Pomeron-Graviton duality and resummation at high energies

Anna Staśto

Penn State University, University Park, PA, USA
and
Institute of Nuclear Physics, Kraków, Poland

Cracow School of Theoretical Physics, XLVII Course, 2007
High-energy scattering of hadrons
High - energy scattering of hadrons

What is the dependence of the cross section at high energies?
High-energy scattering of hadrons

What is the dependence of the cross section at high energies?

Gauge theory
weak gauge coupling

Pomeron:
collective state of gluons
What is the dependence of the cross section at high energies?

Gauge theory
- weak gauge coupling
- Pomeron: collective state of gluons

String theory
- strong gauge coupling
- 5-dimensional graviton in anti-de Sitter space
High-energy scattering of hadrons

What is the dependence of the cross section at high energies?

Gauge theory
weak gauge coupling

Pomeron:
collective state of gluons

String theory
strong gauge coupling

5-dimensional graviton in anti-de Sitter space

Resummation
Regge theory \rightarrow QCD \leftarrow String/gravity
Regge theory
Regge trajectories

- Linear dependence of the spin J on the square mass for mesons.

\[\alpha(t) = \alpha(0) + \alpha' t \]

$\alpha(0)_\rho = 0.45$ \hspace{1cm} \text{intercept}

$\alpha'_\rho = 0.93 \text{ GeV}^{-2}$ \hspace{1cm} \text{slope}

ρ, ω

ω_3, ρ_3

$a_4, [f_4]$

$[\rho_5]$

$[a_6, f_6]$

$t = M^2 > 0$

for bound states
Regge trajectories

Similar regularity for baryons
S-matrix and Regge theory
S-matrix and Regge theory

General assumption about the S matrix:

- Lorentz invariance
- Unitarity
- Analyticity
- Crossing

\[S\dagger S = SS\dagger = 1 \]

\[A_{ab\rightarrow cd}(t, s, u) = A_{a\bar{c}\rightarrow \bar{b}d}(s, t, u) \]
S-matrix and Regge theory

General assumption about the S matrix:

- Lorentz invariance
 \[A(s, t) \]
- Unitarity
 \[S^\dagger S = SS^\dagger = 1 \]
- Analyticity
- Crossing
 \[A_{ab \rightarrow cd}(t, s, u) = A_{a\bar{c} \rightarrow \bar{b}d}(s, t, u) \]

Decomposition into partial waves

\[
A(s, t) = \frac{1}{2i} \oint_C dl (2l + 1) \frac{a(l, t)}{\sin \pi l} P(l, 1 + 2s/t)
\]
S-matrix and Regge theory

General assumption about the S matrix:

- Lorentz invariance \(\mathcal{A}(s, t) \)
- Unitarity \(S^\dagger S = SS^\dagger = 1 \)
- Analyticity
- Crossing \(\mathcal{A}_{ab\rightarrow cd}(t, s, u) = \mathcal{A}_{a\bar{c}\rightarrow \bar{b}d}(s, t, u) \)

Decomposition into partial waves

\[
\mathcal{A}(s, t) = \frac{1}{2i} \oint_C dl \frac{a(l, t)}{\sin \pi l} P(l, 1 + 2s/t)
\]

Angular momentum
S-matrix and Regge theory

General assumption about the S matrix:

- Lorentz invariance
- Unitarity $S^\dagger S = SS^\dagger = 1$
- Analyticity
- Crossing $A_{ab\rightarrow cd}(t, s, u) = A_{a\bar{c}\rightarrow \bar{b}d}(s, t, u)$

Decomposition into partial waves

$$A(s, t) = \frac{1}{2i} \oint_C dl (2l + 1) \frac{a(l, t)}{\sin \pi l} P(l, 1 + 2s/t)$$

Angular momentum Partial wave amplitude
S-matrix and Regge theory

General assumption about the S matrix:

- Lorentz invariance

\[A(s, t) \]

- Unitarity

\[S^\dagger S = SS^\dagger = 1 \]

- Analyticity

- Crossing

\[A_{ab\to cd}(t, s, u) = A_{a\bar{c}\to \bar{b}d}(s, t, u) \]

Decomposition into partial waves

\[A(s, t) = \frac{1}{2i} \oint_C dl (2l + 1) \frac{a(l, t)}{\sin \pi l} P(l, 1 + 2s/t) \]

Angular momentum

Partial wave amplitude

Legendre polynomial
Complex angular momentum plane
Complex angular momentum plane
Complex angular momentum plane

Deformation of the contour

\[\alpha_b \rightarrow \alpha_c \]
Complex angular momentum plane

In the Regge limit: $s \gg |t| (s \to \infty, t \text{ fixed})$
In the Regge limit: \(s \gg |t| \) \((s \to \infty, t \text{ fixed})\)

\[
A(s, t) \to \eta + \frac{e^{-i\pi \alpha(t)}}{2} \beta(t) s^{\alpha(t)}
\]
In the Regge limit: $s \gg |t| (s \to \infty, t \text{ fixed})$

$$A(s, t) \to \frac{\eta + e^{-i\pi \alpha(t)}}{2} \beta(t) s^{\alpha(t)}$$

Amplitude dominated by the Regge pole with largest $\text{Re} \, \alpha(t)$
Reggeon exchange
Reggeon exchange

