High-density QCD in heavy ion collisions

Carlos A. Salgado Università di Roma "La Sapienza" and INFN Roma

> Cracow School of Theoretical Physics June 14 - 22, 2007, Zakopane, POLAND

carlos.salgado@cern.ch

http://csalgado.web.cern.ch/

Summary I

- → QCD vacuum: Confinement & chiral symmetry breaking
- Other states of matter possible?
- → Theory Different phases exist!

(for small μ_B) Lattice + perturbative + models

- → Transition hadron gas ← quark gluon plasma.
- Order of the transition depends on quarks masses. For realistic masses, most probably crossover at $\mu_B = 0$.
- \Rightarrow Properties close to T_c different from a gas: Strongly coupled QGP? Indications of bound states above T_c
- Heavy ion collisions experiments attempt to study this region.

2. Heavy-ion collisions and collective behavior in QCD

What do we expect to learn?

Specific questions in heavy-ion collisions

- > What is the initial state of the system and how is it produced?
 - What is the structure of the colliding objects?
 - What is the asymptotic limit of QCD?
- > What is the mechanism of thermalization?
 - How is thermal equilibrium reached?
 - What is the temperature of the created system?
- What are the properties of the produced medium?
 - How to measured them? signals
 - What is the relation with lattice QCD?

What do we expect to learn?

Specific questions in heavy-ion collisions

- > What is the initial state of the system and how is it produced?
 - What is the structure of the colliding objects?
 - What is the asymptotic limit of QCD?
- > What is the mechanism of thermalization?
 - How is thermal equilibrium reached?

Today's talk

- What is the temperature of the created system?
- What are the properties of the produced medium?
 - How to measured them? signals
 - What is the relation with lattice QCD?

Where?

- > SPS at CERN.
- ightharpoonup Have collided pA at $p_{\rm lab}=450$ GeV/c, SU at $p_{\rm lab}=200$ AGeV/c and PbPb at $p_{\text{lab}} = 158 \text{ AGeV/c}$.
- The program is almost finished now
- > RHIC at BNL
 - pp, dAu, AuAu and CuCu at $\sqrt{s} = 20 \dots 200$ AGeV
 - RHIC II will improve detectors for rare processes and enhance statistics
- > LHC at CERN
 - ightharpoonup Will collide PbPb at $\sqrt{s}=5500$ AGeV also pPb or dPb (under discussion) at $\sqrt{s} = 8200$
 - ALICE is a dedicated HI experiment
 - CMS and ATLAS have own programs of heavy ion collisions

Initial state of the system

The nuclear structure at high energies

We want to know the structure of the colliding system at high energies - and eventually the initial state of the medium

The nuclear structure at high energies

- We want to know the structure of the colliding system at high energies - and eventually the initial state of the medium
- Let us start by a simpler one: dipole-nucleus collision

High-energy variables

Light-cone variables

$$x^{\pm} = x_0 \pm x_3$$
 $p^{\pm} = p_0 \pm p_3$

⇒ So that, the scalar product

$$p \cdot x = \frac{1}{2}(p^+x^- + x^-x^+) - \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}$$

Rapidity

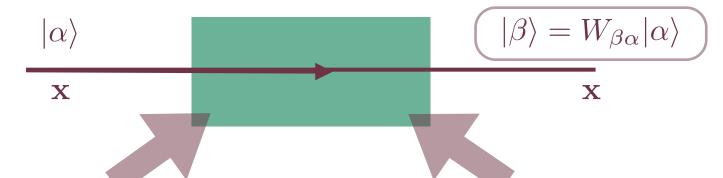
$$y = \frac{1}{2} \ln \left[\frac{p_0 + p_3}{p_0 - p_3} \right] = \frac{1}{2} \ln \left[\frac{p^+}{p^-} \right]$$

Boost is just adding a factor \rightarrow additive velocity

$$y' = y + y_{\beta} \implies y_{\beta} = \frac{1}{2} \ln \left| \frac{1+\beta}{1-\beta} \right|$$

Particle propagation in matter: Eikonal limit

At high energies \rightarrow Eikonal approximation $E \gg k_{\perp}$



- Particle does not change its direction of propagation
- > The medium rotates the color of the probe

$$W(\mathbf{x}) = P \exp \left\{ i \int dz^{-} T^{a} A_{a}^{+}(\mathbf{x}, z^{-}) \right\}$$
 Wilson line

⇒ Recoil is neglected → medium is a background field

[See e.g. A. Kovner Lectures Zakopane 2005]

