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Statistical physics of dyons and confinement

Dmitri Diakonov (Petersburg Nuclear Physics Institute)

1. What is “vacuum”?

• in Quantum Mechanics

• in Quantum Field Theory (QCD)

2. What is quantum theory at nonzero temperatures?

• in Quantum Mechanics

• in Yang–Mills theory (QCD)

• confinement and deconfinement

3. Saddle-point fields

• instantons

• monopoles, dyons

• instantons with non-trivial holonomy (KvBLL)
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4. Statistical weight (or probability) of KvBLL instantons

5. Ensemble of dyons

6. Ground state: “confining” holonomy preferred

7. Correlator of Polyakov lines: “electric” string tension for k-strings

8. Average Wilson loop: “magnetic” string tensions

9. Comparison of observables with lattice results

Original results based on:

Phys. Rev. D76, 056001 (2007) [arXiv:0704.3181] by D.D. and Victor Petrov
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1. What is “vacuum”? — It is the ground state of a quantum system.

V(q)

q

Non-relativistic particle with mass m in a one-dimensional potential

well V (q).

Lagrangian L =
mq̇2

2
− V (q), Energy H =

mq̇2

2
+ V (q).

In Quantum Mechanics, to find the (quantized) energy levels En and the stationary wave

functions ψn(q) one solves the Schrödinger eqn:

Hψn(q) = En ψn(q), H = − h̄2

2m

d2

dq2
+ V (q).

Take non-zero temperature T o and consider the partition function of the system

[Feynman]:

Z =
∑

n

e−
En
kTo =

∫

dq0

∫ q(T )=q0

q(0)=q0

Dq(t) exp

(

−1

h̄

∫ T

0

dt

[

mq̇2(t)

2
+V (q(t))

])

, T =
h̄

kT o
.
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0 a 2a 3a ... T
t

Path integral over periodic trajectories

q (0) = q0 q (T) = q0

q

= 1/T o

Discretized action

S =
∑

n

a

[

m

2

(
q(tn) − q(tn−1)

a

)2

+ V (q(tn))

]

.

Path integral can be understood as the limit of an infinite

number of ordinary integrations – over the intermediate

points q1 . . . qN :

Z = N lim
N→∞

N∏

n=1

∫

dqn e
−Sh̄ .

To cut out the lowest lying ground state, one has to take T o → 0, T = h̄
kTo → ∞.

This is how a typical “vacuum” trajectory for the quantum-mechanical particle in a potential

well look like:

t

V(q)
q

q(t)

A quantum-mechanical particle in the vacuum experiences zero-point oscillations. This is

why the ground-state energy is not zero but E0 = h̄ω
2 .
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Typical “vacuum” trajectory in case of the double-well potential:

t

instanton anti-instanton

V(q)

q

q(t)

Instantons = classical trajectories with minimal action, satisfying the equation of motion

δS

δq(t)
= 0 or mq̈ = −∂V

∂q

In the vacuum, one typically observes

zero-point oscillations on top of

classical trajectories of the fields
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Quantum Mechanics is called a (0 + 1)-dimensional Quantum Field Theory (QFT).

In Yang–Mills theory the role of “coordinates” q(t) is played by the amplitudes of the fields

Ai(x, t) which depend on 3 space and 1 time coordinates.

The vacuum (= the ground state) is made of zero-point oscillations of the fields Ai(x, t)

on top of classical field configurations Aclass(x, t) :

left: action density, before and after smearing

right: so-called topological charge density

Computer simulations of the Yang–Mills vacuum [J.Negele et al.]

Top: snapshot of the full configuration, dominated by zero-point oscillations.

Bottom: Smearing kills the zero-point oscillations but reveals classical configurations of the

gluon field, here: instantons and anti-instantons.
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Yang–Mills theory at non-zero temperatures

Feynman’s representation for the partition function:

Z =
∑

n

〈n
∣
∣
∣e

−βH
∣
∣
∣n〉

[

β =
1

T

]

=
∑

n

∫

dq ψ
∗
n(q) e

−βEn ψn(q) =

∫

dq

∫ q(β)=q

q(0)=q

Dq(t) exp

(

−
∫ β

o

dtLEuclid[q, q̇]

)

.