Factorization of the couplings and the Reggeon exchange

\[\mathcal{A}(s, t) \rightarrow \frac{\eta + e^{-i\pi \alpha(t)}}{2 \sin \pi \alpha(t)} \frac{\gamma_{ac}(t)\gamma_{bd}(t)}{\Gamma(\alpha(t))} s^{\alpha(t)} \]
Reggeon exchange

Factorization of the couplings and the Reggeon exchange

\[\mathcal{A}(s, t) \rightarrow \eta + e^{-i\pi \alpha(t)} \frac{\gamma_{ac}(t) \gamma_{bd}(t)}{2 \sin \pi \alpha(t)} \frac{\Gamma(\alpha(t))}{s^{\alpha(t)}} \]
Reggeon exchange

Factorization of the couplings and the Reggeon exchange

\[\mathcal{A}(s, t) \rightarrow \eta + e^{-i\pi \alpha(t)} \frac{\gamma_{ac}(t)\gamma_{bd}(t)}{2\sin\pi\alpha(t)} \frac{\Gamma(\alpha(t))}{s^{\alpha(t)}} \]
Reggeon exchange

The energy behavior of the amplitude is determined by the exchange of the quasi-particle: Reggeon
Pomeron
Pomeron

Vacuum exchange dominates cross sections at high energies
Pomeron

Vacuum exchange dominates cross sections at high energies

\[\sigma_{TOT}(p\bar{p}) \sim \sigma_{TOT}(pp) \]
Pomeron

Vacuum exchange dominates cross sections at high energies

\[\sigma_{TOT}(pp) \sim \sigma_{TOT}(p\bar{p}) \]

Vacuum exchange

\[\alpha(0)_{P} \geq 1 \]

experimentally: \[\alpha_{P}(0) \simeq 1.08, \sigma_{TOT} \sim s^{(\alpha(0)_{P}-1)} \]
Pomeron

Vacuum exchange dominates cross sections at high energies

\[\sigma_{TOT}(pp) \sim \sigma_{TOT}(p\bar{p}) \]

Vacuum exchange

\[\alpha(0)_{P} \geq 1 \]

experimentally: \(\alpha_{P}(0) \approx 1.08, \sigma_{TOT} \sim s^{(\alpha(0)_{P} - 1)} \)

Non-vacuum exchange

\[\alpha(0)_{R} < 1 \]

Note: odderon \(\alpha_{O}(0) \leq 1 \)
pBARp: $21.70 s^{0.0808} + 98.39 s^{-0.4525}$

pp: $21.70 s^{0.0808} + 56.08 s^{-0.4525}$
\[\sigma^{- p} = 13.63s^{0.0806} + 36.02s^{-0.4525} \]
\[\sigma^{+ p} = 13.63s^{0.0806} + 27.56s^{-0.4525} \]
Universality of total cross sections
QCD
Pomeron in gauge theory

Low-Nussinov model
2-gluon exchange
Pomeron in gauge theory

Low-Nussinov model
2-gluon exchange

BFKL resummation
color singlet

$s \gg |t|$
Pomeron in gauge theory

Low-Nussinov model
2-gluon exchange

BFKL resummation
color singlet

Effective vertex

\[\Gamma_{\mu\nu}(k_i, k_{i+1}) \]

\[s \gg |t| \]
Pomeron in gauge theory

Low-Nussinov model
2-gluon exchange

BFKL resummation
color singlet

Reggeized gluon:

\[D_{\mu\nu}(\hat{s}, k_T^2) = \frac{ig_{\mu\nu}}{k_T^2} \left(\frac{\hat{s}}{k_T^2} \right) \epsilon_G(k_T^2) \]

\[\hat{s}_i = (k_{i-1} - k_{i+1})^2 \]

Regge trajectory: virtual diagrams

\[\epsilon_G(q_T^2) = \frac{N_c \alpha_s}{4\pi^2} \int_\Lambda d^2 k_T \frac{-q_T^2}{k_T^2(k_T - q_T)^2} \]

Infrared divergent!

Balitskii
Fadin
Kuraev
Lipatov

\[s \gg |t| \]
Integral equation

Eikonal couplings

Universality

4-point off-shell gluon Green function
Integral equation

Eikonal couplings

Universality

4-point off-shell gluon Green function

Integral equation for the Pomeron

Born term

Addition of one rung
Integral equation

\[f(Y; k_{1T}, k_{2T}, q_T) = f^{(0)}(k_{1T}, k_{2T}, q_T) + \int_0^Y dy \ K(k_{1T}, k_{2T}, q_T) \otimes f(y; k_{1T}, k_{2T}, q_T) \]

Rapidity: \[Y = \ln \frac{1}{x} = \ln \frac{s}{s_0} \]

Convolution in transverse momenta

! Scale choice (irrelevant at lowest order)!
Integral equation

\[f(Y; k_{1T}, k_{2T}, q_T) = f^{(0)}(k_{1T}, k_{2T}, q_T) + \int_{0}^{Y} dy \, K(k_{1T}, k_{2T}, q_T) \otimes f(y; k_{1T}, k_{2T}, q_T) \]

Rapidity: \(Y = \ln \frac{1}{x} = \ln \frac{s}{s_0} \)

Convolution in transverse momenta

! Scale choice (irrelevant at lowest order)!

! Factorization of longitudinal and transverse components of momenta!
Integral equation

\[f(Y; k_{1T}, k_{2T}, q_T) = f^{(0)}(k_{1T}, k_{2T}, q_T) + \int_0^Y dy \ K(k_{1T}, k_{2T}, q_T) \otimes f(y; k_{1T}, k_{2T}, q_T) \]

Rapidity: \(Y = \ln \frac{1}{x} = \ln \frac{s}{s_0} \)

Convolution in transverse momenta

! Scale choice (irrelevant at lowest order)!

