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What it all will be about?

Simplicity is Virginity

But we don’t care at the moment...

’Towards the description of anisotropic plasma at strong coupling’,
(R. Janik, PW, arXiv:0806.2141).
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The setup, the goal

I Heavy ion collision at RHIC suggests a new state of matter: Quark
Gluon Plasma (QGP).

I It’s not easy to describe, data suggests the QGP to be strongly
coupled.

I One of greatest misteries - why it’s so well described by
hydrodynamics just after the collision?

I Two approaches: weak and strong coupling.

I From the side of pure QCD the problem for now is very hard.

I AdS/CFT may help to understand some general principles that
governs the QGP via weak/strong coupling duality.
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The setup and the goal

I The real-life model of expanding plasma is too complex, so we will
try to investigate a simpler one:
an infinite, uniform, anisotropic and not expanding plasma.

I At the moment we only analyze a static situation, adressing
temporal evolution for future investigation.

I We need to find a mechanism of fast isotropisation and
termalization.

I One possibility suggested involves an appearience on instabilities in
the QGP.

I Thus we focus on the problem of stability of the geometry dual to
the boundary gauge field configuration.
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The situation at weak coupling

I At weak coupling one can turn to numerical calculations concerning
the dynamics of the energy momentum tensor:

Tµν =


ε 0 0 0
0 pL(t) 0 0
0 0 pT (t) 0
0 0 0 pT (t)


I Another option is to compute the poles of the gluon propagator in

an anisotropic system
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The situation at weak coupling

I One then considers a momentum distribution in the medium:

f (p) =
√

1 + ξfiso(p2 + ξp2
L)

with ξ being an anisotropy parameter:

ξ =
pT

pL
− 1

I The result is that some modes develop unstable behavior, but it
depends on the relative sign of ξ:
- for ξ > 0 modes with transverse momentum will remain stable and
those with longitudianl momentum will be unstable,
- for ξ < 0 the situation is reversed

I What is good is that this behavior may be identified with the initial
stage of the numerical simulation mentioned above (for time
dependent Tµν).

I It would be interestring to see this situation at the strong coupling.
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The framework

I We are interested in constructing a geometry dual to anisotropic
configuarion of static QGP.

I We solve eqaution of motion:

Rαβ + 4gαβ = 0

with the following ansatz in F-G coordinates:

ds2 =
1

z2

(
−a(z)dt2 + b(z)dx2

L + c(z)dx2
T + dz2

)
subject to boundary condition:

gµν(xµ, z) = ηµν + z4 2π

N2
c

〈Tµν(xµ)〉 .
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The framework

I The energy momentum tensor of our plasma model is:

〈Tµν〉 =


ε 0 0 0
0 pL 0 0
0 0 pT 0
0 0 0 pT


with ε = pL + 2pT .

I Along with the condition for the functions from the ansatz to vanish
at the boundary z = 0, we are able to solve Einstein equations.
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The solution

I The solution reads:

a(z) = (1 + A2z4)
1
2−

1
4

√
36−2B2

(1− A2z4)
1
2 + 1

4

√
36−2B2

b(z) = (1 + A2z4)
1
2−

B
3 + 1

12

√
36−2B2

(1− A2z4)
1
2 + B

3−
1
12

√
36−2B2

c(z) = (1 + A2z4)
1
2 + B

6 + 1
12

√
36−2B2

(1− A2z4)
1
2−

B
6−

1
12

√
36−2B2

I Parameters A and B are related to the energy density and anisotropy
of the plasma through the duality (boundary condition):

ε =
1

2
A2
√

36− B2

pL =
1

6
A2
√

36− B2 − 2

3
A2B

pT =
1

6
A2
√

36− B2 +
1

3
A2B

I B can also be linked with the anisotropy parameter ξ:

B =
6ξ√

18ξ2 + 48ξ + 36
.
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The problem

I Here a problem emerges: with nonzero anisotropy we get naked
singularity in the bulk

I It could be interpreted that anisotropic static plasma can not exist,
just like in the weak coupling case.

I But thus we may have problem constructing meaningful boundary
condition at the singularity.

I Fortunately the situation is not as pathological as in the case of
negative mass black hole (which we took as a reference). Here one
is able to define incoming boundary condition, so geometry is not
that bad.

I However it is strong indication that this solution may not be fully
physical one, it may be just a snaphot of early time dependent
evolution.

I Nevertheles we will try to investigate small fluctuations around this
solution in aim to compare it with weak coupling result.
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Small fluctuations

I Let us consider the wave equation of masless scalar in our geometry.

I After puting A = 1 and seperating variables,

Φ = φ(z)e−iωt+ik1x
1+ik3x

3

and a change of variable

x =
1

4
arctanhz4

I We obtain:

d2φ

dx2
+

8

(e16x − 1)
3
2

(
ω2e2(6+

√
36−2B2)x − k2

Le2(6+ 4B
3 −

1
3

√
36−2B2)x +

−k2
T e2(6− 2B

3 −
1
3

√
36−2B2)x

)
φ = 0
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Small fluctuations

I Now the singularity is located at x =∞ and asymptitically we have
domination of the term accompanying the frequecy:

d2φ

dx2
+ 8ω2e−2(6−

√
36−2B2)xφ = 0.