In Yang-Mills theory the role of coordinates q is played by the spatial components of the

gluon field Aa
i (x):

Z=

∫

DAi(x)

∫ Ai(β,x)=Ai(x)

Ai(0,x)=Ai(x)

DAi(t, x) exp

{

− 1

2g2

∫ β

0

dt

∫

d
3
x

[(

Ȧ
a
i

)2

+(B
a
i )

2
]}

,

Ba
i =

1

2
εijk

(

∂jA
a
k − ∂kA

a
j + fabcAb

kA
c
k

)

chromomagnetic field.

However, in a gauge theory one sums not over all possible but only over physical states,

i.e. satisfying Gauss’ law. In the absence of external sources it means that only those

states need to be taken into account that are invariant under gauge transformations:

Ai(x) → [Ai(x)]
Ω(x)

= Ω(x)†Ai(x) Ω(x)+iΩ(x)† ∂iΩ(x), Ω(x) = exp{i ωa(x)ta} .
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To restrict the summation to physical states, one projects to the physical i.e. gauge

invariant states by averaging the initial and final configurations over gauge rotations [This

is as if we would like to restrict the summation to spherically-symmetric states only]:

Zphys =
∑

phys states

〈n
∣
∣
∣e

−βH
∣
∣
∣n〉 =

∑

n

∫

dΩ1,2

∫

dq ψ
∗
n(Ω1q) e

−βEn ψn(Ω2q)

=

∫

DΩ1,2(x)DAi(x)

∫ Ai(β,x)=Ai(x)
Ω2(x)

Ai(0,x)=Ai(x)
Ω1(x)

DAi(t, x) exp

{

− 1

2g2

∫ β

0

dt

∫

d3x

[(

Ȧa
i

)2

+(Ba
i )

2
]}

.

Renaming the initial field A
Ω1(x)
i → Ai and introducing the relative gauge transformation

Ω(x) = Ω2(x) Ω†
1(x) one can rewrite this as

Zphys =

∫

DΩ(x)DAi(x)

∫ Ai(x)
Ω(x)

Ai(x)

DAi(t, x) e
−S[Ai] .

A more customary form: integrate over strictly periodic gauge fields, but at the cost of

introducing a non-zero A4(t, x), e.g. i exp(−itωata)∂t exp(itωata). Then

Zphys =

∫

DAµ exp

{

− 1

4g2

∫

d4xF a
µνF

a
µν

}

, Aµ(t, x) = Aµ(t+ β, x), β = 1/T.
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The eigenvalues of the Polyakov line are gauge invariant

L(x) = P exp

(

i

∫ β

0

dtA4(t, x)

)

(= Ω(x)) “holonomy”

One can choose the gauge where A4 is time-independent, moreover, diagonal. In this gauge

L(x) = exp(iβ A4(x)) =





e2πiµ1 0 0

0 e2πiµ2 0

0 0 e2πiµ3



 , µ1 + µ2 + µ3 = 0,

µ1 ≤ µ2 ≤ . . . ≤ µN ≤ µ1 + 1.

“Trivial” holonomy: when the Polyakov line belongs to one of the elements of the center

of the group ZN , and TrL 6= 0:

1) µ1 = µ2 = µ3 = 0 =⇒ L =





1 0 0

0 1 0

0 0 1





2) µ1 = −2
3, µ2 = 1

3, µ3 = 1
3 =⇒ L = e

2πi
3





1 0 0

0 1 0

0 0 1





3) µ1 = −1
3, µ2 = −1

3, µ3 = 2
3 =⇒ L = e−

2πi
3





1 0 0

0 1 0

0 0 1




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“Maximally non-trivial” holonomy:

µ1 = −1
3, µ2 = 0, µ3 = 1

3 =⇒ L =







e−
2πi
3 0 0

0 e
0πi
3 0

0 0 e
2πi
3






, TrL = 0(!)

