Scattering Amplitudes and Strings on AdS - II

Luis Fernando Alday

Utrecht University

Cracow School of Theoretical Physics Zakopane - June 2008

BDS ansatz for MHV gluons scattering amplitudes of planar $\mathcal{N}=4$ SYM.

4 point amplitude

$$
\begin{gathered}
\mathcal{A}=\mathcal{A}_{\text {tree }}\left(\mathcal{A}_{\text {div }, s}\right)^{2}\left(\mathcal{A}_{\text {div }, t}\right)^{2} \exp \left\{\frac{f(\lambda)}{8}(\ln s / t)^{2}+\text { const }\right\} \\
\mathcal{A}_{\text {div }, \mathrm{s}}=\exp \left\{-\frac{1}{8 \epsilon^{2}} f^{(-2)}\left(\frac{\lambda \mu^{2 \epsilon}}{s^{\epsilon}}\right)-\frac{1}{4 \epsilon} g^{(-1)}\left(\frac{\lambda \mu^{2 \epsilon}}{s^{\epsilon}}\right)\right\}
\end{gathered}
$$

Prescription

Scattering amplitude at strong coupling? Use AdS/CFT!

$$
\mathcal{A}_{n} \sim e^{-\frac{\sqrt{\lambda}}{2 \pi}} A_{\min }
$$

Four point amplitude at strong coupling

Let's see how the prescription works for $n=4$:
Consider $k_{1}+k_{3} \rightarrow k_{2}+k_{4}$

$$
s=-\left(k_{1}+k_{2}\right)^{2}, \quad t=-\left(k_{1}+k_{4}\right)^{2}
$$

Need to find the minimal surface ending on such sequence of light-like segments.

- Warm up: Try to find the solution near one of the cusps.

The surface can be embedded in $A d S_{3}$

$$
d s^{2}=\frac{-d y_{0}^{2}+d y_{1}^{2}+d r^{2}}{r^{2}}
$$

$$
\begin{aligned}
& y_{0}=e^{\tau} \cosh \sigma, \quad y_{1}=\quad e^{\tau} \sinh \sigma, \quad r=e^{\tau} w(\tau) \\
& \Downarrow
\end{aligned}
$$

$$
S_{N G} \sim \int d \sigma \int d \tau \frac{\sqrt{1-\left(w(\tau)+w^{\prime}(\tau)\right)^{2}}}{w(\tau)^{2}}
$$

Solution for the cusp (Kruczenski)

$$
w=\sqrt{2} \rightarrow r=\sqrt{2} \sqrt{y_{0}^{2}-y_{1}^{2}}=\sqrt{2 y^{+} y^{-}}, \quad y^{ \pm}=y^{0} \pm y^{1}
$$

- $S_{N G}$: Poincare coordinates (r, y_{0}, y_{1}, y_{2}) and parametrize the surface by its projection to $\left(y_{1}, y_{2}\right)$ plane.
- Action for two fields $r\left(y_{1}, y_{2}\right), y_{0}\left(y_{1}, y_{2}\right)$. E.g. if $s=t$ the fields live on a square parametrized by y_{1}, y_{2}.

$$
S_{N G}=\frac{R^{2}}{2 \pi} \int d y_{1} d y_{2} \frac{\sqrt{1+\left(\partial_{i} r\right)^{2}-\left(\partial_{i} y_{0}\right)^{2}-\left(\partial_{1} r \partial_{2} y_{0}-\partial_{2} r \partial_{1} y_{0}\right)^{2}}}{r^{2}}
$$

- By scale invariance, edges of the square at $y_{1}, y_{2}= \pm 1$

Boundary conditions

$$
r\left(\pm 1, y_{2}\right)=r\left(y_{1}, \pm 1\right)=0, \quad y_{0}\left(\pm 1, y_{2}\right)= \pm y_{2}, \quad y_{0}\left(y_{1}, \pm 1\right)= \pm y_{1}
$$