Particle propagation in matter: Eikonal limit

At high energies \rightarrow Eikonal approximation $E \gg k_{\perp}$

S-matrix

- Particle does not change its direction of propagation
- The medium rotates the color of the probe

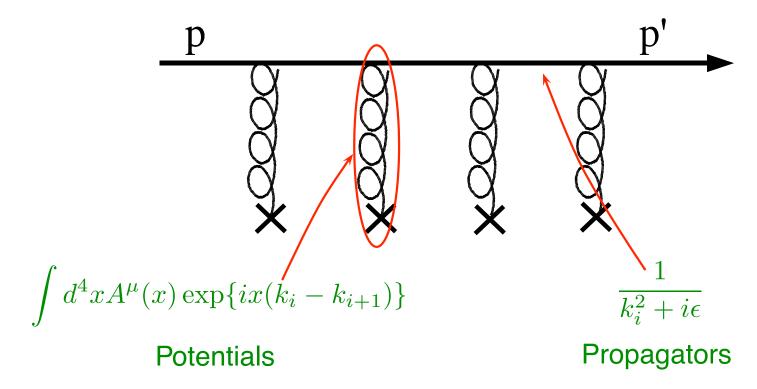
$$W(\mathbf{x}) = P \exp\left\{i \int dz^{-} T^{a} A_{a}^{+}(\mathbf{x}, z^{-})\right\}$$

Wilson line

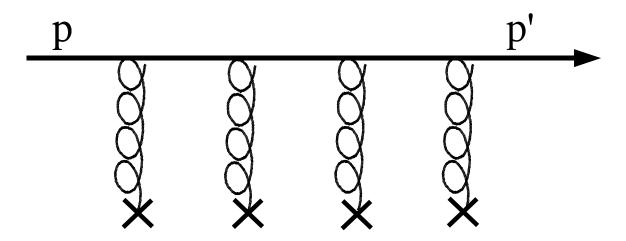
⇒ Recoil is neglected → medium is a background field

[See e.g. A. Kovner Lectures Zakopane 2005]

Multiple potential scattering [See e.g. A. Hebecker Phys. Rep. 331 (2000) 1]



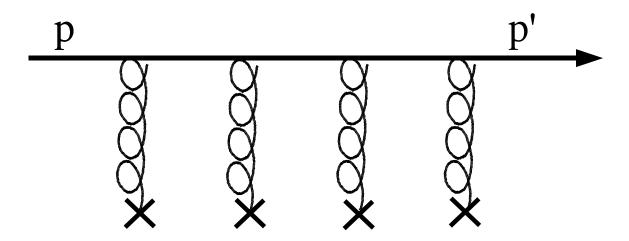
Multiple potential scattering [See e.g. A. Hebecker Phys. Rep. 331 (2000) 1]



The contribution of two scatterings to the S-matrix is

$$S_2(p',p) = \int \frac{d^4k}{(2\pi)^4} \left\{ -ig(k_\mu + p'_\mu) \int d^4x_2 A^\mu(x_2) e^{ix_2(p'-k)} \right\}$$
$$\frac{i}{k^2 + i\epsilon} \left\{ -ig(p_\mu + k_\mu) \int d^4x_1 A^\mu(x_1) e^{ix_1(k-p)} \right\}$$

Multiple potential scattering [See e.g. A. Hebecker Phys. Rep. 331 (2000) 1]

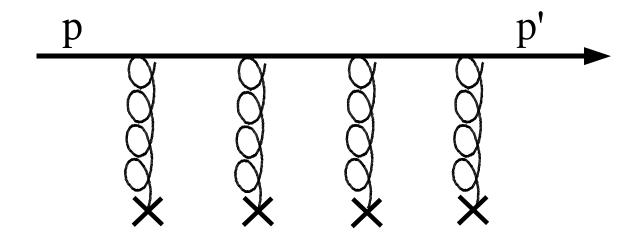


The high-energy limit $(p_+ \to \infty)$ gives

$$S_2 = 2\pi\delta(p'_{+} - p_{+})2p_{+} \int \frac{d^2\mathbf{k}_{\perp}}{(2\pi)^2} \int d^3\mathbf{x_1} \left[-igA_{-}(\mathbf{x_1}) \right] \int d^3\mathbf{x_2} \left[-igA_{-}(\mathbf{x_2}) \right] \times$$

$$\times \exp\left\{i\mathbf{k}_{\perp}(\mathbf{x}_{1\perp}-\mathbf{x}_{2\perp})\right\} \exp\left\{i(\mathbf{x}_{2\perp}\mathbf{p}_{2\perp}-\mathbf{x}_{1\perp}\mathbf{p}_{1\perp})\right\}$$