I In principle this equation has as a solution combination of Hankel
functions:

H1,2
0

(√
8

C
ωe−Cx

)
with C = 6−

√
36− 2B2, which can serve as a convinient basis for

incoming/outgoing boundary condition.

I It is very different from the situation of negative mass black hole,
where the momentum terms would dominate and thus not allow for
such a notion of boundary conditions.
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Small fluctuations

I Unfortunately the scalar equation, which reflects fluctuations around
the metric is difficult. Thus we decided to turn to the R-charge
fluctuation modes, hoping to find instabilities in the U(1) field.

I As a starting point let us recall that for the isotropic plasma the
dispersion relation for the diffusive modes to the lowest order reads:

ω = −i
k2

2
√

2
.

I Now we would like to see how this relation is modified by the
anisotropy.

I We need to solve the Maxwell equations:

∂α
(√
−gFαβ

)
= 0
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I Once again we will utilize translational invariance,

Aµ(x) =

∫
d3kdω

(2π)4
e−iωt+i~k~xAµ(z , k)

I We will separately study the situations when the wave vector is
purely longitudinal or purely transverse:

L : k = (kl , 0, 0), T : q = (0, 0, kt)

I The resulting equations are coupled but we can simplify them by
introducing standard gauge invariant variables.

I This leads to two sets of modes:
Longitudinal modes:

(L-L) Ey (kl , z) = ωAy (kl , z) + klAt(kl , z), kl ||Ey

(L-T) E1(kl , z) = ωA1(kl , z), E2(kl , z) = ωA2(kl , z)

and transverse ones:

(T-T) E1(kt , z) = ωA1(kt , z) + ktAt(k, z), kt ||E1,

(T-L) Ey (kt , z) = ωAy (kt , z), E2(kt , z) = ωA2(kt , z)
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R-charge fluctuations

I The resulting equations still remain quite lenghthy...

E ′′1 −
3 + 4

√
A(3 + B)z4 + 9Az8

3z(1− Az8)
E ′1

+ (
ω2(1 +

√
Az4)

(1−
√

Az4)2
− k2

L(1−
√

Az4)−
B
3 (1 +

√
Az4)−1+ B

3 )E1 = 0,

E ′′y −
3k2

L(1−
√

Az4)2(1 +
√

Az4)
B
3 (1− 3

√
Az4(4−

√
Az4))

3z(1− Az8)(k2
L(1−

√
Az4)2(1 +

√
Az4)

B
3 − ω2(1−

√
Az4)

B
3 (1 +

√
Az4)2)

+

ω2(1−
√

Az4)
B
3 (1 +

√
Az4)2(3 +

√
Az4(12− 8B + 9

√
Az4))

3z(1− Az8)(k2
L(1−

√
Az4)2(1 +

√
Az4)

B
3 − ω2(1−

√
Az4)

B
3 (1 +

√
Az4)2)

+ (
ω2(1 +

√
Az4)

(1−
√

Az4)2
− k2

L(1−
√

Az4)−
B
3 (1 +

√
Az4)−1+ B

3 )Ey = 0
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√
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√
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B
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√
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E ′′2 −
3 + 4

√
A(3 + B)z4 + 9Az8

3z(1− Az8)
E ′2

+ (
ω2(1 +

√
Az4)

(1−
√

Az4)2
− k2

T (1−
√

Az4)−
B
6 (1 +

√
Az4)−1− B

6 )E2 = 0,

E ′′y −
3 +
√

Az4(12− 8B + 9
√

Az4)

3z(1− Az8)
E ′y

+ (
ω2(1 +

√
Az4)

(1−
√

Az4)2
− k2

T (1−
√

Az4)−
B
6 (1 +

√
Az4)−1− B

6 )Ey = 0,

E ′′1 + (
−3k2

T (1−
√

Az4)2+ B
6 (1− 3

√
Az4(4−

√
Az4))

3z(1− Az8)(k2
T (1−

√
Az4)2+ B

6 − ω2(1−
√

Az4)2+ B
6 )

+

ω2(1 +
√

Az4)2+ B
6 (3 + 4

√
A(3 + B)z4 + 9Az8)

3z(1− Az8)(k2
T (1−

√
Az4)2+ B

6 − ω2(1−
√

Az4)2+ B
6 )

)E ′1

+ (
ω2(1 +

√
Az4)

(1−
√

Az4)2
− k2

T (1−
√

Az4)−
B
6 (1 +

√
Az4)−1− B

6 )E1 = 0
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R-charge fluctuations

I But can be solved perturbatively using:

g(u) = 1 + εg a
0 (u) + ε2gb

0 (u) + B(g a
1 (u) + εgb

1 (u) + . . .) + . . .

with u = z2.

I After imposing incoming boundary condition one finally gets to this
order:

ω = −i
k2
L +

√
k4
L −

16
3 A

1
4 Bk2

L

4
√

2A
1
8

and

ω = −i
k2
T +

√
k4
T + 8

3BA
1
4 k2

T

4
√

2A
1
8

.
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