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Seminar outline

• Introduction � lattice �eld theory

• Wilson fermions

• Wilson Twisted Mass fermions. Maximal Twist

• Overlap fermions

• Creutz fermions

• Conclusion

The quantities under investigation � the pseudoscalar meson correlation
function, mass & decay constant.
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Lattice Field Theory

The main motivation:
Non-perturbative aspects of Quantum Field Theories
particularly: Quantum ChromoDynamics

asymptotic con�nement

freedom

distances distances

� 1 fm ≈ 1 fm

quarks hadrons

& gluons & glueballs

perturbative non-perturbative

Kenneth Wilson (1974)
Con�nement of Quarks
Phys. Rev. D 10, 2445-2459
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�Conventional� QFT

In �conventional� Quantum Field Theory one calculates the vacuum expectation
values:

〈0|T{O1(x1)O2(x2) . . .}|0〉 =
R
DAµDψDψ̄ O1(x1)O2(x2)...e

iSR
DAµDψDψ̄ eiS

, (1)

where:

S =
∫
d4x L (2)

is the action.

Space-time has 3 spatial dimensions and 1 temporal dimension.

Minkowski metric:
gµν = diag(1,−1,−1,−1). (3)
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�Euclidean� QFT

Before one goes to the lattice, one switches to the Euclidean metric:

gµν = diag(1, 1, 1, 1) (4)

by performing a Wick rotation:

x0 → −ix4. (5)

We thus have:

〈0|T{O1(x1)O2(x2) . . .}|0〉 =
R
DAµDψDψ̄ O1(x1)O2(x2)...e

−SER
DAµDψDψ̄ e−SE

, (6)

where:

S = i

∫
d4x LE (7)

is the Euclidean action.

Expression (6) can be computed on the lattice.

5



�Naive� discretization of fermions

Consider the following action in EQFT:

S =
∫
d4xψ̄(x) (γµ∂µ +m)ψ(x). (8)

We have to discretize the derivative:

∂µψα(n) = 1
2 (ψα(n+ µ̂)− ψα(n− µ̂)) ≡ 1

2(∇µ +∇∗
µ)ψα(n), (9)

where ∇µ and ∇∗
µ denote the forward and backward lattice derivative.

We can rewrite:
S =

∑
n,m

ψ̄α(n)Kαβ(n,m)ψβ(m), (10)

where:

Kαβ(n,m) =
∑
µ

1
2 (γµ)αβ (δm,n+µ̂ − δm,n−µ̂) +mδmnδαβ. (11)
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One can show that this leads to the following form of the fermion propagator:

S(p) = −iγµ sin pµ+1mP
µ sin p2µ+m

2 , (12)

where:
pµ = 2π(nµ+δµ)

Lµ
, (13)

nµ = 0, 1, . . . , Lµ − 1,
Lµ � spatial lattice extent in direction µ̂,
δµ = 0 for PBC, δµ = 1/2 for ABC.

• This leads to an incorrect continuum limit, which is due to additional zeros of
the sine at the corners of the Brillouin zone.

• Instead of 1 fermion we have 2d of them!

• 2d − 1 of these fermions are lattice artifacts and have no counterpart in reality.
This is the notorious fermion doubling problem.

• One can show that this problem is caused by the symmetric form of the lattice
derivative.
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Nielsen-Ninomiya theorem

Fermion doubling problem is very general.

Nielsen and Ninomiya showed in 1981 that it is impossible to have at the same
time:

• locality,

• translational invariance,

• no doublers,

• chiral symmetry.

The N-N theorem is of topological origin:
chiral symmetry means that D(p) is of the form γµdµ(p). We can assign an index
of +1 or -1 to every zero of the dµ, and then the Hopf-Poincare index theorem
states that the sum over the indices of the zeros of a vector �eld on a manifold is
equal to the Euler characteristic of the manifold. For n-torus the Euler characteristic
is 0, so zeros must come in pairs of opposite index.
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Wilson discretization

The simplest way to overcome the fermion doubling problem is to add the so-called
Wilson term to the fermion action.

The Wilson-Dirac operator is:

DW = 1
2

(
γµ(∇∗

µ +∇µ)−∇∗
µ∇µ

)
+m. (14)

The fermion propagator in momentum space:

S(p) =
−iγµ sin pµ+1(P

µ(1−cos pµ)+m)P
µ sin p2µ+(P

µ(1−cos pµ)+m)2 . (15)

In the continuum limit the doublers become in�nitely heavy and decouple.

But: the Wilson term explicitly breaks chiral symmetry, even in the massless limit!
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Correlation functions for pions

The interpolating �elds describing the charged pions, π+ and π− are:

P±(x) ≡ P1(x)∓ iP2(x) (16)

where Pa(x) = ψ̄(x)γ5
τa

2 ψ(x), with a = 1, 2, 3, is the pseudoscalar density and
τa are the standard Pauli matrices.

