Renormalization group and bound states

Stanisław D. Głazek
Institute of Theoretical Physics, University of Warsaw

Question:	Can $g(\lambda)$ not diverge when $\lambda \rightarrow$ " $\Lambda_{Q C D} " ?$
Method:	Similarity Renormalization Group Procedure (SRG)
Trial study:	SRG in a matrix model with AF and BS
Result:	Yes: $g(\lambda)$ may behave well, but the measure of energy in the generator of SRG must include interactions

S. D. Głazek, Phys. Rev. D 75, 025005 (2007).
S. D. Głazek, R. J. Perry, arXiv:0803.2911, to appear in Phys. Rev. D.

Diverging coupling constant in the model study:

\tilde{g}_{a} - energy measured using free Hamiltonian H_{0}
$\tilde{g}, \tilde{\mu}$ - full account of interacions in the measure of energy (to be explained)

Standard Renormalization Group Procedure:

$\mathcal{L}_{\text {can }}=\mathcal{L}_{0}+\mathcal{L}_{I} \quad \rightarrow \quad \mathcal{H}_{c a n}=\mathcal{H}_{0}+\mathcal{H}_{I} \quad \rightarrow \quad H_{c a n}=\int d^{3} x \mathcal{H}_{c a n}(m, g)$
$H_{c a n}=H_{0}+H_{I}$ is ill-defined. It requires a cutoff Λ and $H_{C T}(\Lambda)$.
Cutoff: $\quad H_{0}|n\rangle=E_{n}|n\rangle, \quad$ use $\quad|n\rangle \quad$ only such that $\quad E_{n}<\Lambda$
Eigenvalues of H_{0} provide the measure of energy.
$H_{\Lambda}=\left[H_{c a n}+H_{C T}\right]_{\Lambda} \quad$ Schrödinger $\quad H_{\Lambda}\left|\Psi_{\Lambda}\right\rangle=E\left|\Psi_{\Lambda}\right\rangle$
RG algebra: (Gaussian elimination)
$\Lambda \rightarrow \Lambda / 2 \rightarrow \Lambda / 2^{2} \rightarrow \ldots \rightarrow \Lambda / 2^{N}=\lambda \ll \Lambda \quad \rightarrow \quad H_{\lambda}\left|\Psi_{\lambda}\right\rangle=E\left|\Psi_{\lambda}\right\rangle$
$H_{\lambda i j}=f_{i j}\left(\Lambda, C T_{\Lambda}, \lambda, m, g, E\right), \quad E_{i}, E_{j}<\lambda, \quad \frac{d}{d \Lambda} H_{\lambda i j}=0$
$\rightarrow \quad C T_{\Lambda m n} \quad\left(\right.$ e.g., $\left.g \rightarrow g_{\Lambda}, m \rightarrow m_{\Lambda}\right) \quad \rightarrow \quad H_{\lambda}$ with m_{λ}, g_{λ}
K. G. Wilson, Phys. Rev. 140, B445 (1965); Phys. Rev. D 2, 1438 (1970).

$$
\begin{aligned}
&\left|\Psi_{\lambda}\right\rangle=\sum_{k=1}^{n} \psi_{k}|k\rangle, \quad \lambda=E_{n} \\
& E_{n} \psi_{n}+\sum_{k=1}^{n} H_{\text {Ink }} \psi_{k}=E \psi_{n}, \quad i=n \\
& E_{i} \psi_{i}+\sum_{k=1}^{n} H_{\text {Iik }} \psi_{k}=E \psi_{i}, \quad i<n \\
&\left(E_{n}+H_{\text {Inn }}-E\right) \psi_{n}=\sum_{k=1}^{n-1} H_{\text {Ink }} \psi_{k} \\
& \psi_{n}=\left(E_{n}+H_{\text {Inn }}-E\right)^{-1} \sum_{k=1}^{n-1} H_{\text {Ink }} \psi_{k} \\
& E_{i} \psi_{i}+\sum_{k=1}^{n-1} H_{\text {Iik }} \psi_{k}+\sum_{k=1}^{n-1} \frac{H_{\text {Iin }} H_{\text {Ink }}}{E_{n}+H_{\text {Inn }}-E} \psi_{k}=E \psi_{i}, \quad i<n \\
& H_{\text {Iik }}+\frac{H_{\text {In }} H_{\text {Ink }}}{E_{n}+H_{\text {Inn }}-E}=H_{\text {Iik }}^{\prime} \\
& \frac{1}{\lambda\left(1-g_{\lambda}\right)-E}=\text { problem }
\end{aligned}
$$

Problem: $\quad g_{\lambda}$ increases when λ decreases
Disaster: $\quad g_{\lambda} \rightarrow \infty$ when $\lambda \rightarrow E$
In fact: $g_{\lambda}=g(\lambda, E)=g\left(g_{0}, \lambda / \lambda_{0}, E / \lambda_{0}\right) \quad \leftarrow \quad H_{\lambda_{0}}\left|\Psi_{\lambda_{0}}\right\rangle=E\left|\Psi_{\lambda_{0}}\right\rangle$
Simplification $E / \lambda_{0} \sim 0$ does not apply when $\lambda_{0} \sim E$
Solution: Gaussian elimination \rightarrow similarity transformation
S. D. Głazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); 49, 4214 (1994); 57, 3558 (1998).