Multiple potential scattering [See e.g. A. Hebecker Phys. Rep. 331 (2000) 1]



The high-energy limit $(p_+ \to \infty)$ gives

$$S_2 = 2\pi\delta(p'_{+} - p_{+})2p_{+} \int \frac{d^2\mathbf{k}_{\perp}}{(2\pi)^2} \int d^3\mathbf{x_1} \left[-igA_{-}(\mathbf{x_1}) \right] \int d^3\mathbf{x_2} \left[-igA_{-}(\mathbf{x_2}) \right] \times$$

$$\times \exp\left\{i\mathbf{k}_{\perp}(\mathbf{x}_{1\perp}-\mathbf{x}_{2\perp})\right\} \exp\left\{i(\mathbf{x}_{2\perp}\mathbf{p}_{2\perp}-\mathbf{x}_{1\perp}\mathbf{p}_{1\perp})\right\}$$

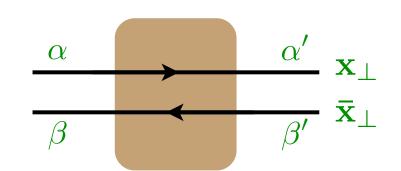
[Ex. check these formulas]

$$S = \int d^2 \mathbf{x}_{\perp} e^{-i\mathbf{x}_{\perp}(\mathbf{p}'_{\perp} - \mathbf{p}_{\perp})} P \exp \left\{-\frac{ig}{2} \int dx_{+} A_{-}(x_{+}, x_{\perp})\right\}$$

Particle propagation in matter II: the dipole

Each propagation is a Wilson line at the relevant (fixed) transverse position

$$W(\mathbf{x}) = \mathcal{P} \exp \left[i \int dx^- A^+(\mathbf{x}_\perp, x^-) \right]$$



 \Rightarrow So, the S-matrix

$$|\alpha';\beta'\rangle \equiv S_{\alpha'\beta'\alpha\beta}|\alpha;\beta\rangle = W_{\alpha'\alpha}(\mathbf{x}_{\perp})W_{\beta'\beta}^{\dagger}(\bar{\mathbf{x}}_{\perp})|\alpha;\beta\rangle$$

Total probability of interaction (cross-section w/ needed factors)

$$P_{\text{tot}}^{q\bar{q}} = \left\langle 2 - \frac{2}{N_C} \text{Tr} \left[W(\mathbf{x}_{\perp}) W^{\dagger}(\bar{\mathbf{x}}_{\perp}) \right] \right\rangle$$

[Ex. check these formulas, use e.g. the optical theorem

What are the $\langle ... \rangle$??

- All the medium properties are encoded in the medium-averages of the Wilson lines.
- Several prescriptions used
 - \longrightarrow Saddle-point approximation \rightarrow opaque medium, many scatterings

$$\frac{1}{N} \operatorname{Tr} \left\langle W(\mathbf{x}_{\perp}) W^{\dagger}(\bar{\mathbf{x}}_{\perp}) \right\rangle \approx \exp \left\{ -\frac{1}{8} Q_{\operatorname{sat}} (\mathbf{x}_{\perp} - \bar{\mathbf{x}}_{\perp})^{2} \right\}$$

What are the $\langle ... \rangle$??

- All the medium properties are encoded in the medium-averages of the Wilson lines.
- Several prescriptions used
 - \longrightarrow Saddle-point approximation \rightarrow opaque medium, many scatterings

$$\frac{1}{N} \operatorname{Tr} \left\langle W(\mathbf{x}_{\perp}) W^{\dagger}(\overline{\mathbf{x}}_{\perp}) \right\rangle \approx \exp \left\{ -\frac{1}{8} Q_{\operatorname{sat}} (\mathbf{x}_{\perp} - \overline{\mathbf{x}}_{\perp})^{2} \right\}$$

 \longrightarrow Opacity expansion \rightarrow small medium, few scatterings

$$\frac{1}{N} \operatorname{Tr} \left\langle W(\mathbf{x}_{\perp}) W^{\dagger}(\mathbf{\bar{x}}_{\perp}) \right\rangle \approx 1 - \int dx^{-} n(x^{-}) \sigma(\mathbf{x}_{\perp} - \mathbf{\bar{x}}_{\perp})$$

[See e.g. Kovner and Wiedemann, PRD64 (2001)114002; A. Hebecker Phys. Rep. 331 (2000) 1]

What are the $\langle ... \rangle$??