! Factorization of longitudinal and transverse components of momenta!

Mellin transform:

\[\int dY \ e^{(-\omega^{-1})Y} f(Y) dY = f(\omega) \]

\[\omega f(\omega; k_{1T}, k_{2T}, q_T) = \delta^{(2)}(k_{1T} - k_{2T}) + K(k_{1T}, k_{2T}, q_T) \otimes f(\omega; k_{1T}, k_{2T}, q_T) \]

Integral kernel has Mobius invariance.
Solution of the BFKL equation

At zero momentum transfer: \(q_T = 0 \)

Eigenfunctions:
\[
\phi^\nu_n(k_T) = \frac{1}{\pi \sqrt{2}} (k_T^2)^{1/2 + i\nu} e^{in\theta}
\]

Diagonalize equation:
\[
K \otimes \phi^\nu_n = \frac{\alpha_s N_c}{\pi} \chi(\nu, n) \phi^\nu_n
\]

Eigenvalue (take \(n=0 \)):
\[
\chi(\nu, 0) = 2\psi(1) - \psi(1/2 + i\nu) - \psi(1/2 - i\nu)
\]

Simple poles:
\[
\gamma = \ldots, -2, -1, 0, 1, 2, \ldots
\]

\[
\gamma = 1/2 + i\nu
\]
Hard Pomeron
Hard Pomeron

Saddle point solution: around $\gamma = 1/2$

$$\chi(\nu) \simeq 4 \ln 2 - 14 \zeta(3) \nu^2$$
Hard Pomeron

Saddle point solution: around $\gamma = 1/2$

$$\chi(\nu) \simeq 4 \ln 2 - 14 \zeta(3) \nu^2$$

Approximate solution:

$$f(y = \ln s/s_0, k_{1T}, k_{2T}) \simeq \frac{1}{4 \sqrt{k_{1T}^2 k_{2T}^2}} \sqrt{14 \zeta(3) \alpha_s N_c \pi^2 \ln s/s_0} \left(\frac{s}{s_0} \right)^{4 \ln 2 \alpha_s N_c / \pi} \exp \left(- \frac{\pi \ln^2 \frac{k_{1T}^2}{k_{2T}^2}}{28 \zeta(3) \alpha_s N_c \ln s/s_0} \right)$$
Hard Pomeron

Saddle point solution: around $\gamma = 1/2$

$$\chi(\nu) \simeq 4 \ln 2 - 14\zeta(3)\nu^2$$

Approximate solution:

$$f(y = \ln s/s_0, k_{1T}, k_{2T}) \simeq \frac{1}{4\sqrt{k_{1T}^2 k_{2T}^2}} \frac{1}{\sqrt{14\zeta(3)\alpha_s N_c \pi^2 \ln s/s_0}} \left(\frac{s}{s_0} \right)^{4 \ln 2 \alpha_s N_c / \pi} \exp \left(-\frac{\pi \ln^2 k_{1T}^2 k_{2T}^2}{28\zeta(3)\alpha_s N_c \ln s/s_0} \right)$$

Diffusion pattern in transverse momenta
Hard Pomeron

Saddle point solution: around $\gamma = 1/2$

$\chi(\nu) \simeq 4 \ln 2 - 14 \zeta(3) \nu^2$

Approximate solution:

$$f(y = \ln s/s_0, k_1T, k_2T) \simeq \frac{1}{4 \sqrt{k_1^2 k_2^2}} \frac{1}{\sqrt{14 \zeta(3) \alpha_s N_c \pi^2 \ln s/s_0}} \left(\frac{s}{s_0} \right)^{4 \ln 2 \alpha_s N_c / \pi} \exp \left(-\frac{\pi \ln^2 \frac{k_1^2}{k_2^2}}{28 \zeta(3) \alpha_s N_c \ln s/s_0} \right)$$

Power-like growth with energy

Diffusion pattern in transverse momenta

Regge behavior from Feynman diagrams: $\alpha_P(0) = 1 + \frac{N_c \alpha_s}{\pi} 4 \ln 2$

Note: it is possible to compute Pomeron in electroweak theory also.
Pomeron phenomenology
Pomeron phenomenology

- Lowest order BFKL calculation incompatible with the experimental data.
Pomeron phenomenology

- Lowest order BFKL calculation incompatible with the experimental data.
- The energy behavior is much too strong (0.5 vs 0.25 in DIS)
Pomeron phenomenology

- Lowest order BFKL calculation incompatible with the experimental data.
- The energy behavior is much too strong (0.5 vs 0.25 in DIS)
- Need for higher order terms.
Pomeron phenomenology

- Lowest order BFKL calculation incompatible with the experimental data.
- The energy behavior is much too strong (0.5 vs 0.25 in DIS)
- Need for higher order terms.
- But in general the Pomeron as a color singlet object dominated by the gluons is well established:
Pomeron phenomenology

• Lowest order BFKL calculation incompatible with the experimental data.

• The energy behavior is much too strong (0.5 vs 0.25 in DIS)

• Need for higher order terms.