Physical meaning of the Polyakov line

< Tr L(z) >= e−mquark / T

{
= 0 below Tc
6= 0 above Tc

L(z )
L(z ) = Pexp�

0

1/T
iA4 dt

time

3d space

For confinement, it helps to have gluon configurations

with a “maximally non-trivial” holonomy!
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Criteria of confinement at nonzero temperature

1. Average Polyakov line

< Tr L(z) >

{
= 0 below Tc
6= 0 above Tc

L(z )
L(z ) = Pexp�

0

1/T
iA4 dt

time

3d space

2. Linear rising potential between quarks

< Tr L(z1) Tr L
†
(z2) >= e

−V (z1−z2)/T

V (z1 − z2) = |z1 − z2| σ

quark antiquark

z1 z2

L †(z2)L (z1)

3. Area law for Wilson loops in non-zero N -ality representations

< Tr P exp i

∮

Aidx
i
>= e

−σArea
W= P exp i∫Ai dx i ∼ exp( − σ )Area 

4. Mass gap: No massless particles in the spectrum

5. No Stefan–Boltzmann law ( F ∼ N2T 4); instead: F = O(N0)

but exponentially rising density of states (= the Hagedorn spectrum)
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Saddle-point gluon fields –

– are those fields Aa
µ(x, t) that have relatively higher probability to occur in the vacuum;

they satisfy the non-linear Maxwell eqn:

δS

δAa
µ(x)

= 0 or Dab
µ F

b
µν = 0

and have finite action S =
∫
d4xF a

µνF
a
µν < ∞.

Topological classification [Gross, Pisarski, Yaffe]

1. Topological charge

QT =
1

16π2

∫

d
4
x ε

κλµν
F
a
κλ(x)F

a
µν(x)

2. Holonomy, more precisely the gauge-invariant eigenvalues of the Polyakov loop at spatial

infinity:

eigenvalues of L = P exp

(

i

∫ 1/To

0

dtA4(x, t)

)
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3. Magnetic charge, more precisely the gauge-invariant eigenvalues of the chromo-magnetic

flux at spatial infinity:

B =
r

|r|3 ×





1 0 0

0 −1 0

0 0 0



 , etc.

Standard Belavin–Polyakov–Schwarz–Tiupkin instantons

QT = ±1, holonomy = trivial, magnetic charge(s) = 0. The gluon configuration is

O(3)-symmetric at T o 6= 0 and O(4)-symmetric at T o → 0. The action is S = 8π2

g2
.
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µν at T o =0 instanton action density F 2

µν at T o 6=0
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Magnetic monopoles, or BPS monopoles, or dyons

Topological charge = fractional, holonomy = arbitrary, magnetic charges quantized:

E = B =
r

|r|3 ×





1 0 0

0 −1 0

0 0 0



 ,





0 0 0

0 1 0

0 0 −1



 ,





−1 0 0

0 0 0

0 0 1



 .

A4(|x|→∞) → 2πT
o ×





µ1 0 0

0 µ2 0

0 0 µ3





Inside the dyons’ cores of the size 1
2πTo(µi−µj)

the field is highly non-linear, non-Abelian

and, generally, time-dependent; the asymptotics is static and Abelian. The action density

is time-independent everywhere:

-2
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2
z

0
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0.4

0.6
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1

t-2

0

2
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Kraan–van Baal–Lee–Lu (KvBLL) instantons with non-trivial holonomy —

— generalize both standard instantons and magnetic monopoles. They can be considered

as “made of” 3 dyons. The action density is static when dyons are far apart, and reminds

the instanton when dyons merge together.
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2
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QT = ±1, holonomy = arbitrary, full magnetic charge = 0.

