Wilson loop / gluon amplitude duality in $\mathcal{N}=4$ SYM

Johannes Henn
LAPTH, Annecy-le-Vieux

Based on work in collaboration with
James Drummond, Gregory Korchemsky and Emery Sokatchev

Outline

\checkmark Perturbative gluon scattering amplitudes in $\mathcal{N}=4$ SYM \rightarrow Radu Roiban's lectures
x Bern-Dixon-Smirnov (BDS) conjecture
x hidden conformal symmetry of planar gluon amplitudes
\checkmark Alday-Maldacena proposal for gluon scattering at strong coupling using AdS/CFT \rightarrow Fernando Alday's lectures
\checkmark Wilson loops at weak coupling - a duality?
\rightarrow Yuri Makeenko's and Gregory Korchemsky's lectures
\checkmark Conformal Ward identities for Wilson loops
\checkmark Hexagonal Wilson loop and BDS ansatz

Gluon scattering amplitudes

\checkmark On-shell gluon scattering amplitudes

x on-shell gluons characterised by momentum p_{i}^{μ}, $p_{i}^{2}=0$, helicity ± 1, and colour
x amplitudes require infrared (IR) regularisation
\checkmark Colour-ordered planar partial amplitudes

$$
\mathcal{A}_{n}=\operatorname{tr}\left[T^{a_{1}} T^{a_{2}} \ldots T^{a_{n}}\right] A_{n}^{h_{1}, h_{2}, \ldots, h_{n}}\left(p_{1}, p_{2}, \ldots, p_{n}\right)+[\text { Bose symmetry }]
$$

\checkmark Helicity structure
x Supersymmetry relations

$$
\begin{gathered}
A^{++\ldots+}=A^{-+\ldots+}=0 \\
A^{(\mathrm{MHV})}=A^{--+\ldots+}, \quad \ldots \\
A^{(\mathrm{next}-\mathrm{MHV})}=A^{---+\ldots+}, \quad \ldots
\end{gathered}
$$

x Maximally helicity violating (MHV) amplitudes
\checkmark for MHV amplitudes:

$$
A_{n}^{h_{1}, h_{2}, \ldots, h_{n}}\left(p_{1}, p_{2}, \ldots, p_{n}\right)=A_{\text {tree }}^{h_{1}, h_{2}, \ldots, h_{n}} \times A_{\mathrm{loops}}\left(p_{1}, p_{2}, \ldots, p_{n}\right)
$$

Bern-Dixon-Smirnov conjecture for MHV amplitudes

\checkmark the structure of the IR divergences is known

$$
\ln \left[A_{n} / A_{n}^{\text {tree }}\right]=\operatorname{div}+F_{n}\left(a, p_{i} \cdot p_{j}\right)+O\left(\epsilon_{\mathrm{IR}}\right)
$$

\checkmark the ABDK/BDS conjecture is a statement about the finite part:
[Anastasiou, Bern, Dixon, Kosower '03],[Bern, Dixon, Smirnov '05]

$$
F_{n}=\frac{1}{2} \Gamma_{\text {cusp }}(a) F_{n}^{(1)}
$$

\checkmark For example, for four and five points

$$
\begin{aligned}
& F_{4}=\frac{1}{4} \Gamma_{\text {cusp }}(a)\left[\ln ^{2} \frac{s}{t}+\text { const }\right] \\
& F_{5}=\frac{1}{4} \Gamma_{\text {cusp }}(a)\left[\sum_{i=1}^{5} \ln \frac{s_{i, i+1}}{s_{i+1, i+2}} \ln \frac{s_{i+2, i+3}}{s_{i+3, i+4}}+\text { const }\right]
\end{aligned}
$$

\checkmark the BDS conjecture has been confirmed so far
x up to three loops for F_{4}
x up to two loops for $F_{5} \quad$ [Cachazo, Spradlin, Volovich '06],[Bern, Czakon, Korower, Roiban, Smirnov '06]
Where does the simplicity of the finite part come from?