- All the medium properties are encoded in the medium-averages of the Wilson lines.
- Several prescriptions used
 - \longrightarrow Saddle-point approximation \rightarrow opaque medium, many scatterings

$$\frac{1}{N} \text{Tr} \left\langle W(\mathbf{x}_{\perp}) W^{\dagger}(\bar{\mathbf{x}}_{\perp}) \right\rangle \approx \exp \left\{ -\frac{1}{8} Q_{\text{sat}} (\mathbf{x}_{\perp} - \bar{\mathbf{x}}_{\perp})^2 \right\}$$

 \longrightarrow Opacity expansion \rightarrow small medium, few scatterings

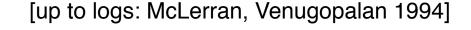
$$\frac{1}{N} \operatorname{Tr} \left\langle W(\mathbf{x}_{\perp}) W^{\dagger}(\bar{\mathbf{x}}_{\perp}) \right\rangle \approx 1 - \int dx^{-} n(x^{-}) \sigma(\mathbf{x}_{\perp} - \bar{\mathbf{x}}_{\perp})$$

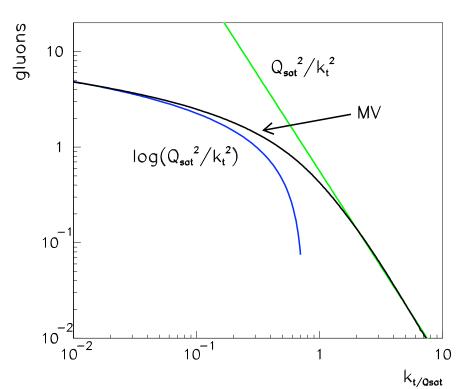
[See e.g. Kovner and Wiedemann, PRD64 (2001)114002; A. Hebecker Phys. Rep. 331 (2000) 1]

All together: the gluon distribution

The dipole 'counts' the number of gluons, of a given size r, in the nucleus, so the (unintegrated) gluon distribution:

$$N(r) = 1 - \exp\left[-\frac{1}{8}Q_{\text{sat}}^2r^2\right] \implies \phi(k) = \int \frac{d^2r}{2\pi r^2} e^{i\mathbf{r}\cdot\mathbf{k}} N(r)$$





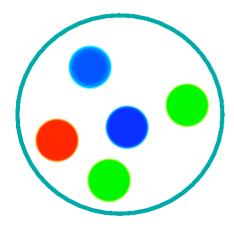
Two important consequences:

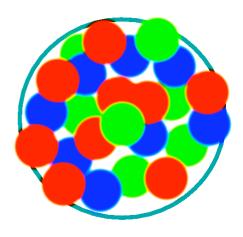
- Saturation scale cuts-off the small momentum region
- Geometric scaling:

$$\phi = \phi(k^2/Q_{\rm sat}^2)$$

Saturation of partonic densities: picture

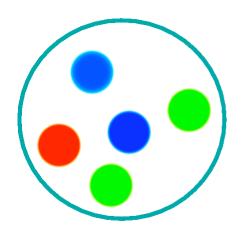
Saturation scale when interaction probability becomes O(1)

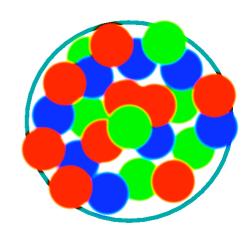




Saturation of partonic densities: picture

Saturation scale when interaction probability becomes $\mathcal{O}(1)$





transverse area of the gluon

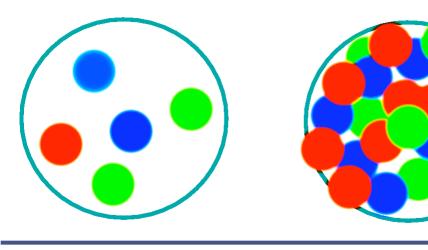
$$\alpha_s \frac{1}{Q_{\rm sat}^2} AN_g(x, Q_{\rm sat}^2) \sim \pi R_A^2$$

transverse area of the nucleus

$$R_A \sim A^{1/3}$$

Saturation of partonic densities: picture

Saturation scale when interaction probability becomes $\mathcal{O}(1)$



increasing energy (decreasing x)

$$N_g \sim \frac{1}{x^{\lambda}} \implies Q_{\rm sat}^2 \sim \frac{A^{1/3}}{x^{\lambda}}$$