• But in general the Pomeron as a color singlet object dominated by the gluons is well established:
 • Diffraction processes in QCD (processes with large rapidity gaps).
Pomeron phenomenology

- Lowest order BFKL calculation incompatible with the experimental data.
- The energy behavior is much too strong (0.5 vs 0.25 in DIS)
- Need for higher order terms.
- But in general the Pomeron as a color singlet object dominated by the gluons is well established:
 - Diffraction processes in QCD (processes with large rapidity gaps).
 - Forward jet production in DIS.
Pomeron phenomenology

• Lowest order BFKL calculation incompatible with the experimental data.

• The energy behavior is much too strong (0.5 vs 0.25 in DIS)

• Need for higher order terms.

• But in general the Pomeron as a color singlet object dominated by the gluons is well established:
 • Diffraction processes in QCD (processes with large rapidity gaps).
 • Forward jet production in DIS.
 • Universal growth of the total cross sections.
String/gravity
Graviton
Graviton
Spin 2 massless (2 polarizations) particle: symmetric rank 2 tensor.

In string theory: closed string state.

String theory includes gravity
Universality of couplings
Universality of couplings

Example: (Weinberg)

Amplitude for emission of soft photon:
Universality of couplings

Example: (Weinberg)

Amplitude for emission of soft photon:

\[\mathcal{M}_{IO} \] Amplitude without photons

\[\mathcal{M}_{IO}(q, \gamma) = \mathcal{M}_{IO} \sum_n \frac{\sigma_n e_n p_n^\mu}{p_n \cdot q - i\sigma_n \epsilon} \]

- \(e_n \) charge
- \(p_n \) momentum
- \(\sigma_n \pm 1 \) for incoming and outgoing particles
Universality of couplings

Example: (Weinberg)

Amplitude for emission of soft photon:

\[
\mathcal{M}_{IO}(q, \gamma) = \mathcal{M}_{IO} \sum_n \frac{\sigma_n e_n p_n^\mu}{p_n \cdot q - i \sigma_n \epsilon}
\]

\(e_n\) charge \(p_n\) momentum \(\sigma_n \pm 1\) for incoming and outgoing particles

Ward identity:

\[
q_\mu \mathcal{M}_{IO}^\mu(q) = 0 \quad \rightarrow \quad \sum_n \sigma_n e_n = 0
\]

Total charge is conserved
Universality of couplings

Example: (Weinberg)

Amplitude for emission of soft photon:

\[\mathcal{M}_{IO} \]

Amplitude without photons

\[\mathcal{M}_I^{\mu}(q, \gamma) = \mathcal{M}_{IO} \sum_n \frac{\sigma_n e_n p_n^\mu}{p_n \cdot q - i\sigma_n \epsilon} \]

\(e_n \) charge \quad \(p_n \) momentum
\(\sigma_n \) ±1 for incoming and outgoing particles

Ward identity:

\[q_\mu \mathcal{M}_{IO}^{\mu}(q) = 0 \quad \rightarrow \quad \sum_n \sigma_n e_n = 0 \]

Total charge is conserved

Amplitude of one soft graviton:

\[\mathcal{M}_{IO}^{\mu\nu}(q, g) = \mathcal{M}_{IO} \sum_n \frac{\sigma_n f_n p_n^\mu p_n^\nu}{p_n \cdot q - i\sigma_n \epsilon} \]
Universality of couplings

Example: (Weinberg)

Amplitude for emission of soft photon:

\[M_{\mu I O}(q, \gamma) = M_{I O} \sum_n \frac{\sigma_n e_n p_n^{\mu}}{p_n \cdot q - i\sigma_n \epsilon} \]

Ward identity:

\[q_\mu M_{\mu I O}^\mu(q) = 0 \quad \rightarrow \quad \sum_n \sigma_n e_n = 0 \]

Total charge is conserved

Amplitude of one soft graviton:

\[M_{\mu \nu I O}(q, g) = M_{I O} \sum_n \frac{\sigma_n f_n p_n^{\mu} p_n^{\nu}}{p_n \cdot q - i\sigma_n \epsilon} \]

\[q_\mu M_{\mu I O}^{\mu \nu} = 0 \quad \rightarrow \quad \sum_n \sigma_n f_n p_n = 0 \]
Universality of couplings

Example: (Weinberg)

Amplitude for emission of soft foton:

\[M_{IO}(q, \gamma) = M_{IO} \sum_n \frac{\sigma_n e_n p_n^\mu}{p_n \cdot q - i\sigma_n \epsilon} \]

\[e_n \] charge \quad \[p_n \] momentum

\[\sigma_n \pm 1 \] for incoming and outgoing particles

Ward identity:

\[q_\mu M_{IO}^{\mu}(q) = 0 \rightarrow \sum_n \sigma_n e_n = 0 \]

Total charge is conserved

Amplitude of one soft graviton:

\[M_{IO}^{\mu\nu}(q, g) = M_{IO} \sum_n \frac{\sigma_n f_n p_n^\mu p_n^\nu}{p_n \cdot q - i\sigma_n \epsilon} \]

\[q_\mu M_{IO}^{\mu\nu} = 0 \rightarrow \sum_n \sigma_n f_n p_n = 0 \]

From E-M conservation:

\[\sum_n \sigma_n p_n = 0 \]
Universality of couplings

Example: \((\text{Weinberg})\)

Amplitude for emission of soft foton:

\[
\mathcal{M}_{\text{IO}}(q, \gamma) = \mathcal{M}_{\text{IO}} \sum_n \sigma_n e_n \frac{p_n \cdot q - i\sigma_n \epsilon}{p_n \cdot q - i\sigma_n \epsilon}
\]

