#### Partons and jets at strong coupling (I)

Edmond Iancu IPhT Saclay & CNRS

Cracow School of Theoretical Physics, XLVIII Course, 2008: Aspects of Duality, June 13-22, 2008

| Introduction |  |
|--------------|--|
|              |  |
| Motivation   |  |

| e+e- | annihilation |  |
|------|--------------|--|
|      |              |  |

DIS

Outline

- Lecture I : Partons and jets in QCD at weak coupling (the benchmark for comparing with strong–coupling results from AdS/CFT)
  - Introduction & Motivations (why study finite-temperature and/or high-energy problems at strong coupling ?)
  - The situation at weak coupling (pQCD, phenomenology)
- Lecture II : A high—energy current in AdS/CFT
  - Methodology (black hole, wave equations)
  - The vacuum problem as a warm up
- Lecture III : *R*-current in a strongly-coupled plasma
  - Results & Physical discussion
  - General consequences for high—energy scattering
- Original part based on work in collaboration with Yoshitaka Hatta and Al Mueller (arXiv:0710.2148, 0710.5297, and 0803.2481)

## **AdS/CFT : General introduction**

#### Outline

- Introduction
- AdS/CFT
  Introduction
- Jets in pp
- Motivation
- e+e- annihilation
- DIS

- String theory methods for strongly–coupled gauge theories
- String theory in the posture of an 'epicycle' (J. Ambjorn), a tool, a non-perturbative representation for the gauge theory, particularly suitable for the strong-coupling problem
  - Proving, or falsifying, string theory is here not an issue
- Rather, some real issues are
  - how efficiently can we make use of this tool ?
  - what is its widest field of application ?
  - and what are the limitations ?

## **AdS/CFT : General introduction**

| 0 | utline | • |
|---|--------|---|
|   |        |   |

| n | tr | 00 | du | ct | ion |
|---|----|----|----|----|-----|
|   |    |    |    |    |     |

● AdS/CFT

- Introduction
- Jets in pp

Motivation

e+e- annihilation

DIS

- A conjecture, most firmly established for very special, 'maximally supersymmetric and conformal', gauge theories
  - no confinement, no asymptotic freedom, no asymptotic states, no fundamental fermions ...
  - pretty far away from day-to-day QCD
- Essentially, all the calculations to date refer to the large-N<sub>c</sub>, or supergravity, approximation
- How to go beyond these limitations ?
  - get closer to QCD
  - perform more accurate calculations (beyond large  $N_c$ )
- How to efficiently make use of what we know already ?

| Outline                          |
|----------------------------------|
|                                  |
| Introduction                     |
| • AdS/CFT                        |
| <ul> <li>Introduction</li> </ul> |
| <ul> <li>Jets in pp</li> </ul>   |
|                                  |
| Motivation                       |
|                                  |
| e+e- annihilation                |

DIS

QCD at finite temperature (but not too high !) :

- $T = 2 \div 5 T_c$  with  $T_c \sim 200$  MeV (deconfinement)
- > particularly promising playground for AdS/CFT techniques
- and also a very important one
  - $\triangleright$  possibly connected to real world
- Strong indications from different sources
  - experimental results for heavy ion collisions at RHIC
  - lattice QCD
  - problems with perturbation theory at finite temperature

... that the relevant coupling is quite strong

('strongly-coupled quark-gluon plasma', or sQGP)

| Outline                          |
|----------------------------------|
|                                  |
| Introduction                     |
| AdS/CFT                          |
| <ul> <li>Introduction</li> </ul> |
| <ul> <li>Jets in pp</li> </ul>   |
|                                  |
| Motivation                       |
|                                  |
| e+e- annihilation                |

DIS

QCD at finite temperature (but not too high !) :