The quark propagator can be decomposed in terms of the gamma matrices as

S̃(p) = SU(p)1 +
∑
µ

Sµ(p)γµ (17)

in the case of overlap and Creutz fermions, while for twisted mass fermions an
additional term proportional to γ5 is present

S̃(p) = SU(p)1 +
∑
µ

Sµ(p)γµ + S5(p)γ5. (18)

10



Correlation functions for pions

With such a decomposition, the pseudoscalar correlation function can be written
as:

C(t) = NcNd
L3L2

4

∑
p4

∑
p′4

∑
~p

∑
µ

ei(p4−p
′
4)tSµ(~p, p4)S∗µ(~p, p

′
4), (19)

with µ = U, 1, 2, 3, 4 or µ = U, 1, 2, 3, 4, 5 depending on the kind of fermions
that is being considered.

Nc � the number of colours,
Nd � the number of Dirac components,
Lµ = aNµ and Nµ � the number of lattice points in the µ̂-direction.

The expression in eq. (19) can be evaluated as it stands, or a time-momentum
representation can be used obtained for a lattice with in�nite time extension by
performing the time integration over p4 analytically.
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Correlation function for proton

The local interpolating �eld describing the proton is given by

Pα(x) ≡ −
√

2εabc
[
d̄Ta (x)C−1γ5ub(x)

]
uα,c(x). (20)

The Greek (Latin) letters denote Dirac (colour) components,
u, d � the �avour content, C � charge conjugation matrix, [ ] denotes spin trace.

The expression for the time dependence of the proton correlation function is:

CPP̄(t) = NcNd
L6

∑
~p

∑
~q

{
LU(~p, ~q, t) + L4(~p, ~q, t)

}
, (21)

with the de�nitions:

LU(~p, ~q, t) ≡ SuU(−(~p+~q), t)
{

(Nd+1)SuU(~p, t)SuU(~q, t)+(Nd+3)
4∑

µ=1

Suµ(~p, t)Suµ(~q, t),
}

(22)

Lµ(~p, ~q, t) ≡ Suµ(−(~p+~q), t)
{

(Nd+3)SuU(~p, t)SuU(~q, t)+(Nd+1)
4∑

µ=1

Suµ(~p, t)Suµ(~q, t)
}
.

(23)
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Scaling tests

• At tree-level a dimensionless quantity can be only a function of mL, a/L and
am, where m indicates the quark mass.

• To perform the continuum limit one can �x mL to a certain value and the
remaining dependence of the dimensionless quantity will be then in a/L.

• The continuum limit is then obtained sending N = L/a to in�nity.

• We set a = 1 and the 1/N and 1/N2 dependence of the dimensionless quantities
under investigation will correspond to O(a) and O(a2) scaling violations

• We consider:

� the correlation function at a �xed physical time t/N ,
� the pseudoscalar decay constant fPS ,
� the pseudoscalar and proton masses M .

• This leads dimensionless quantities N3C(t/N), NM and NfPS .
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Mass average for Wilson fermions

Figure 1: Left graph: the cuto� e�ects and the continuum limit of the proton mass
obtained from two standard Wilson actions di�ering only in the sign of the quark
mass, |Nm0| = 0.8.
Right graph: the average of the proton masses obtained from the same two standard
Wilson regularizations with quark masses Nm0 = ±0.8.
The lines are �ts of the data to the following functions:

y1 = a0 + a1
1
N + a2

1
N2 , y2 = b0 + b1

1
N2 + b2

1
N4. (24)
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Wilson twisted mass discretization

An automatic O(a)-improvement can be obtained if one adds an extra term to the
action:

S = a4
∑
x

ψ̄ (DWilson + iµqγ5τ3)ψ. (25)

The expression for the Wilson twisted mass fermion propagator in the twisted basis,
at tree-level of perturbation theory and in momentum space is given by

S̃(p) = −ip̊µγµ1f+M(p)11f−iµq γ5τ3P
µ p̊

2
µ+M(p)2+µ2

q
, (26)

where

p̊µ = 1
a sin(apµ), p̂µ = 2

a sin(apµ2 ), M(p) = m0 + ar
2

∑
µ

p̂2
µ (27)

where 1 and 1f are the identity matrices in Dirac and �avour space.

The structure in colour space has not been written since it is just an identity matrix
at tree level of PT.

The parameters m0 and µq represent the untwisted and twisted quark masses,
respectively. Maximal twist � in the case of tree-level of perturbation theory � is
achieved by setting m0 = 0. We then expect to have only O(a2) lattice spacing
e�ects in physical correlation functions.
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Overlap discretization

In 1982 Ginsparg and Wilson found a way to break the chiral symmetry on the
lattice in a controlled way. As a result of renormalization group calculations their
Dirac operator obeyed the following relation:

γ5D +Dγ5 = aDγ5D. (28)

A particularly simple form of a Dirac operator obeying the G-W relation was given
by H. Neuberger in 1997.

