2}{2\omega T}$
 - More on the physical meaning of this condition
 - On the supergravity side:

Outline

Current in the plasma

 $\Gamma \Delta \Gamma$

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space–like
- Small meson
- High energy

Saturation momentum

- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Saturation momentum

$$\omega_s \sim \frac{Q^3}{T^2} \iff Q_s \simeq (\omega T^2)^{1/3} \simeq \frac{T}{x}$$

On the gauge theory side

The partonic fluctuation must live long enough to feel the effects of the plasma

Outline

ourrent in the plasma

(A)

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space-like
- Small meson
- High energy

Saturation momentum

- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Saturation momentum

$$\omega_s \sim \frac{Q^3}{T^2} \iff Q_s \simeq (\omega T^2)^{1/3} \simeq \frac{T}{x}$$

Outline

Current in the plasma

 \bigcap

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space–like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Conclusions

 $\blacksquare \ L_s \sim 1/Q_s$: the minimal size for the dipole to feel the plasma

Dipoles with size $L \gtrsim L_s$ cannot survive in the plasma.

$$L_s \sim \frac{1}{Q_s} \quad \& \quad \gamma \sim \frac{\omega}{Q} \implies L_s \sim \frac{1}{\sqrt{\gamma T}} = \frac{(1 - v_z^2)^{1/4}}{T}$$

"meson screening length", "limiting velocity" [cf. Liu, Rajagopal, Wiedemann; Chernicoff et al; Caceres et al (2006)]

Large-x: No partons, no jets !

$$Q_s(x) \simeq \frac{T}{x} \iff x_s(Q) \simeq \frac{T}{Q}$$

- Outline
- Current in the plasma

 \bigcap

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space–like
- Small meson
- High energy
- Saturation momentum

Large x

- Trailing string
- Partons
- Saturation
- Time–likeEarly times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Conclusions

For
$$Q > Q_s(x)$$
 or $x > x_s(Q)$: $F_2(x,Q^2) \approx 0$

 \implies no partons with large momentum fractions $x > x_s$

- 'All partons have branched down to small values of x' (Polchinki and Strassler, 02; Hatta, E.I., Mueller, 07; see below !)
- No forward/backward jets in hadron-hadron collisions !

High energy: The fall

• For $Q > Q_s(x)$ or $x > x_s(Q)$: the wave diffuses up to $\chi \sim 1/Q_s$, then it falls along a massless geodesics

■ The same as the 'trailing string' (Herzog et al; Gubser, 06)

Outline

Current in the plasma

(A)

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space–like
- Small meson
- High energy
- Saturation momentum
- Large x

Trailing string

- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

The lifetime of a high-energy current

(A)

Finding the partons (plasma IMF)

- Total absorbtion of the current in the plasma: Unitarity limit (maximal possible scattering) for DIS
- **Saturation line:** $Q_s(x) \simeq T/x$ or $x_s(Q) \simeq TQ$

$$F_2(x,Q^2) \simeq x N_c^2 Q^2 \begin{cases} \exp\left\{-(x/x_s)^{1/2}\right\} & \text{for} \quad x \gg x_s \equiv T/Q \\ 1 & \text{for} \quad x \lesssim x_s \equiv T/Q, \end{cases}$$

- For given $Q \gg T$, all the partons have fallen at $x \leq x_s \ll 1$
- For $x \leq x_s$: occupation numbers of $\mathcal{O}(1) \Longrightarrow$ saturation
- Energy sum rule:

$$\mathcal{E} = T^2 \int_0^1 \mathrm{d}x \, F_2(x, Q^2) \sim T^2 \left[x F_2(x, Q^2) \right]_{x=x_s} \sim N_c^2 T^4 \checkmark$$

Outline

- Current in the plasma
- Black Hole
- Current in a plasma
- EOM
- Potential
- Space–like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string

Partons

- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy lossHeavy Quark
- Momentum broadening
- Conclusions

œ

Saturation line: weak vs. strong coupling

- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Conclusions

Saturation exponent : $Q_s^2(x) \propto 1/x^{\lambda_s} \equiv \mathrm{e}^{\lambda_s Y}$