- $T = 2 \div 5 T_c$  with  $T_c \sim 200$  MeV (deconfinement)
- > particularly promising playground for AdS/CFT techniques
- and also a very important one
  - ⊳ possibly connected to real world
- Some potential drawbacks of AdS/CFT
  - conformal symmetry
  - lack of confinement
  - ... are presumably less important in this particular regime (deconfined phase, small 'trace anomaly')

| Outline                          |
|----------------------------------|
|                                  |
| Introduction                     |
| • AdS/CFT                        |
| <ul> <li>Introduction</li> </ul> |
| <ul> <li>Jets in pp</li> </ul>   |
|                                  |
| Motivation                       |
|                                  |
| e+e- annihilation                |

DIS

QCD at finite temperature (but not too high !) :

- $T = 2 \div 5 T_c$  with  $T_c \sim 200$  MeV (deconfinement)
- > particularly promising playground for AdS/CFT techniques
- and also a very important one
  - $\triangleright$  possibly connected to real world
- Minimal formulation of AdS/CFT at finite temperature
  - $\mathcal{N} = 4$  SYM at finite  $T \longleftrightarrow AdS_5 \times S^5$  Black Hole

▷ unambiguous 'first-principle' calculations (no model-dependent 'deformations' : IR cutoff, D-Branes) ▷ strong-coupling limit  $\lambda \to \infty$  : 'supergravity' (relatively simple calculations)

| Outline                          |
|----------------------------------|
|                                  |
| Introduction                     |
| • AdS/CFT                        |
| <ul> <li>Introduction</li> </ul> |
| • Jets in pp                     |
| Motivation                       |
| e+e- annihilation                |

DIS

QCD at finite temperature (but not too high !) :

- $T = 2 \div 5 T_c$  with  $T_c \sim 200$  MeV (deconfinement)
- > particularly promising playground for AdS/CFT techniques
- and also a very important one
  - ⊳ possibly connected to real world
- The simplest technical and conceptual context to study the problem of high—energy scattering at strong coupling
  - the  $\mathcal{N} = 4$  SYM plasma : the 'simplest' target at strong coupling
  - similar results for 'hadronic' targets require more work and more modeling

| Outline                          |
|----------------------------------|
|                                  |
| Introduction                     |
| • AdS/CFT                        |
| <ul> <li>Introduction</li> </ul> |
| <ul> <li>Jets in pp</li> </ul>   |
|                                  |
| Motivation                       |
|                                  |
| e+e- annihilation                |
|                                  |

DIS

QCD at finite temperature (but not too high !) :

- $T = 2 \div 5 T_c$  with  $T_c \sim 200$  MeV (deconfinement)
- > particularly promising playground for AdS/CFT techniques
- and also a very important one
  - $\triangleright$  possibly connected to real world
- Some very robust results/physical scenarios
  - viscosity/entropy ratio
  - absence of 'quasiparticles' (resonances)
  - trailing string, limiting velocity, ...
  - quasi-democratic branching
  - ⊳ universality

(similar results for all theories with known holographic dual)

- Outline
- Introduction
- AdS/CFTIntroduction
- Jets in pp
- Motivation
- e+e- annihilation
- DIS

- Interesting conceptual questions
  - onset of hydrodynamic behaviour
  - approach to thermal equilibrium
  - degrees of freedom in a strongly-coupled plasma (thermodynamics, transport coefficients, hydro)
  - scattering off a strongly–coupled plasma
- some of which are easier to think of at strong coupling
  - a 'perfect fluid' is a strongly-coupled one !
- Only one intrinsic momentum scale (at equilibrium) : T
   ... as compared to a hierarchy of scales at weak coupling:

$$T \gg gT \gg g^2 T$$

- Typical space-time scales
  - hydrodynamics: large space-time separations  $\gg 1/T$
  - $\bullet$  thermodynamics, quasiparticles:  $\sim 1/T$
  - high–energy scattering:  $\ll 1/T$
- With reference to QCD, strong–coupling methods are expected to work better for large distances  $\gtrsim 1/T$ 
  - hydrodynamics, thermodynamics, transport coefficients, ... quasiparticles
  - such topics are addressed by R. Peschanski and D. Son
- However, the experimental results for heavy-ion collisions mostly refer to 'hard probes'