Flow equation: F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994).

SRG procedure:

$\frac{d}{d \lambda} H_{\lambda}=\left[\mathcal{T}_{\lambda}, H_{\lambda}\right]$

$$
H_{\lambda}=H_{\infty}+\int_{\infty}^{\lambda} d s\left[\mathcal{T}_{s}, H_{s}\right]
$$

$H_{\infty}=\left[H_{c a n}+H_{C T}\right]_{\Lambda}$

$$
\mathcal{T}_{\lambda}=? \leftarrow \text { measure of energy }
$$

SRG procedure:

No small denominators in perturbation theory for H_{λ}
No explicit dependence of H_{λ} on the eigenvalues, E
Eigenvalues E appear on the diagonal when $\lambda \rightarrow 0$

$$
\begin{gathered}
H_{\lambda}=U_{\lambda} H_{\infty} U_{\lambda}^{\dagger} \quad \frac{d H_{\lambda}}{d \lambda}=\left[\mathcal{T}_{\lambda}, H_{\lambda}\right] \quad \mathcal{T}_{\lambda}=\frac{d U_{\lambda}}{d \lambda} U_{\lambda}^{\dagger} \\
\mathcal{T}_{\lambda}=\left[G_{f \lambda}, H_{f \lambda}\right] \\
H_{\lambda}=T+H_{I \lambda}=D_{\lambda}+V_{\lambda}, \quad T_{i j}=\delta_{i j} T_{i} \\
D_{\lambda i j}=\delta_{i j}\left(T_{i}+H_{I \lambda i j}\right), \quad V_{\lambda i j}=\left(1-\delta_{i j}\right) H_{I \lambda i j} \\
G_{f \lambda}=f T+(1-f) D_{f \lambda}
\end{gathered}
$$

$f=1 \leftarrow$ energy counted without interaction $(G=T)$
$f=0 \leftarrow$ energy counted fully with interaction $(G=D)$

$$
\begin{aligned}
\frac{d}{d \lambda} H_{\lambda} & =\left[\left[G_{f \lambda}, H_{\lambda}\right], H_{\lambda}\right] \\
H_{\lambda=\infty} & =H_{\Lambda}
\end{aligned}
$$

Trial study: asymptotic freedom (AF)

$$
\begin{aligned}
H & =H_{0}+H_{I} \\
H_{m n} & =E_{m} \delta_{m n}-g \sqrt{E_{m} E_{n}} \\
E_{n} & =b^{n} \quad b>1 \quad M \leq n \leq N \quad \Lambda=b^{N}
\end{aligned}
$$

Regularization $\Rightarrow \mathrm{CT} \Rightarrow g \rightarrow g_{N} \sim 1 / N=\ln b / \ln \Lambda$
Result: evolution of matrix elements of H_{λ}
(example with 1764 non-linear coupled integro-differential equations)

$$
\begin{aligned}
H_{\lambda} & =? \quad H_{m n}(\lambda)=\left[E_{m} \delta_{m n}-g_{\lambda} \sqrt{E_{m} E_{n}}\right] e^{-\left(E_{m}-E_{n}\right)^{2} / \lambda^{2}} \\
\mathcal{V}_{m n} & =[H(\lambda)-T]_{m n} / \sqrt{E_{m} E_{n}} \sim-g_{\lambda}, \quad E_{m}, E_{n} \ll \lambda
\end{aligned}
$$

Example from trial study: (AF)

FLATplaneCOUPLING.pdf $\quad f=0$

FIG. 1: The coupling constants g_{f} in the case of asymptotic freedom, plotted as a function of $\ln \lambda / \ln b\left(\right.$ instead of $s=1 / \lambda^{2}$) for 6 values of $f: f=0$ (Wegner), $f=0.2,0.5,0.75,0.9$, and 1 . The correspondence between a curve and f is such that the curves for larger f reach higher and for $f=1$ the corresponding curve apparently shoots to infinity around $\lambda \sim\left|E_{\text {boundstate }}\right|$. The ultraviolet cutoff is at b^{16}, and $b=4$.
$2 \times 2 \quad s=1 / \lambda^{2}, \quad \lambda=\infty \leftrightarrow s=0$

$$
H(s)=\left[\begin{array}{cc}
E_{h}(s) & V(s) \\
V(s) & E_{l}(s)
\end{array}\right] \quad H(0)=\left[\begin{array}{cc}
E_{h}(0) & V(0) \\
V(0) & E_{l}(0)
\end{array}\right]
$$

$$
D=\left[\begin{array}{cc}
E_{h}(s) & 0 \\
0 & E_{l}(s)
\end{array}\right] \quad G=\left[\begin{array}{cc}
f T_{h}+(1-f) E_{h} & 0 \\
0 & f T_{l}+(1-f) E_{l}
\end{array}\right]
$$

