Chaos and critical phenomena in gravitational collapse

Sebastian Szybka

Obserwatorium Astronomiczne UJ

17 czerwca 2007

One meteorologist remarked that if the theory were correct, one flap of a seagull's wings would be enough to alter the course of the weather forever.

E. N. Lorenz

1 / 10

- - E - N

- S. J. Szybka, T. Chmaj, in preparation (2007).
- P. Bizon, T. Chmaj, and B. G. Schmidt, Phys. Rev. Lett. 97, 131101 (2006), gr-qc/0608102.
- M. W. Choptuik, Phys. Rev. Lett. **70**, 9 (1993).
- C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Physics Letters A **99**, 415 (1983).
- M. A. Peterson, Amer. Journ. of Phys., **47**, 12, 1031 (1979).

Singularity theorems (Penrose 1965, Hawking and Penrose 1970)

Solutions of Einstein's equations become singular for a large class of regular initial data.

Singularity theorems (Penrose 1965, Hawking and Penrose 1970)

Solutions of Einstein's equations become singular for a large class of regular initial data.

Weak cosmic censorship (Penrose 1969)

Naked singularities do not generically develop in reasonable models of gravitational collapse.

Singularity theorems (Penrose 1965, Hawking and Penrose 1970)

Solutions of Einstein's equations become singular for a large class of regular initial data.

Weak cosmic censorship (Penrose 1969)

Naked singularities do not generically develop in reasonable models of gravitational collapse.

- Parameterize the initial data by one parameter p such that
 - large p collapse to a black hole
 - small p dispersion

3 / 10

Singularity theorems (Penrose 1965, Hawking and Penrose 1970)

Solutions of Einstein's equations become singular for a large class of regular initial data.

Weak cosmic censorship (Penrose 1969)

Naked singularities do not generically develop in reasonable models of gravitational collapse.

- Parameterize the initial data by one parameter p such that
 - large p collapse to a black hole
 - small p dispersion

Critical phenomena (Choptuik 1993)

What kind of solution correspond to the critical value of $p = p^*$?

(4 同) (4 日) (4 日)

- Choptuik's numerical experiment (massless scalar field)
 - ▶ black hole mass scaling M ~ (p − p^{*})^γ − non-generic naked singularity for p = p^{*}
 - universality
 - discrete self-similarity

- Choptuik's numerical experiment (massless scalar field)
 - ▶ black hole mass scaling M ~ (p − p^{*})^γ − non-generic naked singularity for p = p^{*}
 - universality
 - discrete self-similarity
- Problems does this result depend on the right-hand side of Einstein's equations (the matter content)?
 - equations tractable only in spherical symmetry
 - no gravitational waves in spherical symmetry Birkhoff theorem

- Choptuik's numerical experiment (massless scalar field)
 - ▶ black hole mass scaling M ~ (p − p^{*})^γ − non-generic naked singularity for p = p^{*}
 - universality
 - discrete self-similarity
- Problems does this result depend on the right-hand side of Einstein's equations (the matter content)?
 - equations tractable only in spherical symmetry
 - no gravitational waves in spherical symmetry Birkhoff theorem
- More then 100 articles devoted to critical phenomena different matter fields
- Study simpler PDE and search for a counterpart of the critical phenomena
- Dynamical system picture of GR

(人間) システレ イテレ

3 5 / 10

< ∃⇒

▲ 🗇 🕨 🔺 -

The breakthrough — BCS ansatz (Bizoń, Chmaj, Schmidt 2005) Evade Birkhoff's theorem for a price of going to higher dimensions

$$ds^{2} = -Ae^{-2\delta}dt^{2} + A^{-1}dr^{2} + \frac{1}{4}r^{2}\left[e^{2B}\sigma_{1}^{2} + e^{2C}\sigma_{2}^{2} + e^{-2(B+C)}\sigma_{3}^{2}\right],$$

where A, δ , B, and C are functions of time t, radius r and

$$\sigma_1 + i \sigma_2 = e^{i\psi}(\cos\theta \ d\phi + i \ d\theta), \quad \sigma_3 = d\psi - \sin\theta \ d\phi$$