Ward identity:

\[
q_\mu \mathcal{M}_{\text{IO}}^\mu(q) = 0 \quad \Rightarrow \quad \sum_n \sigma_n e_n = 0
\]

Amplitude of one soft graviton:

\[
\mathcal{M}_{\text{IO}}^{\mu \nu}(q, g) = \mathcal{M}_{\text{IO}} \sum_n \frac{\sigma_n f_n p_n^{\mu} p_n^{\nu}}{p_n \cdot q - i\sigma_n \epsilon}
\]

From E-M conservation:

\[
\sum_n \sigma_n p_n = 0 \quad \Rightarrow \quad f_1 = f_2 = \ldots = f_n
\]

All couplings are equal
Universality of couplings

Example: (Weinberg)

Amplitude for emission of soft foton:

\[
M_{IO}(q, \gamma) = M_{IO} \sum_n \frac{\sigma_n e_n p_\mu^n}{p_n \cdot q - i\sigma_n \epsilon} \]

\(e_n \) charge, \(p_n \) momentum

\(\sigma_n \) ±1 for incoming and outgoing particles

Ward identity:

\[
q_\mu M_{IO}^{\mu}(q) = 0 \quad \Rightarrow \quad \sum_n \sigma_n e_n = 0
\]

Total charge is conserved

Amplitude of one soft graviton:

\[
M_{IO}^{\mu
 \nu}(q, g) = M_{IO} \sum_n \frac{\sigma_n f_n p_\mu^n p_\nu^n}{p_n \cdot q - i\sigma_n \epsilon} \quad q_\mu M_{IO}^{\mu
 \nu} = 0
\]

\[
\sum_n \sigma_n f_n p_n = 0
\]

From E-M conservation:

\[
\sum_n \sigma_n p_n = 0 \quad \Rightarrow \quad f_1 = f_2 = \ldots = f_n
\]

All couplings are equal

Lorentz invariance for spin 2 particles gives principle of equivalence
Gauge/Gravity duality

Maldacena

strings in AdS(D) \leftrightarrow CFT($d=\text{D-1}$)
Gauge/Gravity duality

strings in AdS(D) \leftrightarrow \text{CFT}(d=D-1)

ds^2 = \frac{R^2}{Z^2}(-dT^2 + dX^2 + dZ^2)

(T,X): Minkowski coordinates
R: radius of curvature
Z: AdS radial coordinate
Gauge/Gravity duality

Maldacena

strings in AdS(D) \leftrightarrow CFT(d=D-1)

d_{s^2} = \frac{R^2}{Z^2}(-dT^2 + dX^2 + dZ^2)

(T,X): Minkowski coordinates
R: radius of curvature
Z: AdS radial coordinate

States: \phi(T, X; Z = 0) \leftrightarrow Local operators: \mathcal{O}(T, X)
Gauge/Gravity duality

Maldacena

strings in AdS(D) ↔ CFT(d=D-1)

\[ds^2 = \frac{R^2}{Z^2} (-dT^2 + dX^2 + dZ^2) \]

(T,X): Minkowski coordinates
R: radius of curvature
Z: AdS radial coordinate

States: \(\phi(T, X; Z = 0) \) ↔ Local operators: \(\mathcal{O}(T, X) \)

Graviton in string AdS corresponds to stress energy tensor in CFT.
Gauge/Gravity duality

Maldacena

strings in AdS(D) \leftrightarrow \text{CFT}(d=D-1)

\begin{align*}
 ds^2 &= \frac{R^2}{Z^2}(-dT^2 + dX^2 + dZ^2) \\
 (T,X) : & \text{Minkowski coordinates} \\
 R : & \text{radius of curvature} \\
 Z : & \text{AdS radial coordinate}
\end{align*}

States: \(\phi(T, X; Z = 0) \) \leftrightarrow \text{Local operators: } \mathcal{O}(T, X)

Graviton in string AdS corresponds to stress energy tensor in CFT.

Duality: different degrees of freedom in two different limits of the coupling \(g^2 N_c \)

\begin{align*}
 g^2 N_c \gg 1 & \quad \text{Strongly coupled SYM} \quad \text{Weakly coupled gravity} \\
 g^2 N_c \ll 1 & \quad \text{Weakly coupled SYM} \quad \text{Strongly coupled gravity}
\end{align*}
Note that correspondence is expected to be valid for N=4 SYM:

- One gauge field \(A_\mu \)
- Six scalars \(\phi_i, i = 1, \ldots, 6 \)
- Four fermions \(\chi_k, k = 1, \ldots, 4 \)
- Fields transform in the adjoint representation
- Conformal invariant \(\beta \sim N - 4 = 0 \)

SYM N=4 very different from QCD. Nevertheless a very good “laboratory”.
Exchange of graviton in AdS
Exchange of graviton in AdS

Exchange of the graviton trajectory would lead to

\[\sigma(s) \sim s^{j_0-1}, \quad j_0 = 2 \]
Exchange of graviton in AdS

Exchange of the graviton trajectory would lead to

\[\sigma(s) \sim s^{j_0 - 1}, \quad j_0 = 2 \]

Computation in string theory:

\[f(g^2 N_c \gg 1; \ln s, r_1, r_2) \sim s^{j_0 - 1} \frac{e^{-[\ln(r_1/r_2)]^2/(4D \ln s)}}{\sqrt{4\pi D \ln s}} \]