'hard' = high energy, momentum, virtuality ...  $\gg T$ 

This will be the general topics of this set of lectures

Typical spa

Outline

AdS/CFT

IntroductionJets in pp

Motivation

DIS

e+e- annihilation

## Jets in proton–proton collisions





œ

## Jets in proton-proton collisions



œ

# Nucleus-nucleus collision: Jet quenching



The "away–side" jet has disappeared ! absorbtion (or energy loss, or "jet quenching") in the medium

The matter produced in a heavy ion collision is opaque high density, strong interactions, ... or both

(A)

# The QCD running coupling



œ

# The QCD running coupling

• The first Matsubara frequency :  $Q = 2\pi T \simeq 2 \div 6 \text{ GeV}$ 

$$g(4 \,\mathrm{GeV}) \simeq 1.5 \implies \lambda \equiv g^2 N_c \simeq 7 \gg 1$$

... but  $\alpha_s \equiv g^2/4\pi \simeq 0.25 \ll 1$ 

- For  $\alpha_s \simeq 0.25$ , perturbative QCD for vacuum processes (collider physics) works remarkably well !
- Medium effects can dramatically change the situation !
- What can we learn from the 'data' (RHIC/lattice QCD) ?
  - hydrodynamics : the most convincing evidence so far in favor of a strong-coupling like behaviour (elliptic flow, rapid thermalisation; cf. R. Peschanski)
  - thermodynamics (lattice) : inconclusive (see below) (unambiguous results, but ambiguous interpretation)
  - hard probes : unclear (in spite of some contrary claims !)

Motivation

Outline

- Jets in AA
- Lattice QCD
- Perturbation theory

Asymptotic freedom

- Ring diagrams
- Resummations
- •N4 SYM
- e+e- annihilation
- DIS



DIS

## Lattice QCD at finite T





### **Perturbation theory at finite** T

#### • Perturbative expansion: a series in powers of g (not $\alpha_s$ !)



Introduction

Motivation

- Jets in AA
- Asymptotic freedom
- Lattice QCD

Perturbation theory

Ring diagrams

Resummations

• N4 SYM

e+e- annihilation

DIS



# No convergence until astronomically high temperatures $(T \sim 10^7 \text{ GeV}) !$

## Perturbation theory to order $g^5$

• Perturbative series in  $g^2\phi^4$  scalar field theory :

Outline

Introduction

Motivation

Jets in AA

Asymptotic freedom

Lattice QCD

Perturbation theory

Ring diagrams

Resummations

• N4 SYM

e+e- annihilation

DIS

$$= \frac{\pi^2}{90} T^4 \left[ 1 - \frac{15}{8} \left(\frac{g}{\pi}\right)^2 + \frac{15}{2} \left(\frac{g}{\pi}\right)^3 + \frac{135}{16} \left(\log \frac{\bar{\mu}}{2\pi T} + 0.4046\right) \left(\frac{g}{\pi}\right)^4 - \frac{405}{8} \left(\log \frac{\bar{\mu}}{2\pi T} - \frac{4}{3} \log \frac{g}{\pi} - 0.9908\right) \left(\frac{g}{\pi}\right)^5 + \mathcal{O}(g^6 \log g) \right],$$

(pure Yang–Mills, for definiteness:  $N_f = 0$ )

■ QCD: Higher orders turns to be 'non-perturbative' (infinitely many diagrams contribute at a given order  $g^n$  with  $n \ge 6$ )

Expansion in powers of g ! (rather than  $\alpha_s/\pi$ )

P

## Perturbation theory to order $g^5$

• Perturbative series in  $g^2\phi^4$  scalar field theory :

