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Path integral formulation of Quantum Gravity

The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by
the Einstein-Hilbert action.
To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.
The path integral is written as a nonperturbative sum over all
causal triangulations T .
Wick rotation is well defined due to global proper-time
foliation.
Using Monte Carlo techniques we can calculate expectation
values of observables.

Z =

∫ DM[g ]

DiffM
e iS
EH [g ]

→ Z =
∑
T

1
s(T )

e iS
Regge [g ]

Causal Dynamical Triangulations (CDT) is a background
independent approach to quantum gravity.
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Path integral formulation of Quantum Gravity

The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by
the Einstein-Hilbert action.
To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.
The path integral is written as a nonperturbative sum over all
causal triangulations T .
Wick rotation is well defined due to global proper-time
foliation.
Using Monte Carlo techniques we can calculate expectation
values of observables.

Z =

∫ DM[g ]

DiffM
e−S

E [g ]
→ Z =

∑
T

1
s(T )

e−S
E [g ]

Causal Dynamical Triangulations (CDT) is a background
independent approach to quantum gravity.
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Dynamical Triangulations

A manifold with topology S3 × S1 . . .
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Dynamical Triangulations

. . . is discretized by gluing 4-simplices - triangulation
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Causal Dynamical Triangulations

The spatial slices (of constant time) . . .
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Causal Dynamical Triangulations

. . . have S3 topology
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

The metric is flat inside each d-simplex.

Length of time links at and space links as is constant.

The angle deficit (curvature) is localised at
(d − 2)-dimensional sub-simplices.

0D simplex - point
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

The metric is flat inside each d-simplex.

Length of time links at and space links as is constant.

The angle deficit (curvature) is localised at
(d − 2)-dimensional sub-simplices.
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

The metric is flat inside each d-simplex.

Length of time links at and space links as is constant.

The angle deficit (curvature) is localised at
(d − 2)-dimensional sub-simplices.

3D simplex - tetrahedron
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

The metric is flat inside each d-simplex.

Length of time links at and space links as is constant.

The angle deficit (curvature) is localised at
(d − 2)-dimensional sub-simplices.

4D simplex - 4-simplex

Andrzej Görlich Background Geometry in 4D Causal Dynamical Triangulations



Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing
pairs of d-simplices along their (d − 1)-faces.

The metric is flat inside each d-simplex.

Length of time links at and space links as is constant.

The angle deficit (curvature) is localised at
(d − 2)-dimensional sub-simplices.

4D simplex, two types in CDT
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Causal Dynamical Triangulation - properties

By construction we have global proper-time foliation.

Spatial links have length as , time links have length at .

Wick rotation is well defined, at → iat .

Such formulation involves only geometric invariants like length
and angles.

We don’t introduce coordinates.

Manifestly diffeomorphism-invariant.

Sum over triangulations (gluings).

Z =

∫ DM[g ]

DiffM
e iS
EH [g ] → Z =

∑
T

1
s(T )

e−S
E [g ]

Instead of the sum over the whole enormous phase-space of
configurations, we probe its finite part with given probabilities.
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Monte Carlo simulations - Alexander moves

We construct a starting space-time manifold with given
topology (S3 × S1) and perform a random walk over
configuration space.

Ergodicity In the dynamical triangulation approach all possible
configurations are generated by the set of Alexander moves.

Fixed topology The moves don’t change the topology.
Causality Only moves that preserve the foliation are allowed.
4D CDT We have 4 types of moves.

Minimal configuration
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Monte Carlo Markov Chain

We perform a random walk in the phase-space of
configurations (space of piecewise linear geometries).

Each step is one of the 4D CDT moves.

The weight (acceptance probability) W (A → B) of a move
from configuration A to B is determined (not uniquely) by the
detailed balance condition:

P(A)W (A → B) = P(B)W (B → A)

The Monte Carlo algorithm ensures that we probe the
configurations with the probability P(A).

After sufficiently long time, the configurations are
independent.

All we need, is the probability functional for configurations
P(A).
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The Einstein-Hilbert and Regge action

We generate a large number of such configurations with
the probability

P[configuration] ∝ e−S

We use the Einstein-Hilbert action . . .

S = − 1
G

∫
dt
∫
dΩ
√

g(R − 6λ)

G gravitational constant

λ cosmological constant

g determinant of a spacetime
metric

R scalar curvature
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The Einstein-Hilbert and Regge action

We generate a large number of such configurations with
the probability

P[configuration] ∝ e−S

. . . or the Regge action in the discrete version

S = −K0N0 + K4N4 + ∆(N14 − 6N0)

N0 number of vertices

N4 number of simplices

N14 number of simplices of type
{1, 4}

K0 K4 ∆ bare coupling constants
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Measurements

To calculate the expectation value of an observable, we
approximate the path integral by a sum over MC
configurations

〈O[g ]〉 =
1
Z

∫ DM[g ]

DiffM
O[g ]e−S[g ] → 1

N

N∑
i=1

O[g i ]

The Monte Carlo algorithm probes the configuration space
with the probability P[g ] = 1

Z e−S[g ].

An simple example of an observable is the spatial volume at
time t: O = v(t).

For periodic boundary conditions, both the Einstein-Hilbert
action and Regge action are invariant under proper time
translations.

In order to perform appropriate average of spatial volume
v̄(t), we have to fix the position of the center of the blob.
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Phase diagram of 4D CDT

Depending on the values of coupling constants K0 and ∆, we
observe three qualitatively different behaviours of a typical
configuration - phases.

We tune the value of K4 to its critical value, so that the total
volume fluctuates around some fixed value.
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Phase diagram of 4D CDT

Depending on the values of coupling constants K0 and ∆, we
observe three qualitatively different behaviours of a typical
configuration - phases.

We tune the value of K4 to its critical value, so that the total
volume fluctuates around some fixed value.
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Phase diagram: 4D CDT vs Euclidean DT

Asymmetry between at and as is important. In the Euclidean
version of the model, without imposed causality, one either
got

a ”crumpled phase” with infinite Hausdorff dimension
or
a ”branched polymer phase” dominated by spacetimes where
the 4-simplices form treelike structures with Hausdorff
dimension two,

even though they are built from 4D simplices. Unfortunately,
the phase transition between them is of the 1st order.
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Background geometry

For a certain range of bare coupling constants, a typical
configuration has a ”bloblike” shape and behaves as a well
defined four-dimensional manifold.
The averaged spatial volume v̄(t) is proportional to
cos3(t/B).
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Volume fluctuations

The next observable we can measure are the correlations of
the spatial volume fluctuations around the classical solution.

We define the two-point correlation function

Ctt′ = 〈(v(t)− v̄(t))(v(t ′)− v̄(t ′))〉

Studying this matrix one can obtain the effective action for
the volume fluctuations.
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