- weak coupling (lowest order): $\lambda_s \approx 1.23 g^2 N_c$
- phenomenology & pQCD NLO: $\lambda_s \approx 0.3$
- strong coupling (plasma): $\lambda_s = 2$ (graviton)

Time-like current at strong coupling

A time-like current can decay (into partons of $\mathcal{N} = 4$ SYM) already in the vacuum

Outline

Current in the plasma

(A)

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space-like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation

● Time–like

- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Early times: free streaming

■ Early times/small size *L* :

free expansion up to the critical size $L_{\rm cr} \sim 1/\sqrt{\gamma} \, T$

Outline

Current in the plasma

(A)

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space-like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time-like
- Early times
- Jets
- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Jets in the plasma: early times

Current in the plasma

(A)

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space-like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times

Jets

- The fall
- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Conclusions

Free streaming up to the point of no return:

$$\chi_{\rm cr} \sim \frac{1}{\sqrt{\gamma}} \implies L_{\rm cr} \sim \frac{1}{\sqrt{\gamma}T} = \frac{(1-v_z^2)^{1/4}}{T}$$

Later times : falling into the black hole

'trailing string' [Herzog, Karch, Kovtun, Kozcaz, Yaffe; Gubser, 2006]

Energy transfer from the partons to the plasma

Lifetime of the current/penetration length: $\Delta t \sim \Delta z \sim \frac{\sqrt{\gamma}}{T}$

(A)

Medium induced branching

Universal energy loss mechanism, active at partonic level
 no reason why branching should stop at 2 parton level
 no reason to favour special corners of phase–space

- Current in the plasma
- Black Hole
- Current in a plasma
- EOM
- Potential
- Space-like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall

Branching

- Energy loss
- Heavy Quark
- Momentum broadening

Trailing string revisited

The enveloping curve of the resulting partonic system coincides with the 'trailing string' (Herzog et al; Gubser, 2006)

as it should by virtue of the UV/IR correspondence

Outline

Current in the plasma

(A)

- Black Hole
- Current in a plasma
- EOM
- Potential
- Space-like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets

The fall

- Branching
- Energy loss
- Heavy Quark
- Momentum broadening

Energy loss: massless parton

Energy loss per branching:

Outline

- Current in the plasma
- Black Hole
- Current in a plasma
- EOM
- Potential
- Space–like
- Small meson
- High energy
- Saturation momentum
- Large x
- Trailing string
- Partons
- Saturation
- Time–like
- Early times
- Jets
- The fall
- Branching
- Energy lossHeavy Quark
- Momentum broadening
- Conclusions

$$\frac{\omega_n - \omega_{n-1}}{t_n - t_{n-1}} \sim -\frac{\omega_n}{\omega_n/Q_n^2} \sim -Q_n^2$$
$$\implies -\frac{\mathrm{d}\omega(t)}{\mathrm{d}t} \simeq Q_s^2(t) = (\omega T^2)^{2/3}$$

Parton lifetime (the time to loose all its energy) :

$$\Delta t \sim \frac{1}{T} \left(\frac{\omega_0}{T}\right)^{1/3}$$

Same as the 'gluon lifetime' (Gubser, Gulotta, Pufu, and Rocha,08)

 $(\Box \Delta)$

(A)

Transverse momentum broadening

- Outline
- Current in the plasma
- Conclusions

- Hard probes & high-energy physics appears to be quite different at strong coupling as compared to QCD
 - no forward/backward particle production in HIC
 - no jets in e^+e^- annihilation
 - jet momentum broadening dominated by in-medium parton branching, as opposed to thermal rescattering
- Not necessarily surprising: by asymptotic freedom, hard & high-energy physics in QCD is weakly coupled
- Are AdS/CFT methods useless for HIC ? Not necessarily so !
 - Transition from partons to fluid (Gubser et al, Chesler and Yaffe)
 - Some observables receive contributions from several scales, from soft to hard: use AdS/CFT in the soft sector Jet quenching: Liu, Rajagopal, Wiedemann, 06; Mueller, 08
 - Separation scale $Q_0 = ??$ Perhaps $2\pi T_c \sim 1 \text{ GeV}$
 - ... and long-range properties: hydro, thermalization etc