The full classical action is exactly the same for all dyon configurations, S = 8π2

g2

A4(|x|→∞) → 2πT
o ×





µ1 0 0

0 µ2 0

0 0 µ3




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The probability (or statistical weight) of the KvBLL instanton was computed exactly (!)

by D.D., Gromov, Petrov and Slizovsky (2004), D.D. and Gromov (2005), Gromov (2006),

Slizovsky (2007). The statistical weight depends on Λ, T o, {µ1, µ2...}, |xmn|. For the

SU(N) gauge group

W =

∫

dx1...dxN detGf.

f =
4π

g4

Λ4
PV

T
c, “fugacity”

c = (Det(−4))
−1
reg,norm ≈ exp

(

−V T 3 P pert(µ)
)

G
N×N
mn = δmn

(

4πνm +
1

|xm − xm−1|
+

1

|xm − xm+1|

)

− δm,n−1

|xm − xm+1|
− δm,n+1

|xm − xm−1|

where νm = µm+1 − µm. [Conjectured by Lee, Weinberg and Yi, computed exactly by

Kraan and DD and Gromov]

At trivial holonomy (µm = 0) this measure reduces to the well-known standard instanton

measure computed by ’t Hooft (at T =0) and Gross, Pisarski and Yaffe (at T 6= 0).
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Why “maximally non-trivial” holonomy is maximally non-trivial?

Effective (1-loop, 2-loop ...) quantum action as function of slowly varying A4(x) [Gross,

Pisarski and Yaffe; D.D. and Oswald]:
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0.01
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0.03

0.04

0.05

0.06

SU(2): Perturbative potential energy P (µ1−µ2).
1
2TrL =

±1 correspond to the two minima: µ1 −µ2 = 1, 0;

TrL = 0 corresponds to the maximum µ1−µ2 = 1
2.

0

5A3

-5

0

5

A8

0

5A3

SU(3): Perturbative potential energy P (µ) as function of

µ1−µ2, µ3−µ2 forms a double-periodic triangle lattice. At

the minima, the Polyakov line ∈ Z(3), corresponding to the

deconfined phase. Confinement, TrL = 0, corresponds to

the maximum of the perturbative energy.

P
pert

= V
(2π)2T 3

3

N∑

m>n

(µm − µn)
2
[1 − (µm − µn)]

2

∣
∣
∣
∣
∣
mod1

.

It hasN minima (all with zero energy) at the trivial holonomy corresponding toN elements

of the center of SU(N). The large volume factor V seemingly prohibits any configurations

with non-trivial holonomy!
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Perturbative potential energy as function of TrL: left: SU(2), right: SU(3). Confinement

( TrL = 0) corresponds not to the minima but to the maxima of the potential energy.

Both plots scale as ∼ T 4.

However, the non-perturbative free energy of the ensemble of O(V ) dyons has the minimum

at TrL = 0:
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At T < Tc the dyon-induced free energy prevails and forces the system to pick the

“maximally non-trivial” “confining” holonomy, TrL = 0. The phase transition will be 2nd

order in SU(2) and 1st order in SU(3) and higher.
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The above metric has been written for N dyons, all of different kind.

If there are K dyons of the same kind, the metric has been found by Gibbons

and Manton (1995) from considering the classical equations of motion for K identical

monopoles at large separations:

G̃ij =

{
4πνm −∑

k 6=i
2

|xi−xk|
, i = j,

2
|xi−xj|

, i 6= j

Coulomb coefficients are determined by the scalar products of Cartan generators

Cm = diag(0, 0, ..., 1︸︷︷︸
mth place

,−1, 0, ..., 0)

Tr (CmCn) =







2 same kind

−1 nearest neighbour

0 non − nearest neighbour

In the vacuum, there are K1 dyons of the 1st kind ... KN dyons of the Nth kind: one has

to combine the known metric for same-kind and different-kind dyons.
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Ensemble of dyons

Each dyon has 3 coordinates of the center, and 1 U(1) phase (4 collective coordinates).