Doverlap = 1
a

(
1−A(A†A)−1/2

)
, (29)

where: A = 1− aDWilson(p). (30)

In 1998 Lüscher found that the Ginsparg-Wilson relation leads to a non-standard
realization of chiral symmetry in the theory. The action is invariant under:

ψ → e
iθγ5

“
1−aD2

”
ψ, (31)

ψ̄ → ψ̄e
iθγ5

“
1−aD2

”
. (32)

The Dirac operator no longer anticommutes with γ5, so the conditions of the
Nielsen-Ninomiya theorem do not apply.
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Overlap discretization

The expression for the overlap propagator in momentum space at tree-level of
perturbation theory is

S̃(p) =
−i(1−ma2 )F (p)−1/2p̊µγµ+M(p)1

(1−ma2 )2F (p)−1
P
µ p̊

2
µ+M(p)2

(33)

where:
F (p) = 1 + a4

2

∑
µ<ν

p̂2
µp̂

2
ν (34)

M(p) = 1
a

(
1 + ma

2 −
(
1− ma

2

)
F (p)−1/2

(
1− a2

2

∑
µ

p̂2
µ

))
(35)

and 1 is the identity matrix in Dirac space.

Note that in the case of overlap fermions we only discuss one �avour.

Due to the existence of an exact lattice chiral symmetry, we again expect an
O(a2) scaling behaviour towards the continuum limit, if the correlation functions
are computed with the proper improved operators.
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Creutz discretization

In Dec'07 Creutz, motivated by the description of the graphene electronic structure
in terms of the Dirac equation, generalized it to 4 dimensions to yield a strictly local
fermion action describing two species and possessing an exact chiral symmetry.

The Creutz-Dirac operator can be written as:

DC(p) = i
∑
µ

p̊µ γ̄µ − i a2

∑
µ

p̂2
µ Γ̄µ +m0 1, (36)

where γ̄µ and Γ̄µ are some linear combinations of gamma matrices1.

The expression for the fermion propagator:

S̃C(p) =
−i

P
µ

(
s̄µ(ap)+c̄µ(ap)

)
γµ+m0 1

P
µ

(
s̄µ(ap)+c̄µ(ap)

)2

+m2
0

. (37)

We consider 2 values of the parameter C:

• C = 3/
√

10 � corresponds to the hypercubic lattice,
• C = 3/

√
14 � the case of a highly symmetric lattice built up of hexagonal

chairs with an inter-bond angle of ≈ 104.5 degrees,
and also a modi�cation of the action suggested by Borici.

1See the paper for details.
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Comparing maximally twisted mass, overlap

and Creutz fermions

• One interesting question is the relative size of cuto� e�ects when comparing
maximally twisted mass, overlap and Creutz fermions.

• We have performed a scaling analysis for the correlation functions themselves
at a �xed physical distance, the pseudoscalar mass and the pseudoscalar decay
constant.

• Since all these lattice formulations are O(a)-improved, we show all quantities
investigated as a function of 1/N2.
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The pion mass
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N•µq = 0.5 or N•m0 = 0.5 

Maximal Twisted Mass
Overlap

Borici
Creutz C=3*(10)-1/2

Creutz C=3*(14)-1/2

Figure 2: The cuto� e�ects and the continuum limit of the pseudoscalar mass.

Fit coe�cients for the pseudoscalar mass: Nmps = a+ b 1
N2 + c 1

N4 :

Nmps a b c

MTM 1 −0.0104167 0.000292154

OVERLAP 1 0.0208333 0.000783943

BORICI 1 −0.0494786 0.00558893

CREUTZ -
√

10 1 −0.00781168 −0.010171

CREUTZ -
√

14 1 −0.0488288 0.00287405

20



The pion correlation function
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 0.10991
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3
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cont: N3•CPS=0.109894

t/N=4
N•µq = 0.5 or N•m0 = 0.5 

Maximal Twisted Mass
Overlap

Borici
Creutz C=3*(10)-1/2

Creutz C=3*(14)-1/2

Figure 3: The cuto� e�ects and the continuum limit of the pseudoscalar correlator.

Fit coe�cients for the pseudoscalar correlation function: N3Cps = a+ b 1
N2 + c 1

N4 :

N3Cps(t/N = 4) a b c

MTM 0.109894 0.00457891 −3.33302 · 10−5

OVERLAP 0.109894 0.0045789 0.000181822

BORICI 0.109894 0.00114427 −0.00135812

CREUTZ -
√

10 0.109894 0.0194625 −0.00286602

CREUTZ -
√

14 0.109894 0.00486428 −0.002942
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The pion decay constant
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Figure 4: The cuto� e�ects and the continuum limit of the pion decay constant.