Introduction

Outline

Motivation

Jets in AA

Asymptotic freedom

Lattice QCD

Perturbation theory

Ring diagrams

Resummations

•N4 SYM

e+e- annihilation

DIS

$$P = \frac{\pi^2}{90} T^4 \left[ 1 - 0.60 g^2 + 0.24 g^3 + 0.09 \left( \log \frac{\bar{\mu}}{2\pi T} + 0.4046 \right) g^4 - 0.16 \left( \log \frac{\bar{\mu}}{2\pi T} - \frac{4}{3} \log \frac{g}{\pi} - 0.9908 \right) g^5 + \mathcal{O}(g^6 \log g) \right],$$

(pure Yang–Mills, for definiteness:  $N_f = 0$ )

- QCD: Higher orders turns to be 'non-perturbative' (infinitely many diagrams contribute at a given order  $g^n$  with  $n \ge 6$ )
- Expansion in powers of g ! (rather than  $\alpha_s/\pi$ )
- Reasonable values for the coefficients,  $c_i \leq \mathcal{O}(1)$ , but g > 1

### **Ring diagrams**

Expansion in powers of g ! (rather than  $\alpha_s/\pi$ ) : ring diagrams

#### Outline

Introduction

Motivation

Jets in AA

Asymptotic freedom

Lattice QCD

Perturbation theory

• Ring diagrams

Resummations

•N4 SYM

e+e- annihilation

DIS



$$\sum_{n} \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{1}{[(2\pi nT)^{2} + k^{2}]^{2}} = \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{1}{k^{3}} \frac{1}{\mathrm{e}^{\beta k} - 1} \sim \frac{T}{m_{D}} \sim \frac{1}{g}$$

Strong sensitivity to infrared, due to Bose–Einstein statistics

 $m_D^2 = \underline{\qquad} = g^2 T^2$  Debye, or 'screening', mass

T



#### **Motivation: Resummed perturbation theory**

- Resummation of perturbation theory for QCD at finite T (J.-P. Blaizot, A. Rebhan, E. I, 2000)
  - '2PI approximation' : thermal masses & screening



Outline

Introduction

Motivation

- Jets in AA
- Asymptotic freedom
- Lattice QCD

Perturbation theory

Ring diagrams

Resummations

• N4 SYM

e+e- annihilation

DIS



#### **Motivation: The trace anomaly**

#### • Trace anomaly at finite T:

#### Lattice QCD vs. resummed perturbation theory



#### Outline

#### Introduction

#### Motivation

- Jets in AA
- Asymptotic freedom
- Lattice QCD
- Perturbation theory
- Ring diagrams
- Resummations
- •N4 SYM
- e+e- annihilation
- DIS

#### 

## $\mathcal{N} = 4$ SYM plasma: weak vs. strong coupling

• Weak–coupling to  $\mathcal{O}(\lambda^{3/2})$ , strong–coupling to  $\mathcal{O}(\lambda^{-3/2})$ 

Very bad convergence either way !



Unique Padé approximant (J.-P. Blaizot, A. Rebhan, E. I., 06)
 S/S<sub>0</sub> = 0.85 corresponds to intermediate coupling: λ ≃ 4

Outline

Introduction

Motivation

- Jets in AA
- Asymptotic freedom
- Lattice QCD
- Perturbation theory
- Ring diagrams
- Resummations
- ●N4 SYM
- e+e- annihilation
- DIS

#### œ

Outline

Introduction

MotivationJets in AA

●N4 SYM

DIS

e+e- annihilation

Asymptotic freedom
 Lattice QCD

Perturbation theory
Ring diagrams
Resummations

#### $\mathcal{N} = 4$ SYM plasma: weak vs. strong coupling

Resummed perturbation theory does a good job in the domain where  $S/S_0 = 0.85$ 



 $\mathcal{N} = 4$  SYM plasma: A convenient theoretical laboratory to study weak vs. strong coupling methods



#### $e^+e^-$ annihilation

• Lowest–order in perturbative QCD:  $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$ 