Partition function of the ensemble of N kinds of dyons for SU(N):

Z =
∑

K1...KN

1

K1!...KN !

N∏

m=1

Km∏

i=1

∫

(d3
xmi f) detG(x) .

G(x) is a (K1 + ...+KN) × (K1 + ...+KN) metric tensor of the moduli space:

Gmi,nj = δmnδij



4π(µm+1−µm)+
∑

k

1

|xmi−xm−1,k|
+
∑

k

1

|xmi−xm+1,k|
−2

∑

k 6=i

1

|xmi−xmk|





− δm,n−1

|xmi−xm+1,j|
− δm,n+1

|xmi−xm−1,j|
+ 2

δmn

|xmi−xmj|

∣
∣
∣
∣
i 6=j

.

3 kinds of the SU(3) gauge group.

Same-kind dyons repulse each

other, different-kind attract each

other.

Coulomb coefficients are

determined by the Cartan matrix:

Cmn=TrCmCn=







−1, n = m−1

2, n = m

−1, n = m+1
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• the metric is hyper-Kähler, as it should be for the moduli space of any self-dual

solutions

• for different-kind dyons it reduces to the exact metric at all separations, calculated by

Kraan (2000) and Gromov and D.D. (2005)

• for same-kind dyons it reduces to the metric found by Gibbons and Manton (1995)

• identity loss: dyons of the same kind are indistinguishable, meaning that detG is

symmetric under permutation of any pair of dyons (i↔j) of the same kind m

• factorization: in the geometry when dyons fall into K well separated clusters of N

dyons of all kinds in each, detG factorizes into a product of exact integration measures

for K KvBLL instantons.

Fugacity (from the one-loop renormalization, computed exactly by D.D., Gromov, Petrov

and Slizovskiy for SU(2) , and Gromov and Slizovskiy for general SU(N))

f =
4π

g4

Λ4
PV

T
c, c = (Det(−4))−1

reg, norm

T→0≈ 1.

Therefore, the free energy and correlation functions in the ensemble will depend on the

Yang–Mills scale parameter Λ, temperature T and holonomy {µm}.

The partition function is very unusual: the ensemble is governed not by exp(−Uint) but

by a determinant whose dimension is equal to the number of particles! One can write

detG = exp(Tr logG) but then Uint will depend on many-body forces!
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The dyon ensemble can be presented exactly as a 3d QFT!

Two tricks.

• “Fermionization” [Berezin]:

detG =

∫
∏

A

dψ
†
A dψA exp

(

ψ
†
AGAB ψB

)

• “Bosonization” [Polyakov]:

exp

(
∑

m,n

QmQn

|xm − xn|

)

=

∫

Dφ exp

(

−
∫

dx(∂iφ∂iφ+ ρφ)

)

= exp

(∫

ρ
1

4ρ

)

, ρ =
∑

Qm δ(x − xm)

Here the “charges” Q are anticommuting Grassmann variables but one can easily

integrate out ψ, ψ†.

One needs 2N boson fields vm, wm to reproduce diagonal elements of G and 2N

anticommuting ghost fields χ†
m, χm to reproduce non-diagonal elements of G.
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The partition function of the dyon ensemble can be identically written as a quantum field

theory [D.D. and Petrov (2007)]:

Z =

∫

Dχ†DχDvDw exp

∫

d3x

{
T

4π

(

∂iχ
†
m∂iχm + ∂ivm∂iwm

)

+ f

[

(−4πµm + vm)
∂F
∂wm

+ χ
†
m

∂2F
∂wm∂wn

χn

]}

F =
N∑

m=1

e
wm−wm+1 (periodic, or “affine” Toda lattice)

N boson fields vm are Abelian electric potentials

N boson fields wm are the dual Abelian potentials

2N anticommuting ghost fields χ†
m, χm are in fact needed to support the holomorphic

(hyper-Kähler) properties of the dyons’ metric.
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The 3d quantum field theory is exactly solvable!