$\operatorname{tr}=E_{h}+E_{l}=E_{1}+E_{2} \quad$ and \quad det $=E_{h} E_{l}-V^{2}=E_{1} E_{2}$

$$
\begin{aligned}
H^{\prime} & =\frac{d}{d s} H=[[G, H], H] \\
\left(\frac{E_{1}-E_{2}}{2}\right)^{2} & =V^{2}+\left(\frac{E_{h}-E_{l}}{2}\right)^{2}=x^{2}+y^{2}=r^{2} \\
\left(V^{2}\right)^{\prime} & =-2\left[f\left(T_{h}-T_{l}\right)+(1-f)\left(E_{h}-E_{l}\right)\right]\left(E_{h}-E_{l}\right) V^{2}
\end{aligned}
$$

Mechanism of increase of g_{λ} for $\lambda \sim\left|E_{B}\right|: \quad g_{\lambda} \sim V$
g_{λ} is read from $E_{l}=T_{l}-g_{\lambda} T_{l}$
$f \neq 0$ is different from $f=0 . f=1$ is completely different!

$$
\begin{aligned}
&\left(V^{2}\right)^{\prime}=-2\left[f\left(T_{h}-T_{l}\right)+(1-f)\left(E_{h}-E_{l}\right)\right]\left(E_{h}-E_{l}\right) V^{2} \\
& G=D, \quad f=0 \quad \rightarrow \quad\left(V^{2}\right)^{\prime}=-2\left(E_{h}-E_{l}\right)^{2} V^{2} \\
& G=T, \quad f=1 \quad \rightarrow \quad\left(V^{2}\right)^{\prime}=-2\left(T_{h}-T_{l}\right)\left(E_{h}-E_{l}\right) V^{2} \\
& \text { and } \\
&\left(\frac{E_{1}-E_{2}}{2}\right)^{2}=V^{2}+\left(\frac{E_{h}-E_{l}}{2}\right)^{2}
\end{aligned}
$$

Sign of $E_{h}-E_{l}$ decides: $\quad \mathrm{BS} \rightarrow E_{B}<0$ and $E_{h}<E_{l}$ at $\lambda \sim\left|E_{B}\right|$.

Case of Asymptotic Freedon: ShiftingBStoLow.nb

Case of Limit Cycle: filmcf000.nb

AF as a part of LC

FIG. 2: The coupling constants $g_{f}(\lambda)$ in the case of a limit cycle, plotted as a function of $\ln \lambda / \ln b$ for 6 values of $f: f=0$ (Wegner), $f=0.2,0.5,0.75$, 0.9 , and 1 . The correspondence between a curve and f is such that the curves for larger f reach higher and for $f=1$ the corresponding curve apparently shoots to infinity already around $\ln \lambda / \ln b \sim 15$. The ultraviolet cutoff is at b^{16} and $b=4$.

Conclusion

- Generator G with $f=1$ (energy counted without interactions) gives $g_{\lambda \sim \text { mass }} \rightarrow \infty$ because of BS $\quad(2 \times 2$ mechanism $)$
- Generator G with $f=0$ (energy counted with interactions) gives $\left|g_{\lambda}\right| \lesssim 1$ including scales of binding
- Limit cycle (including periods of AF) requires interaction in G (no hope for understanding hierarchy of bound states using $f=1$)

TABLE I: SRG parameters g and λ for frames shown in the earlier figure, numbered from the top to bottom. In this example, $g=0.040002, h=0, b=4, M=-25, N=16$, and all displayed numbers are rounded to 6 decimal places.

frame	$\ln (\lambda) / \ln b$	$g(\lambda)$
1 (top)	22.780321	0.040002
2	2.766096	0.092055
3	-6.864809	0.600768
4	-8.369638	1.234710
5	-8.570281	0.891475
6	-9.071891	-0.680443
7	-12.282193	-0.226083
8 (bottom)	-27.330482	-0.060769

- QCD
- Nuclear Physics
- Condensed Matter Physics F. Wegner

Picture from: http://www-physics.mps.ohio-state.edu/~ntg/srg/

Fig. 5. Calculations of the ${ }^{4}$ He ground-state energy using the NCSM. On the left is the energy obtained from the NCSM for potentials evolved to several different λ values as a function of the cut (regulator) momentum Λ with $n=8$. On the right is the relative error of the energy for the $\lambda=2 \mathrm{fm}^{-1}$ case as a function of the cut momentum (with $n=8$) for several different harmonic oscillator basis sizes. Also shown is the slope of the error in the decoupling region predicted from perturbation theory (dotted line).

Fig. 6. Calculations of the ${ }^{6} \mathrm{Li}$ ground-state energy using the NCSM. On the left is the energy obtained from the NCSM for potentials evolved to several different λ values as a function of the cut (regulator) momentum Λ with $n=8$. On the right is the relative error of the energy for the same λ 's as a function of the cut momentum for the same λ values but with two values of n.