- A time-like current ( $Q^2 = s > 0$ ) decaying into a  $q\bar{q}$  pair
- Center of mass frame : a pair of back-to-back 'jets'
- Bare partons cannot appear in the final state (confinement)
- The structure of the final state is determined by
  - parton branching
  - hadronisation

Outline

Introduction

Motivation

e+e-BranchingBremsstrahlung

Jets3-jet

DIS

e+e- annihilation

Current correlator
 Current correlator

#### Parton branching: time-like cascade



| 10 | +=-  | . d  | oti   | 00     |
|----|------|------|-------|--------|
|    |      | 1111 | ( -11 | ( )( ) |
|    |      | au   | ou    | 011    |
|    | iu o | uu   | Gu    | ULI    |

Motivation

e+e- annihilation

Œ

•e+e-

Branching

Bremsstrahlung

Jets

• 3-jet

Current correlator

Current correlator

DIS



• 'Formation time' (it takes some time to emit a gluon !)

#### Parton branching: time-like cascade



#### Parton branching at weak coupling

Gluon emission to lowest order in perturbative QCD:



Phase-space enhancement for the emission of

- collinear  $(k_{\perp} \rightarrow 0)$
- and/or soft  $(x \rightarrow 0)$  gluons

Generic for a theory with dimensionless coupling and massless vector bosons

Outline

Introduction

Motivation

e+e-BranchingBremsstrahlung

Jets3-jet

DIS

e+e- annihilation

Current correlator

Current correlator

#### Jets

Outline

Introduction

Motivation

e+e- annihilation

•e+e-

Branching

Bremsstrahlung

Jets

- 3-jet
- Current correlator
- Current correlator

DIS



modifies particle multiplicity but not the number of jets

## **Final state**

#### Outline

Introduction

```
Motivation
```

e+e- annihilation

(A)

•e+e-

Branching

Bremsstrahlung

Jets

• 3-jet

Current correlator

Current correlator

DIS



Few, well collimated, jets

•  $e^+e^-$  cross-section computable in perturbation theory

$$\sigma(s) = \sigma_{\text{QED}} \times \left(3\sum_{f} e_{f}^{2}\right) \left(1 + \frac{\alpha_{s}(s)}{\pi} + \mathcal{O}(\alpha_{s}^{2}(s))\right)$$

 $\sigma_{\rm QED}$  : cross-section for  $e^+e^- \rightarrow \mu^+\mu^-$ 

No logs: collinear and infrared singularities mutually cancel

## 3-jet event at OPAL (CERN)



œ

Introduction

Motivation

e+e- annihilation

•e+e-

• Branching

Bremsstrahlung

Jets

#### ● 3-jet

Current correlator

Current correlator

DIS



HAN SUMS (GEV) HAN PTOT 35,768 PTRANS 29,964 PLONG 15,700 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4,893 NR OF PHOTONS 11

x y z



#### **Current–current correlator**

#### Total cross—section given by the optical theorem



e+e- annihilation

- •e+e-
- Branching
- Bremsstrahlung
- Jets
- 3-jet
- Current correlator
- Current correlator

DIS







Introduction

Motivation

e+eBranching
Bremsstrahlung

Jets3-iet

DIS

e+e- annihilation

Current correlator
 Current correlator

#### **Current–current correlator**

#### Total cross—section given by the optical theorem





Valid to leading order in  $\alpha_{em}$  but all orders in  $\alpha_s$ 

$$\sigma(e^+e^-) = \frac{1}{2} \rho^{\mu\nu} T$$



Introduction

Motivation

e+eBranching
Bremsstrahlung

Jets3-iet

DIS

e+e- annihilation

Current correlator
 Current correlator

#### **Current–current correlator**

#### Total cross-section given by the optical theorem





- Inclusive calculation (a 'black box')
- No specific information about the structure of the final state ('how many jets, how they are distributed')

Introduction

Motivation

DIS DIS

IMF

• F2

RHIC

BFKL

Evolution

e+e- annihilation

Resolution scales

Partons in DIS

Dipole picture

Gluons at HERA
Saturation momentum
Geometric scaling at HERA

## **Deep Inelastic Scattering**





Inclusive cross-section': One allows for all the possible final states X of the hadronic system