∫

Dvm −→ δ

(

− T

4π
∂2wm + f

∂F
∂wm

)

This δ-function restricts possible fields wm over which one still has to integrate. Integration

over small fluctuations about w̄m solving the δ-function gives a Jacobian

∫

Dwm δ

(

− T

4π
∂2wm + f

∂F
∂wm

)

−→ det−1

(

− T

4π
∂2δmn + f

∂2F
∂wm∂wn

∣
∣
∣
∣
∣
w=w̄

)

which is immediately canceled by the ghost determinant in the same background w̄m:

∫

Dχ
†
mDχm −→ det

(

− T

4π
∂

2
δmn + f

∂2F
∂wm∂wn

∣
∣
∣
∣
∣
w=w̄

)

Boson loops cancel exactly ghost loops (like in supersymmetry!) =⇒ the dyons ensemble

is basically governed by a classical field theory, no quantum corrections!!
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Ground state: “confining” holonomy preferred

To find the ground state we examine the fields’ potential energy

P = −4πf
∑

m

νm e
wm−wm+1, νm = µm+1 − µm.

Stationary point in wm:

ew1−w2 =
(ν1ν2ν3...νN)

1
N

ν1

, ew2−w3 =
(ν1ν2ν3...νN)

1
N

ν2

, etc. =⇒

P = −4πf N (ν1ν2...νN)
1
N , ν1 + ν2 + ... + νN = 1,

which has the minimum at

ν1 = ν2 = ... = νN =
1

N
, Pmin = −4πf.

Equal ν’s correspond to the “confining” holonomy! The free energy at the minimum is

F
min

= Pmin
V = −4πfV = −16π2

g4
Λ

4 V

T
= −16π2

g4
Λ

4
V

(4)

and there are no corrections to this result!
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Heavy quark potential from Polyakov lines’ correlator

Polyakov lines serve as a source for the Abelian electric fields vm:

L(z) = P exp i

∫ 1/T

0

dtA4(z) = diag

(

exp

(

2πiµm− i

2
vm(z)

)

. . .

)

quark antiquark

z1 z2

L †(z2)L (z1)

The correlation function of two Polyakov lines in the fundamental representation

〈

TrL(z1)TrL†(z2)
〉

=
∑

m1,n1

e2πi(µm1−µn1)
∫

Dwm exp

(∫

dx
4πf

N
F(w)

)

·
∏

m

δ

(

− T

4π
∂2wm + f

∂F
∂wm

− i

2
δ(x−z1)δmm1

+
i

2
δ(x−z2)δmn1

) (

from

∫

Dvm...

)

·det

(

− T

4π
∂

2
δmn + f

∂2F
∂wm∂wn

)

(from ghosts).

One has to find wm(x) from the δ-function and plug it into the action
∫
F(w). There

will be no quantum corrections to this classical calculation.

At large separations z1−z2, wm(x) is small, and one can linearize the equation on wm(x).

dyons D. Diakonov, 20.06.08



F(w) =
∑

m

ewm−wm+1 ≈ N +
1

2
wmMmnwn ,

∂F
∂wm

≈ Mmnwn ,

M =










2 −1 0 . . . 0 −1

−1 2 −1 . . . 0 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

−1 0 0 . . . −1 2










Cartan matrix Mmn = Tr CmCn.

Its eigenvalues are

M(k) =
(
2 sin πk

N

)2
, k = 1, ..., N.

1 2 3 4 5 6 7 8
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The result for the correlation function:

〈

TrL(z1)TrL
†
(z2)

〉

= const. exp

(

−|z1−z2|M 2 sin
π

N

)

,

where

M2 =
4πf

T
=

16π2Λ4

g4T 2
= O(N2).

This should be compared with the standard definition of the heavy-quark potential

〈

TrL(z1)TrL†(z2)
〉

= C exp

(

−V (z1−z2)

T

)

from where we deduce the linear heavy-quark potential at large separations:

V (z1−z2) = |z1−z2|MT 2 sin
π

N
= σ |z1−z2|, C = O(N0),

with the ‘string tension’

σ = MT 2 sin
π

N
=

Λ2

λ

N

π
sin

π

N
, λ =

g2N

8π2
= O(N

0
) ‘t Hooft coupling.