The breakthrough — BCS ansatz (Bizoń, Chmaj, Schmidt 2005) Evade Birkhoff's theorem for a price of going to higher dimensions

$$ds^{2} = -Ae^{-2\delta}dt^{2} + A^{-1}dr^{2} + \frac{1}{4}r^{2}\left[e^{2B}\sigma_{1}^{2} + e^{2C}\sigma_{2}^{2} + e^{-2(B+C)}\sigma_{3}^{2}\right],$$

where A, δ , B, and C are functions of time t, radius r and

$$\sigma_1 + i \sigma_2 = e^{i\psi}(\cos\theta \ d\phi + i \ d\theta), \quad \sigma_3 = d\psi - \sin\theta \ d\phi$$

 General picture of the critical phenomena confirmed but interesting new properties

The breakthrough — BCS ansatz (Bizoń, Chmaj, Schmidt 2005) Evade Birkhoff's theorem for a price of going to higher dimensions

$$ds^{2} = -Ae^{-2\delta}dt^{2} + A^{-1}dr^{2} + \frac{1}{4}r^{2}\left[e^{2B}\sigma_{1}^{2} + e^{2C}\sigma_{2}^{2} + e^{-2(B+C)}\sigma_{3}^{2}\right],$$

where A, δ , B, and C are functions of time t, radius r and

$$\sigma_1 + i \sigma_2 = e^{i\psi}(\cos\theta \ d\phi + i \ d\theta), \quad \sigma_3 = d\psi - \sin\theta \ d\phi$$

- General picture of the critical phenomena confirmed but interesting new properties
- In context of dynamical system picture of GR the critical phenomena reduce to a study of the basin boundary between two attractors

The breakthrough — BCS ansatz (Bizoń, Chmaj, Schmidt 2005) Evade Birkhoff's theorem for a price of going to higher dimensions

$$ds^{2} = -Ae^{-2\delta}dt^{2} + A^{-1}dr^{2} + \frac{1}{4}r^{2}\left[e^{2B}\sigma_{1}^{2} + e^{2C}\sigma_{2}^{2} + e^{-2(B+C)}\sigma_{3}^{2}\right],$$

where A, δ , B, and C are functions of time t, radius r and

$$\sigma_1 + i \sigma_2 = e^{i\psi}(\cos\theta \ d\phi + i \ d\theta), \quad \sigma_3 = d\psi - \sin\theta \ d\phi$$

- General picture of the critical phenomena confirmed but interesting new properties
- In context of dynamical system picture of GR the critical phenomena reduce to a study of the basin boundary between two attractors
- Basin boundaries can be either smooth or fractal so far the second property was never observed in the critical phenomena restricted to regular initial data

Fractal basin boundaries

• Chaotic scattering on three geometrically equivalent copies of the critical solution

The uncertainty dimension

Let S be one-dimensional set in one-dimensional parameter phase space (we have one free parameter κ). The probability that any two random points κ_A , κ_B separated by a distance ϵ belong to different basins $h(\kappa_A) \neq h(\kappa_B)$ scales as $P(\epsilon) \sim \epsilon^{1-\dim(S \cap B)}$, where B is a basin boundary.

Fractal basin boundaries

Sebastian Szybka (OA UJ)

Cracow School of Theoretical Physics 2007

17 czerwca 2007 8 / 10

Fractal basin boundaries

the uncertainty dimension

 $dim(S \cap B) = 0.771 \pm 0.005$

Sebastian Szybka (OA UJ)

Cracow School of Theoretical Physics 2007

Conclusions

A flip of the wings of the butterfly may influence the process of black hole formation (at least in this setting — is it more generic phenomenon?)

- the first example of chaos in context of gravitational collapse (regular initial data)
- rich dynamics
- a hint for a different models