Dual conformal symmetry

One-loop: 'scalar box' integral
\checkmark Change variables to go to a dual 'coordinate space' picture (not a Fourier transform!)

$$
p_{1}=x_{1}-x_{2} \equiv x_{12}, \quad p_{2}=x_{23}, \quad p_{3}=x_{34}, \quad p_{4}=x_{41}, \quad k=x_{15}
$$

$$
=\int \frac{d^{D} k}{k^{2}\left(k-p_{1}\right)^{2}\left(k-p_{1}-p_{2}\right)^{2}\left(k+p_{4}\right)^{2}}=\int \frac{d^{D} x_{5}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}}
$$

Conformal inversion: $x_{i}^{\mu} \rightarrow x_{i}^{\mu} / x_{i}^{2}, x_{i j}^{2} \rightarrow \frac{x_{i j}^{2}}{x_{i}^{2} x_{j}^{2}}$
\checkmark Consider the integral off-shell and for $D=4$
x The integral is conformal in the dual space
x The symmetry is not related to the conformal symmetry of $\mathcal{N}=4$ SYM
\checkmark The dual conformal symmetry is broken by the infrared regulator, $D=4-2 \epsilon$.
Is this broken symmetry present at higher loops?

Dual conformal symmetry

The dual conformal structure continues to higher loops
\checkmark Two loops
[Bern, Rozowski, Yan '97], [Anastasiou, Bern, Dixon, Kosower '03]

\checkmark Three loops

\checkmark Continues to four loops
\checkmark Even five?

Where does the dual conformal symmetry come from?

Light-like Wilson loops

Expectation value of light-like Wilson loop in $\mathcal{N}=4$ SYM

$$
W\left(C_{4}\right)=\frac{1}{N_{c}}\langle 0| \operatorname{Tr} \mathrm{P} \exp \left(i g \oint_{C_{4}} d x^{\mu} A_{\mu}(x)\right)|0\rangle
$$

\checkmark One-loop Feynman diagrams

\checkmark The light-like Wilson loop is IR finite but has UV divergences due to cusps on contour C_{4}
\checkmark One-loop result
$\ln W\left(C_{4}\right)=\frac{g^{2}}{4 \pi^{2}} C_{F}\left\{-\frac{1}{\epsilon_{\mathrm{UV}}{ }^{2}}\left[\left(-x_{13}^{2} \mu^{2}\right)^{\epsilon_{\mathrm{UV}}}+\left(-x_{24}^{2} \mu^{2}\right)^{\epsilon_{\mathrm{UV}}}\right]+\frac{1}{2} \ln ^{2}\left(\frac{x_{13}^{2}}{x_{24}^{2}}\right)+\right.$ const $\}+O\left(g^{4}\right)$
\checkmark identification of dual variables with momenta $\rightarrow x_{13}^{2} / x_{24}^{2}=s / t$

Gluon scattering amplitudes / Wilson loops duality

\checkmark Proposal: gluon amplitudes at weak coupling are dual to light-like Wilson loops

$$
\ln \left[A_{n} / A_{n}^{\text {tree }}\right]=\ln W\left(C_{n}\right)+O\left(1 / N_{c}\right)+O(\epsilon)
$$

\checkmark motivated by computation of scattering amplitudes at strong coupling via AdS/CFT
[Alday, Maldacena '07]
\checkmark At one loop,
\times proposed and checked for $n=4$
x later, extended to arbitrary n
[Brandhuber, Heslop, Travaglini '07]
\checkmark What about higher loops?
\times Two loop calculation for $n=4,5$