Janik; Brower, Polchinski, Strassler, Tan
Exchange of graviton in AdS

Exchange of the graviton trajectory would lead to

$$\sigma(s) \sim s^{j_0-1}, \quad j_0 = 2$$

Computation in string theory:

$$f(g^2 N_c \gg 1; \ln s, r_1, r_2) \sim s^{j_0-1} \frac{e^{-[\ln(r_1/r_2)]^2/(4D \ln s)}}{\sqrt{4\pi D \ln s}}$$

Intercept: $j_0 = 2 - \frac{2}{\sqrt{g^2 N_c}}$

Diffusion coefficient: $D = \frac{1}{2 \sqrt{g^2 N_c}}$

Janik; Brower, Polchinski, Strassler, Tan
Exchange of graviton in AdS

Exchange of the graviton trajectory would lead to
\[\sigma(s) \sim s^{j_0 - 1}, \quad j_0 = 2 \]

Computation in string theory:
\[f(g^2 N_c \gg 1; \ln s, r_1, r_2) \sim s^{j_0 - 1} \frac{e^{-\left[\ln(r_1/r_2)\right]^2/(4D \ln s)}}{\sqrt{4\pi D \ln s}} \]

Intercept: \(j_0 = 2 - \frac{2}{\sqrt{g^2 N_c}} \)
Diffusion coefficient: \(D = \frac{1}{2\sqrt{g^2 N_c}} \)

Compare with gauge theory result:
\[f(g^2 N_c \ll 1; \ln s, k_1, k_2) \sim s^{j_0 - 1} \frac{e^{-\left[\ln(k_1/k_2)\right]^2/(4D \ln s)}}{\sqrt{4\pi D \ln s}} \]

Intercept: \(j_0 = 1 + 4 \ln 2 \frac{\alpha_s N_c}{\pi} \)
Diffusion coefficient: \(D = 7\zeta(3) \frac{\alpha_s N_c}{\pi} \)
Exchange of graviton in AdS

Exchange of the graviton trajectory would lead to

\[\sigma(s) \sim s^{j_0 - 1}, \quad j_0 = 2 \]

Computation in string theory:

\[
f(g^2N_c \gg 1; \ln s, r_1, r_2) \sim s^{j_0 - 1} e^{-[\ln(r_1/r_2)]^2/(4D \ln s)} \frac{1}{\sqrt{4\pi D \ln s}}
\]

Intercept: \(j_0 = 2 - \frac{2}{\sqrt{g^2N_c}} \)

Diffusion coefficient: \(D = \frac{1}{2 \sqrt{g^2N_c}} \)

Compare with gauge theory result:

\[
f(g^2N_c \ll 1; \ln s, k_1, k_2) \sim s^{j_0 - 1} e^{-[\ln(k_1/k_2)]^2/(4D \ln s)} \frac{1}{\sqrt{4\pi D \ln s}}
\]

Intercept: \(j_0 = 1 + 4 \ln 2 \frac{\alpha_s N_c}{\pi} \)

Diffusion coefficient: \(D = 7\zeta(3) \frac{\alpha_s N_c}{\pi} \)

Diffusion in transverse (virtual) momenta

Diffusion in the fifth (radial) dimension of AdS space

Janik; Brower, Polchinski, Strassler, Tan
Pomeron/Graviton

\[j_0 = 1 + 4 \ln 2 \frac{\alpha_s N_c}{\pi} \]

Weak coupling

Pomeron: made out of many (reggeized) gluons. Growth of the cross section caused by dynamical effect: emission of many gluons.

Strong coupling

Graviton: single object (closed string state). Growth of the cross section corresponds to the exchange of spin 2.

\[j_0 = 2 - \frac{2}{\sqrt{g^2 N_c}} \]
Resummation at high energies (small x)

- Next-to-leading order very large: $j_0 = 1 + 4 \ln 2 \frac{\alpha_s N_c}{\pi} \left(1 - 6.45 \frac{\alpha_s N_c}{\pi}\right)$

- Sources of large corrections:
 - Kinematical effects, energy momentum conservation.
 - Running of the coupling.
 - Other corrections: quarks in the evolution.

- Need to take more than next-to-leading order: all orders.
Kinematics
Kinematics

• These gluons must be on-shell.
Kinematics

- These gluons must be on-shell.
- The approximations used make gluons off-shell!
Kinematics

- These gluons must be on-shell.
- The approximations used make gluons off-shell!
- Put the constraint to correct this.
Kinematics

- These gluons must be on-shell.
- The approximations used make gluons off-shell!
- Put the constraint to correct this.
- Energy - momentum is not conserved:
Kinematics

- These gluons must be on-shell.
- The approximations used make gluons off-shell!
- Put the constraint to correct this.
- Energy - momentum is not conserved:

High energy approximation means:
These gluons must be on-shell.
The approximations used make gluons off-shell!
Put the constraint to correct this.
Energy - momentum is not conserved:

High energy approximation means:

\[s \gg |t|, \Lambda^2, m_i^2 \]
These gluons must be on-shell.

The approximations used make gluons off-shell!

Put the constraint to correct this.