•  $q^{\mu} = k^{\mu} - k'^{\mu} \Longrightarrow q^2 \equiv q^{\mu}q_{\mu} < 0$ : space–like photon

#### **Kinematics and resolution scales**



Two independent kinematical invariants :

• 
$$\gamma^*$$
 virtuality :  $Q^2 \equiv -q^{\mu}q_{\mu} \geq 0$ 

• Bjorken's 
$$x: 0 < x \equiv \frac{Q^2}{2P \cdot q} \simeq \frac{Q^2}{s + Q^2} < 1$$

- with a direct physical interpretation :
  - the virtual photon resolution in transverse space ...
  - and, respectively, longitudinal momentum.

 $(\mathbf{P})$ 

Outline

Introduction

Motivation

DIS

DIS

IMF

●F2 ●RHIC

e+e- annihilation

Resolution scales

Partons in DIS

Dipole picture
Evolution
BFKL

Gluons at HERA
Saturation momentum
Geometric scaling at HERA

#### **Kinematics and resolution scales**



Two independent kinematical invariants :

• 
$$\gamma^*$$
 virtuality :  $Q^2 \equiv -q^{\mu}q_{\mu} \ge 0$ 

- Bjorken's  $x: 0 < x \equiv \frac{Q^2}{2P \cdot q} \simeq \frac{Q^2}{s + Q^2} < 1$
- **Parton picture:**  $\gamma^*$  absorbed by a quark excitation with
  - transverse size  $\Delta x_{\perp} \sim 1/Q$
  - and longitudinal momentum  $p_z = xP$

Outline

Introduction

Motivation

DIS

DIS

IMF

●F2 ●RHIC

e+e- annihilation

Resolution scales

Partons in DIS

Dipole picture
Evolution
BFKL

Gluons at HERA
Saturation momentum
Geometric scaling at HERA



#### Infinite momentum frame

#### Partons' are virtual (off-shell) excitations: they can radiate

Outline

Introduction

Motivation

e+e- annihilation

DIS

• DIS

Resolution scales

●IMF

Partons in DIS

• F2

- RHIC
- Dipole picture
- Evolution
- BFKL
- Gluons at HERA
- Saturation momentum
- Geometric scaling at HERA

 Parton picture makes sense only in a frame where the proton is moving very fast ('infinite momentum frame', or IMF)
 parton lifetime is amplified by Lorentz time dilation



• The 'daughter' gluon has a large lifetime too so long as  $xP \gg k_{\perp}$  (always true in the IMF since  $P \to \infty$ )

#### **Partons in DIS**

k = ξ P

The absorption of the virtual photon in the proton IMF :



- RHIC
- Dipole picture
- Evolution
- BFKL
- Gluons at HERA
- Saturation momentum
- Geometric scaling at HERA

 $\begin{cases} \mathbf{z} \mathbf{y}^{\star} & P^{\mu} = (P, 0, 0, P) \\ \mathbf{z} \mathbf{y}^{\star} & \mathbf{z} \mathbf{y}^{\star} \\ \mathbf{z}^{\mu} \mathbf{z} (\xi P, \mathbf{z}_{\perp}, \xi P) \\ \mathbf{z}^{\mu} \mathbf$ 

The parton lifetime should be larger than the collision time

$$\Delta t_{\rm part} \sim \frac{2xP}{k_{\perp}^2} > \Delta t_{\rm col} \sim \frac{2xP}{Q^2}$$

 $\implies$  The photon 'sees' all the partons having  $k_{\perp}^2 \, < \, Q^2$ 

### **Partons in DIS**

The absorption of the virtual photon in the proton IMF :



- RHIC
- Dipole picture
- Evolution
- BFKL
- Gluons at HERA
- Saturation momentum
- Geometric scaling at HERA



