ββ decay and neutrino mass

35 isotopes in nature

Most sensitive neutrino mass measurements can be obtained from double-beta decay

Each is ±1 if CP conserved, but there can still be cancellations

Most sensitive neutrino mass measurements can be obtained from double-beta decay

 $t_{1/2} = (\text{phase space}) \bullet$

$0\nu\beta\beta$: Peak at Q-value of nuclear transition

Sum energy spectrum of both electrons

Cuoricino

Energy [keV]

Large-scale ⁷⁶Ge experiments also proceeding.

The Majrana Modular Approach

- 57 crystal module
 - Conventional vacuum cryostat made with electroformed Cu.
 - Three-crystal stack are individually removable.

⁷⁶Ge effort also underway at LNGS.

GERDA's Experimental Concept

Assumption: External background is dominant

- Minimize all impure materials close to Ge diodes
- Operate Ge diodes in ultraclean environment
 → cryogenic liquid shield (LN or LAr); graded shielding
- Reject remaining background (internal and external) by exploiting different interaction topology (single-site ↔ multi-site; PSA)
 Goal: Background index of 0.001 cts / (keV kg y)

Juve Wark Imperial College/RAL

at Q_{BB} =2039 keV

NEMO-3

NEMO-3

¹⁰⁰Mo 2β2ν preliminary results

(Data Feb. 2003 - Dec. 2004)

 $T_{1/2} = 7.11 \pm 0.02 \text{ (stat)} \pm 0.54 \text{ (syst)} \times 10^{18} \text{ y}$

7.37 kg.y

Neutrinoless *ββ*-decay limits

Isotope	$T_{1/2}^{0\nu}$ (y)	$\langle m_{\nu} \rangle ~({\rm eV})$
48 Ca	$> 9.5 \times 10^{21} (76\%)$	< 8.3
$^{76}\mathrm{Ge}$	$> 1.9 imes 10^{25}$	< 0.35
	$> 1.6 imes 10^{25}$	< 0.33 - 1.35
$^{82}\mathrm{Se}$	$> 2.7 \times 10^{22} (68\%)$	< 5
$^{100}\mathrm{Mo}$	$>5.5 imes10^{22}$	< 2.1
$^{116}\mathrm{Cd}$	$>7 imes10^{22}$	< 2.6
$^{128,130}{ m Te}$	$\frac{T_{1/2}(130)}{T_{1/2}(128)} = (3.52 \pm 0.11) \times 10^{-4}$	< 1.1 - 1.5
	(geochemical)	
$^{128}\mathrm{Te}$	$>7.7 imes10^{24}$	< 1.1 - 1.5
$^{130}\mathrm{Te}$	$> 1.4 \times 10^{23}$	< 1.1 - 2.6
$^{136}\mathrm{Xe}$	$>4.4 imes10^{23}$	< 1.8 - 5.2
$^{150}\mathrm{Nd}$	$> 1.2 imes 10^{21}$	< 3

From Elliot and Vogel, hep-ph/0202264

Neutrinoless ββ-decay Future Projects

Experiment	Author	Isotope	Detector description	Т^{5у}_{1/2}(у)	<m<sub>v>*</m<sub>
COBRA	Zuber 2001	¹³⁰ Te	10 kg CdTe semiconductors	1 x 10 ²⁴	0.71
CUORICINO	Arnaboldi et al 2001	¹³⁰ Te	40 kg of TeO ₂ bolometers	1.5 x 10 ²⁵	0.19
NEMO3	Sarazin et al 2000	¹⁰⁰ Mo	10 kg of bb(0n) isotopes (7 kg Mo) with tracking	4 x 10 ²⁴	0.56
CUORE	Arnaboldi et al. 2001	¹³⁰ Te	760 kg of TeO ₂ bolometers	7 x 10 ²⁶	
EXO	Danevich et al 2000	¹³⁶ Xe	1 t enriched Xe TPC	8 x 10 ²⁶	
GEM	Zdesenko et al 2001 Klandor	⁷⁶ Ge	1 t enriched Ge diodes in liquid nitrogen + water shield	7 x 10 ²⁷	
GENIUS	Kleingrothaus et al 2001	⁷⁶ Ge	1 t enriched Ge diodes in liquid nitrogen	1 x 10 ²⁸	
MAJORANA	Aalseth et al 2002	⁷⁶ Ge	0.5 t enriched Ge segmented diodes	4 x 10 ²⁷	
DCBA	Ishihara et al 2000	¹⁵⁰ Nd	20 kg enriched Nd layers with tracking	2 x 10 ²⁵	
CAMEO	Bellini et al 2001	¹¹⁶ Cd	1 t CdWO₄ crystals in liquid scintillator	> 10 ²⁶	0.069
CANDLES	Kishimoto et al	⁴⁸ Ca	several tons of CaF ₂ crystal in liquid scintillator	1 x 10 ²⁶	
GSO	Danevich 2001	¹⁶⁰ Gd	2 t Gd₂SiO₅:Ce cristal scintillator in liquid scintillator	2 x 10 ²⁶	0.065
MOON	Ejiri et al 2000	¹⁰⁰ Mo	34 t natural Mo sheets between plastic scintillator	1 x 10 ²⁷	0.036
Xe	Caccianiga et al 2001	¹³⁶ Xe	1.56 t of enriched Xe in liquid scintillator	5 x 10 ²⁶	0.066
XMASS	Moriyama et al	¹³⁶ Xe	10 t of liquid Xe	3 x 10 ²⁶	0.086

Imperial College/RAL

Need new ideas to reach < 10 meV