Energy - momentum is not conserved:

\[s \gg |t|, \Lambda^2, m_i^2 \]

Impose constraints to satisfy energy-momentum sum rule.
A note on anomalous dimensions in QCD

In standard operator product expansion approach to DIS evaluate anomalous dimensions
A note on anomalous dimensions in QCD

In standard operator product expansion approach to DIS evaluate anomalous dimensions

RGE:

\[[\mathcal{D} \delta_{ab} - \gamma^{(j)}_{ab}] C^j_b (g, \mu, -q^2) = 0 \]

\[\mathcal{D} = \mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g} \]
A note on anomalous dimensions in QCD

In standard operator product expansion approach to DIS evaluate anomalous dimensions

RGE:

\[[\mathcal{D}\delta_{ab} - \gamma_{ab}^{(j)}]C_{b}^{j} (g, \mu, -q^2) = 0 \]

\[\mathcal{D} = \mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g} \]

Perturbative expansion:

\[\gamma_{ab}^{(j)}(g) = \sum_{i} (g^2)^{i} \gamma_{ab}^{(j),i} \]
A note on anomalous dimensions in QCD

In standard operator product expansion approach to DIS evaluate anomalous dimensions

RGE:

\[[\mathcal{D}\delta_{ab} - \gamma_{ab}^{(j)}] C_{b}^{j} (g, \mu, -q^2) = 0 \]

\[\mathcal{D} = \mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g} \]

Perturbative expansion:

\[\gamma_{ab}^{(j)} (g) = \sum_{i} (g^2)^i \gamma_{ab}^{(j),i} \]

Momentum sum rule:

\[\gamma_{gg}^{(j=2),i} + 2N_f \gamma_{qg}^{(j=2),i} = 0 \]

\[\gamma_{gq}^{(j=2),i} + \gamma_{qq}^{(j=2),i} = 0 \]

QCD
In standard operator product expansion approach to DIS evaluate anomalous dimensions

\[
[D \delta_{ab} - \gamma^{(j)}_{ab}] C^j_b (g, \mu, -q^2) = 0
\]

\[D = \mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g}\]

\[
\gamma^{(j)}_{ab} (g) = \sum_i (g^2)^i \gamma^{(j),i}_{ab}
\]

Momentum sum rule:

\[
\gamma^{(j=2),i}_{gg} + 2N_f \gamma^{(j=2),i}_{qg} = 0 \quad \gamma^{(j=2),i}_{gq} + \gamma^{(j=2),i}_{qq} = 0 \quad \text{QCD}
\]

\[
\gamma^{(j=2),i}_{\text{uni}} = 0 \quad \text{N=4 SYM}
\]
A note on anomalous dimensions in QCD

In standard operator product expansion approach to DIS evaluate anomalous dimensions

RGE:

\[[D\delta_{ab} - \gamma_{ab}^{(j)}] C_{b}^{j} (g, \mu, -q^2) = 0 \]

\[D = \mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g} \]

Perturbative expansion:

\[\gamma_{ab}^{(j)} (g) = \sum_i (g^2)^i \gamma_{ab}^{(j),i} \]

Momentum sum rule:

\[\gamma_{gg}^{(j=2),i} + 2N_f \gamma_{qg}^{(j=2),i} = 0 \]

\[\gamma_{gq}^{(j=2),i} + \gamma_{qq}^{(j=2),i} = 0 \quad \text{QCD} \]

\[\gamma_{uni}^{(j=2),i} = 0 \quad \text{N=4 SYM} \]

Satisfied at each order of the perturbation theory
BFKL kernel eigenvalue:

\[1 = \mathcal{K}(\alpha_s, \gamma, j) \]

\[\gamma \leftrightarrow \ln k_T \]
BFKL kernel eigenvalue:

\[1 = \mathcal{K}(\alpha_s, \gamma, j) \]

\[\gamma \leftrightarrow \ln k_T \]

Transverse momentum
BFKL kernel eigenvalue:

\[1 = \mathcal{K}(\alpha_s, \gamma, j) \]

\[\gamma \leftrightarrow \ln k_T \]

Resummed model

\[1 = \alpha_s N_c / \pi \gamma_{gg}^{(0),j} \chi^0(\gamma, j) \]

\[\chi^0(\gamma, j) = 2\psi(1) - \psi(\gamma + (j - 1)/2) - \psi(1 - \gamma + (j - 1)/2) \]

\[\gamma_{gg}^{(0),j} \quad \text{LO anomalous dimension} \]
BFKL kernel eigenvalue:

\[1 = \mathcal{K}(\alpha_s, \gamma, j) \]

\[\gamma \leftrightarrow \ln k_T \]

Resummed model

\[1 = \frac{\alpha_s N_c}{\pi} \gamma_{gg}^{(0),j} \chi^0(\gamma, j) \]

\[\chi^0(\gamma, j) = 2\psi(1) - \psi(\gamma + (j - 1)/2) - \psi(1 - \gamma + (j - 1)/2) \]

\[\gamma_{gg}^{(0),j} \]

LO anomalous dimension

Vanishes when \(j = 2 \)
BFKL kernel eigenvalue:

\[1 = \mathcal{K}(\alpha_s, \gamma, j) \]

\[\gamma \leftrightarrow \ln k_T \]

Resummed model

\[1 = \alpha_s N_c / \pi \gamma_{gg}^{(0),j} \chi^0(\gamma, j) \]

\[\chi^0(\gamma, j) = 2\psi(1) - \psi(\gamma + (j - 1)/2) - \psi(1 - \gamma + (j - 1)/2) \]

\[\gamma_{gg}^{(0),j} \quad \text{LO anomalous dimension} \]

Solve (transcendental) equation for \(j \)