By the uncertainty principle, such partons are localized

- within a longitudinal extent  $\Delta z \sim 1/xP$
- within an area  $\Delta\Sigma \sim 1/Q^2$  in the transverse plane

#### 

#### The proton structure function

Differential cross section for virtual photon absorbtion :

$$\sigma_{\gamma^* p}(x, Q^2) = \frac{4\pi^2 \alpha_{\rm em}}{Q^2} F_2(x, Q^2)$$



$$F_2(x,Q^2) = \sum_f e_f^2 \left[ x q_f(x,Q^2) + x \bar{q}_f(x,Q^2) \right]$$

■  $q_f(x, Q^2)$  : number density of quarks of flavor f with longitudinal momentum fraction x and transverse size 1/Q

Introduction

Outline

Motivation

e+e- annihilation

DIS

• DIS

Resolution scales

• IMF

Partons in DIS

#### ● F2 ● RHIC

Dipole picture

Evolution

• BFKL

- Gluons at HERA
- Saturation momentum
- Geometric scaling at HERA

## **Partons at RHIC**



(A)

Evolution

• BFKL

- Gluons at HERA
- Saturation momentum
- Geometric scaling at HERA



- Partons are actually 'seen' (liberated) in the high energy hadron-hadron collisions
  - central rapidity: small-x partons
  - forward/backward rapidities: large-x partons

## **DIS: Dipole picture**

DIS in the proton rest frame  $\implies \gamma^*$  has a high energy  $\omega$ 



EvolutionBFKL

Outline

Introduction

Motivation

DIS • DIS

IMF

F2RHIC

e+e- annihilation

Resolution scales

Partons in DIS

Gluons at HERA

Dipole picture

- Saturation momentum
- Geometric scaling at HERA

(A)

 $\rhd \gamma^*$  fluctuates into a  $q\bar{q}$  pair which then scatters off the proton

Long lived 'color dipole' fluctuation, or 'meson'

$$\Delta t \sim \frac{\omega}{Q^2} \gg R_p$$

• The transverse size of the 'meson' :  $L \sim 1/Q$ 



## Parton evolution in pQCD

#### Parton branching within space-like cascades



Strong ordering in  $k_{\perp}$  and/or x (gluons only)

#### 

## High energy: **BFKL evolution**

 $\blacksquare s \gg Q^2 \implies x \simeq Q^2/s \ll 1$ : gluon cascades dominate



#### **Gluons at HERA**

 $xG(x,Q^2) \approx$  # of gluons with transverse area  $\sim 1/Q^2$  and  $k_z = xP$ 



#### **Gluons at HERA**

(A)



▷ High– $Q^2$  evolution : The parton density is decreasing

ightarrow Small-*x* evolution: An evolution towards increasing density

## 

Outline

Introduction

Motivation

DIS • DIS

IMF

• F2

RHIC

e+e- annihilation

Resolution scales

Partons in DIS

Dipole picture
Evolution
BFKL

Gluons at HERA
Saturation momentum
Geometric scaling at HERA

# **The Saturation Momentum**

Onset of non–linear physics :  $n(x,Q^2) \sim 1/\alpha_s$   $n(x,Q^2)$  : the gluon occupation number



The gluons must be numerous enough (small x) and large enough (low  $Q^2$ ) to strongly overlap with each other.

## 

Outline

Introduction

Motivation

DIS • DIS

IMF

• F2

RHIC

e+e- annihilation

Resolution scales

Partons in DIS

Dipole picture
Evolution
BFKL

Gluons at HERA
Saturation momentum
Geometric scaling at HERA

# **The Saturation Momentum**

Onset of non–linear physics :  $n(x,Q^2) \sim 1/\alpha_s$   $n(x,Q^2)$  : the gluon occupation number



For given (small) x, the gluon transverse momenta must be small enough:  $Q^2 \lesssim Q_s^2(x) \sim \Lambda^2 x^{-\lambda}$ 

# **Geometric Scaling at HERA**



(A)