- We know the solution near the cusps. We can make some guess

$$
y_{0}\left(y_{1}, y_{2}\right)=y_{1} y_{2}, \quad r\left(y_{1}, y_{2}\right)=\sqrt{\left(1-y_{1}^{2}\right)\left(1-y_{2}^{2}\right)}
$$

- Easily seen to satisfy all the conditions and actually solves the eoms!
- However, $s=t$ is somehow a boring case...
- We would like to capture the kinematical dependence of the amplitude. We need to consider $s \neq t$.
- The square will be deformed to a rhombus

(a)

(b)

Embedding coordinates

$$
\begin{array}{r}
-Y_{-1}^{2}-Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}=-1 \\
Y^{\mu}=\frac{y^{\mu}}{r}, \quad \mu=0, \ldots, 3 \\
Y_{-1}+Y_{4}=\frac{1}{r}, \quad Y_{-1}-Y_{4}=\frac{r^{2}+y_{\mu} y^{\mu}}{r}
\end{array}
$$

Embedding coordinates surface

$$
Y_{0} Y_{-1}=Y_{1} Y_{2} \quad Y_{3}=Y_{4}=0
$$

- We can perform $S O(2,4)$ transformations and get new solutions. This is a "dual" conformal symmetry.

How do we change the distance between opposite vertices?

- e.g. a boost in the $0-4$ direction gives a new solution with $s \neq t$.

After the boost

$Y_{4}=0, \quad Y_{0} Y_{-1}=Y_{1} Y_{2} \rightarrow Y_{4}-v Y_{0}=0, \quad \sqrt{1-v^{2}} Y_{0} Y_{-1}=Y_{1} Y_{2}$
Two parameters solution

- Size of the square we started with.
- Boost parameter v.

Conformal gauge action

$$
i S=-\frac{R^{2}}{2 \pi} \int d u_{1} d u_{2} \frac{1}{2} \frac{\partial r \partial r+\partial y_{\mu} \partial y^{\mu}}{r^{2}}
$$

Solution for the rhombus

$$
\begin{array}{r}
r=\frac{a}{\cosh u_{1} \cosh u_{2}+b \sinh u_{1} \sinh u_{2}}, \\
y_{0}=r \sqrt{1+b^{2}} \sinh u_{1} \sinh u_{2} \\
y_{1}=r \sinh u_{1} \cosh u_{2}, \quad y_{2}=r \cosh u_{1} \sinh u_{2}
\end{array}
$$

- The parameters a and b encode the kinematical information.

$$
-s(2 \pi)^{2}=\frac{8 a^{2}}{(1-b)^{2}}, \quad-t(2 \pi)^{2}=\frac{8 a^{2}}{(1+b)^{2}}
$$

Let's compute the area...

- Small problem: The area diverges!
- Dimensional reduction scheme: Theory in $D=4-2 \epsilon$ dimensions but with 16 supercharges.
- For integer D this is exactly the low energy theory living on Dp-branes $(p=D-1)$

Gravity dual

$$
\begin{array}{r}
d s^{2}=h^{-1 / 2} d x_{D}^{2}+h^{1 / 2}\left(d r^{2}+r^{2} d \Omega_{9-D}^{2}\right), \quad h=\frac{c_{D} \lambda_{D}}{r^{8-D}} \\
\lambda_{D}=\frac{\lambda \mu^{2 \epsilon}}{\left(4 \pi e^{-\gamma}\right)^{\epsilon}} \quad c_{D}=2^{4 \epsilon} \pi^{3 \epsilon} \Gamma(2+\epsilon)
\end{array}
$$

T-dual coordinates

$$
d s^{2}=\sqrt{\lambda_{D} C_{D}}\left(\frac{d y_{D}^{2}+d r^{2}}{r^{2+\epsilon}}\right) \rightarrow S_{\epsilon}=\frac{\sqrt{\lambda_{D} C_{D}}}{2 \pi} \int \frac{\mathcal{L}_{\epsilon=0}}{r^{\epsilon}}
$$