Vanishes when \(j = 2 \)

Transverse momentum
BFKL kernel eigenvalue:

\[1 = \mathcal{K}(\alpha_s, \gamma, j) \]

\[\gamma \leftrightarrow \ln k_T \]

Resummed model

\[1 = \alpha_s N_c / \pi \gamma_{gg}^{(0),j} \chi^0(\gamma, j) \]

\[\chi^0(\gamma, j) = 2\psi(1) - \psi(\gamma + (j - 1)/2) - \psi(1 - \gamma + (j - 1)/2) \]

\[\gamma_{gg}^{(0),j} \text{ LO anomalous dimension} \]

Transverse momentum

Vanishes when \(j = 2 \)

Solve (transcendental) equation for \(j \)

Before:

\[\frac{\alpha_s N_c}{\pi} = 1.0 \]

\[\frac{\alpha_s N_c}{\pi} = 0.2 \]
BFKL kernel eigenvalue:

\[1 = \mathcal{K}(\alpha_s, \gamma, j) \]

\[\gamma \leftrightarrow \ln k_T \]

Resummed model

\[1 = \frac{\alpha_s N_c}{\pi} \gamma_{gg}^{(0),j} \chi^0(\gamma, j) \]

\[\chi^0(\gamma, j) = 2\psi(1) - \psi(\gamma + (j - 1)/2) - \psi(1 - \gamma + (j - 1)/2) \]

Vanishes when j=2

LO anomalous dimension

Before:

\[j - 1 \]

\[\frac{\alpha_s N_c}{\pi} = 0.2 \]

After:

\[\frac{\alpha_s N_c}{\pi} = 1.0 \]

\[\chi_{eff}(\gamma, \alpha_s) \]

\[j - 1 \]
BFKL kernel eigenvalue:
\[1 = \mathcal{K}(\alpha_s, \gamma, j) \]
\[\gamma \leftrightarrow \ln k_T \]

Resummed model
\[1 = \frac{\alpha_s N_c}{\pi} \gamma_{gg}^{(0),j} \chi^0(\gamma, j) \]
\[\chi^0(\gamma, j) = 2\psi(1) - \psi(\gamma + (j - 1)/2) - \psi(1 - \gamma + (j - 1)/2) \]
\[\gamma_{gg}^{(0),j} \] LO anomalous dimension

Vanishes when \(j = 2 \)

Solve (transcendental) equation for \(j \)

Before:
\[j - 1 \]
\[\frac{\alpha_s N_c}{\pi} = 0.2 \]

After:
\[\frac{\alpha_s N_c}{\pi} = 1.0 \]

Fixed points: energy conservation
Intercept in the resummed model

\[\omega_P = j_0 - 1 \]

\[j_0 = 2 - \frac{1}{\pi \sqrt{\alpha_s N_c / \pi}} \]

\[j_0 = 1 + 4 \ln 2 \frac{\alpha_s N_c}{\pi} \]

Note the logarithmic horizontal axis

Cross section: \(\sigma \sim s^{j_0 - 1} \)
Vanishing diffusion and soft gluons
Vanishing diffusion and soft gluons

Small coupling

\[q = (q^+, q^-, q_T) \]

\[q^2 = 0 \]

\[q_T \text{ can be large} \]
Vanishing diffusion and soft gluons

Small coupling

$q^2 = 0$

q_T can be large

$\ln k_T$
Vanishing diffusion and soft gluons

Small coupling

\[q = (q^+, q^-, q_T) \]
\[q^2 = 0 \]
\[q_T \text{ can be large} \]

\[\chi''(\frac{\alpha_s N_C}{\pi} \ll 1) \text{ large} \]
Vanishing diffusion and soft gluons

Small coupling

\[k \]

\[q = (q^+, q^-, q_T) \]

\[q^2 = 0 \]

\[q_T \text{ can be large} \]

\[\ln k_T \]

\[\chi'' \left(\frac{\alpha_s N_c}{\pi} \right) \ll 1 \text{ large} \]

Large coupling

\[q^+, q^- \to 0 \]

\[q_T \to 0 \text{ when } \alpha_s N_c \to \infty \]
Vanishing diffusion and soft gluons

Small coupling

$q = (q^+, q^-, q_T)$

$q^2 = 0$

q_T can be large

Large coupling

$q^+, q^- \rightarrow 0$

$q_T \rightarrow 0$

when

$\alpha_s N_c \rightarrow \infty$

$\chi'' \left(\frac{\alpha_s N_c}{\pi} \ll 1 \right)$ large
Vanishing diffusion and soft gluons

Small coupling

\[q = (q^+, q^-, q_T) \]

\[q^2 = 0 \]

\[q_T \text{ can be large} \]

\[\chi''\left(\frac{\alpha_s N_C}{\pi} \ll 1\right) \text{ large} \]

Large coupling

\[q^+, q^- \to 0 \]

\[q_T \to 0 \text{ when } \alpha_s N_C \to \infty \]

\[\chi''\left(\frac{\alpha_s N_C}{\pi} \gg 1\right) \text{ small} \]
Summary

• Universal growth of hadronic cross sections.

• In QCD Pomeron: compound state of gluons, dominates the high energy behavior of cross sections.

• In string(gravity) theory: graviton dominates at high energies.

• Simple kinematic constraints lead to resummation: weak to strong coupling interpolation.

• In real QCD situation more complicated: running coupling, multi-Pomeron/graviton exchanges(interactions).