Fit coe�cients for the pseudoscalar decay constant: Nfps = a+ b 1
N2 + c 1

N4 :

Nfps a b c

MTM 3.4641 0.0541266 −0.000815548

OVERLAP 3.4641 0.108253 0.00554908

BORICI 3.4641 −0.0676637 −0.00486739

CREUTZ -
√

10 3.4641 0.293217 −0.0770494

CREUTZ -
√

14 3.4641 −0.00790885 −0.0367598
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Discretizations comparison

• No clear picture of a particularly good or bad fermion discretization emerges.

• We �nd that indeed all three kinds of lattice fermions show the expected
O(a)-improvement.

• However, the relative size of the O(a2) e�ects depends pretty much on the
considered observable.

• If at all, one could say that maximally twisted mass fermions show uniformly
small O(a2) cuto� e�ects.

• On the other hand, it is somewhat amazing that Creutz fermions which break a
number of important discrete symmetries do not su�er from very large O(a2)
cuto� e�ects.

• From our scaling analysis it is not possible to exclude a certain type of lattice
fermion. Only scaling tests for the interacting theory will reveal the size of actual
scaling violations of the considered observable.
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E�ects from non-optimal tuning

• We have also addressed a question of e�ects when tuning is performed non-
optimally.

• We study:

1. the cuto� e�ects when there is an O(a) error in tuning to maximal twist.
2. the case when the quark masses of two lattice fermion formulations are not

exactly matched. This case is relevant for so-called mixed action simulations.

• Ad 1. Out of maximal twist

� We study a situation when we allow an O(a) error in setting the untwisted
quark mass to zero.

� In order to realize this situation at tree-level of PT we `force' these e�ects
by simply �xing the twisted mass to be the physical quark mass and the
untwisted mass is set to be proportional to 1

N , as:

Nµq = α and Nm0 = β
N v O(a), (38)

where α is kept �xed and β is a measure parametrizing the amount of violation
of the maximal twist setup.
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Out of maximal twist

Figure 5: Left graph: Behaviour of the pion mass as a function of 1
N2 , for lattices

with size 4 ≤ N ≤ 64. The twisted quark mass is set to Nµq = 1.0 and the

untwisted quark mass is zero up to O(a) cuto� e�ects i.e. Nm0 = β
N with

β = 0.0, 1.0, 2.0, 10.0.
Right graph: a zoom of the graph on the left with an additional �t for the analytical
data corresponding to β = 10.0 which considers only large lattices 40 ≤ N ≤ 64.
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Unmatched quark masses

• We study the continuum limit and the size of the cuto� e�ects of lattice
quantities constructed from ratios of physical observables computed on the
lattice from two di�erent regularizations i.e. Wilson twisted mass fermions at
maximal twist and overlap fermions.

• In particular, we want to study the situation when both quark masses are not
exactly �xed to the same value but di�er up to O(a2) e�ects.

• The reason for studying such setup is that in real simulations using a mixed but
O(a)-improved action both masses can be �xed to the same value only up to
O(a2) e�ects.

• In order to realize non-matched quark masses, we �x the twisted quark mass
exactly at Nµq = 0.5 and allow for an O(a2) error in setting the overlap quark
mass:

Nm = 0.5− v/N2. (39)

We vary the parameter v from v = 0 to v = 4.0.
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Unmatched quark masses
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Figure 6: The cuto� e�ects and continuum limit of the ratio of the pseudoscalar
mass computed for maximally twisted mass and overlap fermions. In both graphs
Nµq = 0.5, Nm = 0.5 − 0.4/N2 and t/N = 4. The left graph shows the full
range of lattice sizes considered while the right graph represents a zoom.
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Conclusions

• We have performed a scaling test in the lattice spacing towards the continuum
limit for three kinds of lattice fermions (WTM at max. twist, overlap, Creutz).

• Our setup has been tree-level of pertubation theory.

• We looked at the pseudoscalar correlation function at a �xed time and the
corresponding pseudoscalar mass and decay constant.

• We have veri�ed the automatic O(a) improvement for WTM at maximal twist
and showed the mechanisms of mass average.

• The relative comparison of all three kind of lattice fermions did not result in a
clear picture in the sense that one lattice fermion shows consistently smaller or
bigger O(a2) lattice artefacts than the other.

• We found that the sizes of O(a2) lattice artifacts depend on the considered
observable with perhaps the exception of maximally twisted mass fermions which
shows a rather uniform behaviour with small O(a2) e�ects.

• Finally, we studied the situation when parameters are tuned non-optimally.

• Our conclusion of these studies is that when the corresponding O(a2) error is
too large, the continuum limit becomes not reliable unless the lattice spacing is
small enough.
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