Conformal Ward identity

\checkmark Cusp divergences break conformal invariance \rightarrow anomalous conformal Ward identity
[Drummond,J.H.,Korchemsky,Sokatchev '07]

$$
\mathbb{K}^{\mu} F_{n} \equiv \sum_{i=1}^{n}\left[2 x_{i}^{\mu}\left(x_{i} \cdot \partial_{x_{i}}\right)-x_{i}^{2} \partial_{x_{i}}^{\mu}\right] F_{n}=\frac{1}{2} \Gamma_{\operatorname{cusp}}(a) \sum_{i=1}^{n} x_{i, i+1}^{\mu} \ln \left(\frac{x_{i, i+2}^{2}}{x_{i-1, i+1}^{2}}\right)
$$

\checkmark Four and five points: the Ward identity has a unique all-loop solution (up to an additive constant)

$$
\begin{aligned}
& F_{4}=\frac{1}{4} \Gamma_{\text {cusp }}(a) \ln ^{2}\left(\frac{x_{13}^{2}}{x_{24}^{2}}\right)+\text { const }, \\
& F_{5}=-\frac{1}{8} \Gamma_{\text {cusp }}(a) \sum_{i=1}^{5} \ln \left(\frac{x_{i, i+2}^{2}}{x_{i, i+3}^{2}}\right) \ln \left(\frac{x_{i+1, i+3}^{2}}{x_{i+2, i+4}^{2}}\right)+\text { const }
\end{aligned}
$$

Exactly the functional form of the BDS ansatz for the 4- and 5-point gluon amplitudes!
\checkmark Starting from six points there are conformal invariants in the form of cross-ratios

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}, \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}, \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}
$$

\checkmark For arbitrary n the BDS ansatz is still a solution of the conformal Ward identity, but the solution is no longer unique.

Hexagonal Wilson loop at two loops

Wilson loop at six points and two loops was computed recently

$$
F_{6}=F_{6}^{(B D S)}+f\left(u_{1}, u_{2}, u_{3}\right)
$$

\checkmark The Wilson loop is not given by the BDS ansatz for the gluon amplitude
$\checkmark f\left(u_{1}, u_{2}, u_{3}\right)$ goes to a constant in the collinear limit
\rightarrow consistent with behaviour of gluon amplitudes

\checkmark Regge behaviour at two loops disagrees with BDS ansatz for six gluons
Does the duality hold?

Hexagon Wilson loop = six-gluon amplitude

[Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich '08]
\checkmark Numerical tests for different kinematical configurations $K^{(i)}$.

Kinematical point	$\left(u_{1}, u_{2}, u_{3}\right)$	$f_{\mathrm{WL}}-f_{\mathrm{WL}}^{(0)}$	$f_{\mathrm{A}}-f_{\mathrm{A}}^{(0)}$
$K^{(1)}$	$(1 / 4,1 / 4,1 / 4)$	$<10^{-5}$	-0.018 ± 0.023
$K^{(2)}$	$(0.547253,0.203822,0.88127)$	-2.75533	-2.753 ± 0.015
$K^{(3)}$	$(28 / 17,16 / 5,112 / 85)$	-4.74460	-4.7445 ± 0.0075
$K^{(4)}$	$(1 / 9,1 / 9,1 / 9)$	4.09138	4.12 ± 0.10
$K^{(5)}$	$(4 / 81,4 / 81,4 / 81)$	9.72553	10.00 ± 0.50

The BDS ansatz needs to be corrected at six gluons and two loops!
The duality holds!

Conclusions and outlook

\checkmark Evidence of a (broken) dual conformal symmetry of planar MHV amplitudes
\checkmark This symmetry becomes manifest within the gluon amplitude / Wilson loop duality
\checkmark The duality relation was verified in several nontrivial cases
\checkmark At two-loops and six gluons, the BDS ansatz fails, but the duality is preserved!
Conjecture that the duality holds to all loops and for an arbitrary number of gluons

Can the duality be extended beyond the MHV case? E.g. NMHV amplitudes appear starting from six points.

What is the origin of the dual conformal symmetry of gluon amplitudes? ... Related to integrability of planar $\mathcal{N}=4$ SYM?!