The string tension is independent of T and stable at large N , as expected.
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N -ality and k-strings

All IREP’s of SU(N) can be put into N classes with respect to confinement:

• those that appear in adjoint ⊗ adjoint ⊗ . . .

• those that appear in (rank-k antisymmetric rep) ⊗ adjoint ⊗ adjoint ⊗ . . .

These are called N -ality = k representations, k = 1, . . . , N−1.

All adjoint sources can be screened by an appropriate number of gluons. Therefore, all

N -ality = k sources must have asymptotically the same string tension σ(k,N). Its

behaviour with k and N is of fundamental importance as it discriminates between various

confinement mechanisms.

We obtain

〈

TrLk(z1)TrLk
†
(z2)

〉

= const. exp

(

−|z1−z2|M 2 sin
πk

N

)

,

hence

σ(k,N) =
Λ2

λ

N

π
sin

πk

N

known as “the sine regime”; it has been encountered in certain supersymmetric models.
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Magnetic string tension from average Wilson loops

z
y

x

W = TrPexp�iAi dx i
∼ exp ( −σ Area )

Averaging Wilson loops over the dyon ensemble we find the area law, where the string

tension is determined from solitons of the so-called periodic Toda lattice (m = 1...N),

with a source along the surface of the loop:

−∂2
wm+M

2
(

e
wm−wm+1−ewm−1−wm

)

= −2πi δmm1 δ
′
(z) θ(x, y ∈ Area), M

2
=

4πf

T
.

We have found solutions (the ‘pinned solitons’) for allN and k. In all cases the ‘magnetic’

string tension coincides with the ‘electric’ one (computed from Polyakov lines):

σ(k,N) =
Λ2

λ

N

π
sin

πk

N
.

Lorentz symmetry is restored at T → 0 by the dyon ensemble, despite its 3d formulation!

An unexpected finding: There is a continuous set of solitons characterized by a phase,

leading to a continuous set of string profiles but all with the same string tension.

Therefore, there is an extra Goldstone mode living on the string (on top of the usual

long-wave deformations), and the effective action is more complicated than the standard

Nambu–Goto one. Non-critical string?
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k-string profile is given by the solution of the Toda equations, with a source depending on

k:

w(k)
m,m+1(z) =







ln

[

1+γκk(m−1)E(k)(z)
][

1+γκk(m+1)E(k)(z)
]

[

1+γκkmE(k)(z)
]2 , z > 0,

ln

[

1+γ∗κ∗ k(m−1)E(k)(−z)
][

1+γ∗κ∗ k(m+1)E(k)(−z)
]

[

1+γ∗κ∗ kmE(k)(−z)
]2 , z < 0,

{
m = 1, . . . , N,

k = 1, . . . , N−1,

E
(k)

(z) = exp(−M
√
M(k) z),

√
M(k) = 2 sin

πk

N
, κ = exp

(
2πi

N

)

, γ = e
iα
.

The phase α is arbitrary: the solution depends on α but the string tension does not! It is

a new “Goldstone mode” of the string.
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Thermodynamics of the deconfinement phase transition

In the confinement phase, the free energy is

F

V
= −N2 Λ4

2π2λ2
+ T

4 π
2

45

(

N
2 − 1

N2

)

− T
4 π

2

45

(

N
2 − 1

)

(dyon-induced) (perturbative energy at maximum) (Stefan–Boltzmann)

O(N) gluons are canceled from the free energy, as it should be in the confining phase!

The 1st order confinement-deconfinement phase transition is expected at

T
4
c =

45

2π4

N4

N4 − 1

Λ4

λ2
.