- Presence of ϵ will make the integrals convergent.
- The eoms will depend on ϵ but if we plug the original solution into the new action, the answer is accurate enough.
- plugging everything into the action...

$$
i S=-\frac{\sqrt{\lambda_{D} C_{D}}}{2 \pi a^{\epsilon}}\left(\frac{\pi \Gamma\left[-\frac{\epsilon}{2}\right]^{2}}{\Gamma\left[\frac{1-\epsilon}{2}\right]}{ }_{2} F_{1}\left(\frac{1}{2},-\frac{\epsilon}{2}, \frac{1-\epsilon}{2} ; b^{2}\right)+1 / 2\right)+\mathcal{O}(\epsilon)
$$

- Just expand in powers of $\epsilon \ldots$

Final answer

$$
\begin{array}{r}
\mathcal{A}=e^{i S}=\exp \left[i S_{d i v}+\frac{\sqrt{\lambda}}{8 \pi}\left(\log \frac{s}{t}\right)^{2}+\tilde{C}\right] \\
S_{d i v}=2 S_{d i v, s}+2 S_{d i v, t} \\
S_{d i v, s}=-\frac{1}{\epsilon^{2}} \frac{1}{2 \pi} \sqrt{\frac{\lambda \mu^{2 \epsilon}}{(-s)^{\epsilon}}}-\frac{1}{\epsilon} \frac{1}{4 \pi}(1-\log 2) \sqrt{\frac{\lambda \mu^{2 \epsilon}}{(-s)^{\epsilon}}}
\end{array}
$$

- Should be compared to the field theory answer

$$
\begin{aligned}
\mathcal{A} & \sim\left(\mathcal{A}_{\text {div }, s}\right)^{2}\left(\mathcal{A}_{\text {div }, t}\right)^{2} \exp \left\{\frac{f(\lambda)}{8}(\ln s / t)^{2}+\text { const }\right\} \\
\mathcal{A}_{\text {div }, s} & =\exp \left\{-\frac{1}{8 \epsilon^{2}} f^{(-2)}\left(\frac{\lambda \mu^{2 \epsilon}}{s^{\epsilon}}\right)-\frac{1}{4 \epsilon} g^{(-1)}\left(\frac{\lambda \mu^{2 \epsilon}}{s^{\epsilon}}\right)\right\}
\end{aligned}
$$

- The general structure of the solution is perfect agreement with the BDS conjecture.
- $S O(2,4)$ transformations fixed somehow the kinematical dependence of the finite piece.
- This dual conformal symmetry constrains the form of the amplitude

$$
\begin{aligned}
\mathcal{A} \sim f\left(\left(\log \frac{r_{\text {cut }}^{2}}{s}\right)^{2}+\left(\log \frac{r_{\text {cut }}^{2}}{t}\right)^{2}\right) & +\tilde{g}\left(\log \frac{r_{\text {cut }}^{2}}{s}+\log \frac{r_{\text {cut }}^{2}}{t}\right)+ \\
& +f\left(\log \frac{s}{t}\right)^{2}+\text { const }+\mathcal{O}\left(r_{\text {cut }}\right)
\end{aligned}
$$

- Up to a term independent on the kinematics, we get the same finite piece!
- Imagine the cusps are located at x_{i} and the cut-off depends on the point at the boundary, $r_{\text {cut }}(x): r_{\text {cut }}\left(x_{i}\right) \rightarrow r_{i}$

$$
\mathcal{A} \sim f \sum_{i}\left(\log \frac{r_{i}^{2}}{x_{i-1, i+1}^{2}}\right)^{2}+g \sum_{i}\left(\log \frac{r_{i}^{2}}{x_{i-1, i+1}^{2}}\right)+\operatorname{Fin}\left(x_{i}\right)
$$

- The dual $S O(2,4)$ symmetries will move the points x_{i}, r_{i} and the area should be invariant.

$$
\text { a. } K=\sum_{i} x_{i}^{2} \text { a. } \partial_{x_{i}}-2 a \cdot x_{i}\left(x_{i} . \partial_{x_{i}}+r_{i} \partial_{r_{i}}\right)
$$

- $K A=0$ fixes the finite piece for $n=4$ and $n=5$!
- Also observed perturbatively (Drummond, Henn, Korchemsky, Sokatchev)

Wilson loops vs. Scattering amplitudes

- This computation shows a relation between Wilson loops and scattering amplitudes.
- This relation holds also at weak coupling! Drummond, Korchemsky, Sokatchev; Henn, Brandhuber...

