Time-dependent D7-brane embeddings

Piotr Surówka
Department of Theory of Complex Systems
Jagiellonian University

June 20, 2007

Outline

1. Introduction
2. The AdS/CFT correspondence
3. Perfect fluid geometry
4. Static D7-brane embeddings
5. Time-dependent D7-brane embeddings

Boundary conditions

The Polyakov action:

$$
S=-T \int d^{2} \sigma \eta^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}
$$

We vary the above action plugging EOM:

$$
\delta S=-T \int d \tau\left[X_{\mu}^{\prime} \delta X^{\mu}(0, \tau)-X_{\mu}^{\prime} \delta X^{\mu}(\pi, \tau)\right]=0
$$

Possible boundary conditions:

- $X_{\mu}^{\prime}=\left.0\right|_{\sigma=0,2 \pi}$ von Neumann's boundary conditions
- $X^{\mu}(0, \tau), X^{\mu}(\pi, \tau)=$ const Dirichlet's boundary conditions

Brane action

$$
S_{D p}=-T_{p} \int d \xi^{p+1} \sqrt{-\operatorname{det}\left(P\left[G_{a b}\right]\right)}
$$

For our considerations the D3/D7-brane system is relevant.

The AdS/CFT correspondence

Strongly coupled gauge fields \Leftrightarrow Weakly coupled strings

How one can relate physical observables in these two theories?

The dictionary of gauge/gravity duality

Equivalence means:

$$
e^{-S_{\text {sugra }}} \approx Z_{\text {string }}=Z_{C F T} \equiv\left\langle e^{\int d^{4} x \phi_{0}(x) \mathcal{O}(x)}\right\rangle
$$

Identification of some corresponding quantities:

The AdS/CFT correspondence at $T \neq 0$

$$
d s^{2}=-\frac{1-z^{4} / z_{0}^{4}}{z^{2}} d t^{2}+\frac{1}{z^{2}} d \vec{x}^{2}+\frac{1}{z^{2}\left(1-z^{4} / z_{0}^{4}\right)} d z^{2}
$$

Horizon

$$
z=z_{0}
$$

Entropy:

$$
S_{C F T}=S_{B H} \sim T^{3}
$$

Geometry

$$
d s^{2}=\frac{1}{z^{2}}\left(-e^{a(\tau, z)} d \tau^{2}+\tau^{2} e^{b(\tau, z)} d y^{2}+e^{c(\tau, z)} d x_{\perp}^{2}+d z^{2}\right)
$$

The three coefficients can be derived from the Einstein equations:

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-6 g_{\mu \nu}=0
$$

- scaling variable $v=\frac{z}{\tau^{s / 4}}$ reduces $a(\tau, z)=a(v)$
- natural criterion to determine s - geometry regularity
- $R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta}$ has no poles nor cuts
- cancelation of 4 th order pole at $v=3^{1 / 4}$ requires $s=4 / 3$
- this reproduces Bjorken hydrodynamics on CFT side!

Perfect fluid asymptotic geometry

Asymptotic geometry for energy density $\epsilon=\frac{e}{\tau^{4 / 3}}$
$d s^{2}=\frac{1}{z^{2}}\left(-\frac{\left(1-\frac{e}{3} \frac{z^{4}}{\tau^{4 / 3}}\right)^{2}}{1+\frac{e}{3} \frac{z^{4}}{\tau^{4 / 3}}} d \tau^{2}+\left(1+\frac{e}{3} \frac{z^{4}}{\tau^{4 / 3}}\right)\left(\tau^{2} d y^{2}+d x_{\perp}^{2}\right)+d z^{2}\right)$
The above metric is very similar to the black hole solution but with the location of the horizon moving in the bulk:

$$
z_{0}=\left(\frac{3}{e}\right)^{\frac{1}{4}} \tau^{\frac{1}{3}}
$$

Also interesting to find subleading corrections to the metric (dependence on shear viscosity)

Fundamental matter

How one can take into account the fundamental matter? Introduce N_{f} D7-branes into N_{c} D3-branes system ($N_{c} \gg N_{f}$) Four different string sectors:

- close strings
- open strings
- 3-3 strings
- 3-7 strings
- 7-7 strings

Gauge fields with $\operatorname{SU}\left(N_{c}\right)$ symmetry
plus fundamental matter with $S U\left(N_{f}\right)$ symmetry

Static D7-brane embedding

The DBI action:

$$
S_{D 7}=-T_{7} \int d^{8} \xi \epsilon_{3} \rho^{3} \sqrt{1+\frac{g^{a b}}{\rho^{2}+y_{5}^{2}+y_{6}^{2}}\left(\partial_{a} y_{5} \partial_{b} y_{5}+\partial_{a} y_{6} \partial_{b} y_{6}\right)}
$$

Euler-Lagrange equation:

$$
\frac{d}{d \rho}\left[\frac{\rho^{3}}{\sqrt{1+\left(\frac{d y_{6}}{d \rho}\right)^{2}}} \frac{d y_{6}}{d \rho}\right]=0
$$

Asymptotic solution $(\rho \rightarrow \infty)$:

$$
y_{6}=m+\frac{c}{\rho^{2}}+\ldots
$$

The scalars m and c are identified with the quark mass m_{q} and condensate $\langle q \bar{q}\rangle$ respectively.

Time-dependent embeddings

An ansatz:

$$
y_{6}=m+\frac{c}{\rho^{2} \tau^{a}}+\ldots
$$

Should be consistent with the adiabatic picture:

Time-dependent embeddings

EOM:

$$
\square y_{6}+3 \tan \left(y_{6}\right)-\frac{1}{2} \frac{G^{\mu \nu} \partial_{\mu} y_{6} \partial_{\nu}\left(G^{\rho \sigma} \partial_{\rho} y_{6} \partial_{\sigma} y_{6}\right)}{1+G^{\alpha \beta} \partial_{\alpha} y_{6} \partial_{\beta} y_{6}}=0
$$

Comparing the adiabatic and time-dependent embedding:

$$
\tau^{-1} \sim T^{3}
$$

we obtain the power of τ :

$$
a=8 / 3
$$

The embedding up to first order:

$$
y_{6}=m+\frac{c}{\rho^{2} \tau^{8 / 3}}+\ldots
$$

Adding viscosity

Subleading term occurs:

$$
y_{6}=m+\frac{c}{\rho^{2} \tau^{8 / 3}}+\frac{c_{1}\left(\eta_{0}\right)}{\rho^{2} \tau^{10 / 3}}+\ldots
$$

It is possible to determine coefficients C and c_{1}

$$
c=-\frac{1}{6 m^{5}} \quad c_{1}=\frac{2}{9 m^{7}} \eta_{0}
$$

Conclusions

Summary

- The quark-gluon plasma can be described by hydrodynamics (the effective theory describing the long-distance, low-frequency behavior of interacting finite-temperature systems)
- AdS/CFT correspondence allows to compute hydrodynamical quantities (e.g. entropy)

Further work

- Calculation of the free energy (done)
- Analysis of the small fluctuations of the D7-brane - mesons (work in progress)