Tc is stable in N as expected.
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Robust quantities (both from the theoretical and lattice viewpoints) are those measured in

units of the string tension σ = Λ2

λ
N
π sin π

N :

N=3 4 6 8

Tc/
√
σ, theory 0.6430 0.6150 0.5967 0.5906

Tc/
√
σ, lattice 0.6462(30) 0.6344(81) 0.6101(51) 0.5928(107)

Lattice data are from Lucini, Teper and Wenger (2003).

Topological susceptibility (lattice data are from Lucini and Teper (2001)):

(
<Q2

T>
)1
4

√
σ

=

{
0.439, theory

0.434(10), lattice
for N = 3.
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Why does the semiclassical picture work so suspiciously well?

Contribution from a classical saddle point (here: dyon), schematically

M
4

exp

(

−2π

αs

)

︸ ︷︷ ︸

Λ4

[

1 + c1
αsN

2π
+ c2

(
αsN

2π

)2

+ . . .

]

What is αs? It is the running coupling constant whose argument is the maximal scale in

the problem, i.e. max
(

density
1
3, temperature

)

. At T ≈ Tc ≈ Λ

1

λ
≡ 2π

αsN
=

11

3
ln

(
4πT

ΛeγE

)∣
∣
∣
∣
T≈Tc≈Λ

≈ 7.

Therefore, the loop expansion is a series in ≈ 1
7.

[Similar arithmetics is met in Wilson’s ε expansion for anomalous dimensions in critical

phenomena: the expansion parameter is formally O(1), however in reality the loop

expansion is a series in 1
2π . It gives accurate results from the first couple of terms.]
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Summary

1. The statistical weight of gluon field configurations in the form of N kinds of dyons has

been computed exactly to 1-loop

2. Statistical physics of the ensemble of interacting dyons is governed by an exactly solvable

3d QFT

3. The ensemble of dyons self-organizes in such a way that all criteria of confinement are

fulfilled

Non-trivial holonomy allows the existence of dyons

Dyons request the holonomy to be maximally non-trivial !

4. All quantities computed are in good agreement with lattice data

5. A simple picture of a semi-classical vacuum based on dyons works well!
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Effective 1-loop action for slowly varying eigenvalues of the Polyakov line [D.D. and Oswald

(2004)]:

Eigenvalues of L = P exp

(

i

∫

dx
4
A4(x, x

4
)

)

=
(

e
2πiµ1, . . . , e

2πiµN
)

S
1−loop
eff =

N∑

m>n

∫

d
3
x

×
{

(∂iνmn)
211

12
T

[

2 log

(
4πT

Λ eγE

)

+H(νmn)

]

+
(2π)2T 3

3
ν

2
mn(1 − νmn)

2

}

, νmn = µm − µn,

H(ν) = [ψ(ν) + ψ(1 − ν) + 2γE]mod 1

Since ψ(ν) ≈ −1/ν at small ν, the gradient term becomes negative near “trivial”

holonomy, which signals its instability even in pure perturbation theory.
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The constructed 4KN × 4KN metric tensor gAα,Bβ is hyper-Kähler. It means that

there exist three “complex structures” I(a), a = 1, 2, 3, (all three are 4KN × 4KN

matrices) such that

I(a)g = gI(a)T (“T” means transposed) (1)

and which satisfy the Pauli algebra,

I(a)I(b) = ε
abc
I(c) − δ

ab
1. (2)

Related to I(a), there are three Kähler symplectic 2-forms

ω(a) = Ω(a)Bβ,Cγ dy
β
B ∧ dyγC, Ω(a) = −Ω(a)T , (3)

where

Ω(a) = I(a)g. (4)

The 2-forms ω(a) are closed:

dω(a) = 0 or
∂

∂yαA
Ω(a)Bβ,Cγ dy

α
A ∧ dyβB ∧ dyγC = 0. (5)

Explicitly, the three Kähler forms ω(a) are

ω(a) = 2(dψA + WAA′ ·dxA′) ∧ dxaA −GBC ε
abc
dx

b
B ∧ dxcC. (6)
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