Write BDS on a slightly different way

$$
\log \mathcal{M}_{n}=\operatorname{Div}_{n}+\frac{f(\lambda)}{4} a_{1}\left(k_{1}, k_{2}, \ldots, k_{n}\right)+h(\lambda)+n k(\lambda)
$$

Scattering amplitudes vs. WL (Brandhuber, Heslop, Travaglini)

$$
\begin{gathered}
<W_{k_{i}}>=1+\lambda\left(\operatorname{Div}+w_{1}\left(k_{1}, \ldots, k_{n}\right)+c+n \tilde{c}\right) \\
\Downarrow \\
w_{1}\left(k_{1}, \ldots, k_{n}\right) \stackrel{1}{=} a_{1}\left(k_{1}, \ldots, k_{n}\right)
\end{gathered}
$$

- $\operatorname{BDS} \Rightarrow a_{\text {strong }}=f^{\text {strong }} a_{1}\left(k_{1}, \ldots, k_{n}\right)$
- WL vs. Amplitudes at strong coupling $\Rightarrow a_{\text {strong }}=w_{\text {strong }}$
- WL vs. Amplitudes at weak coupling $\Rightarrow a_{1}=w_{1}$

$$
w_{\text {strong }} \stackrel{\Downarrow}{f^{\text {strong }}} w_{1}\left(k_{1}, \ldots, k_{n}\right)
$$

- For $n=4$ and $n=5$ that is the case! but fixed by symmetries.
- We need to take $n>5$, what about $n=\infty$?

We choose a zig-zag configuration that approximates the rectangular Wilson loop.

- The BDS ansatz predicts $\log \left\langle W_{\text {rect }}^{\text {strong }}\right\rangle=\sqrt{\lambda} \frac{1}{4} \frac{T}{L}$
- The strong coupling result is not what we would expect from the BDS ansatz, hence something needs to be revised...

At which order in perturbation theory and for how many gluons will BDS fail?

- BDS $\Rightarrow a_{\ell}=f^{(\ell)} a_{1}\left(k_{1}, \ldots, k_{n}\right)$
- WL vs. Amplitudes at all orders $\Rightarrow a_{\ell}=w_{\ell}$

$$
w_{2}=f^{(2)} w_{1}\left(k_{1}, \ldots, k_{n}\right)
$$

- An explicit computation for the rectangular Wilson loop, shows that either the BDS conjecture or the relation between WL and amplitudes (or both!) fail at two loops for a large number of gluons.
- You will hear more about it!!

What have we done?

- A prescription for computing planar scattering amplitudes on $\mathcal{N}=4$ SYM at strong coupling by using the $A d S / C F T$ duality.
- We have done detailed computations for $n=4$ but the prescription is valid for any number of gluons.
- Our results agree in all detail with the conjecture of Bern, Dixon and Smirnov for $n=4$ and for $n=5$ they should also agree, but the conjecture may need to be revised for large number of gluons.
- A small step towards understanding the iterative structures for gluon amplitudes from the string theory point of view.

What things need to be done?

- Try to make explicit computations for $n>4$, e.g. $n=6$ is a good one.
- We haven't assume/use at all the machinery of integrability.
- Subleading corrections in $1 / \sqrt{\lambda}$? Information about helicity of the particles, etc.
- Gross and Mende computed higher genus amplitudes (in flat space) using similar ideas, can we do the same?
- Can we repeat the computation in other backgrounds?
- Deeper relation among Wilson loops and scattering amplitudes?
- Some powerful alternative to BDS?