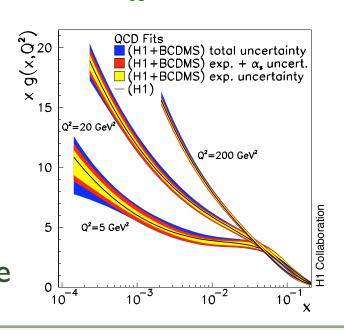
Strong fields and large occupation numbers. Semiclassical approach possible: Color Glass Condensate

transverse area of the gluon

$$\alpha_s \frac{1}{Q_{\rm sat}^2} AN_g(x, Q_{\rm sat}^2) \sim \pi R_A^2$$

transverse area of the nucleus

$$R_A \sim A^{1/3}$$



Geometric scaling in lepton-hadron data

→ All lepton-proton data with $x \leq 0.01$ only function of

$$\tau_p = \frac{Q^2}{Q_{\text{sat}}^2}; \quad Q_{\text{sat}}^2 = \frac{x^{-\lambda}}{R_0^2}$$

Stasto, Golec-Biernat, Kwiecinski 2001

Scaling in lepton-nucleus

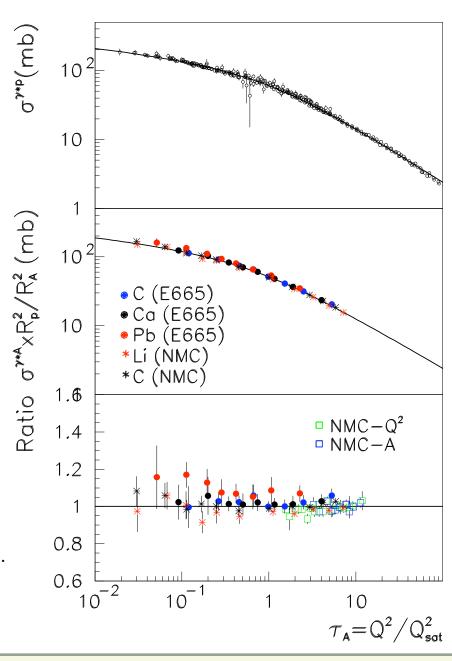
$$Q_{\text{sat,A}}^2 = Q_{\text{sat,p}}^2 \left(\frac{AR_p^2}{R_A^2}\right)^{1/\delta}$$

$$\lambda \sim 0.3$$
; $\delta \sim 0.8$

Exercise: Check this scaling for BK eq. Help:

$$\sigma_{T,L}^{\gamma^* h}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 dz |\Psi_{T,L}^{\gamma^*}|^2 \sigma_{\text{dip}}^h(\mathbf{r},x).$$

[see Phys. Rev. Lett 94 (2005) 022002]



Geometric scaling in lepton-hadron data

→ All lepton-proton data with $x \leq 0.01$ only function of

$$\tau_p = \frac{Q^2}{Q_{\text{sat}}^2}; \quad Q_{\text{sat}}^2 = \frac{x^{-\lambda}}{R_0^2}$$

Stasto, Golec-Biernat,

⇒ Scaling in lepton-I

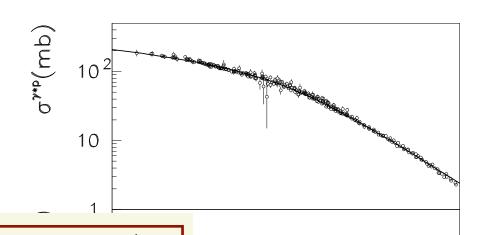
$$Q_{\rm sat,A}^2 = Q_{\rm sat,p}^2$$

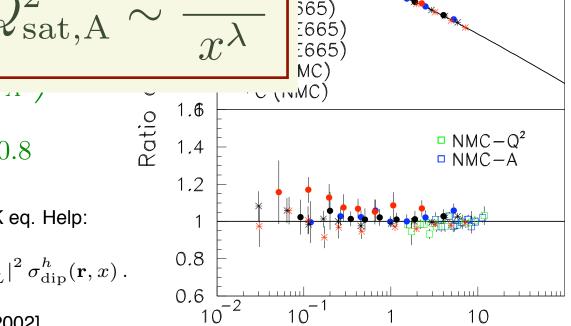
 $\lambda \sim 0.3$; $\delta \sim 0.8$

Exercise: Check this scaling for BK eq. Help:

$$\sigma_{T,L}^{\gamma^* h}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 dz |\Psi_{T,L}^{\gamma^*}|^2 \sigma_{\text{dip}}^h(\mathbf{r},x).$$

[see Phys. Rev. Lett 94 (2005) 022002]



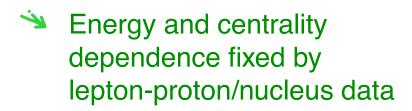


 $\tau_{A} = Q^{2}/Q_{sat}^{2}$

Multiplicities and geometric scaling

- → Multiplicity = number of produced particles
- → Assuming the same scaling for particle production in AA collisions

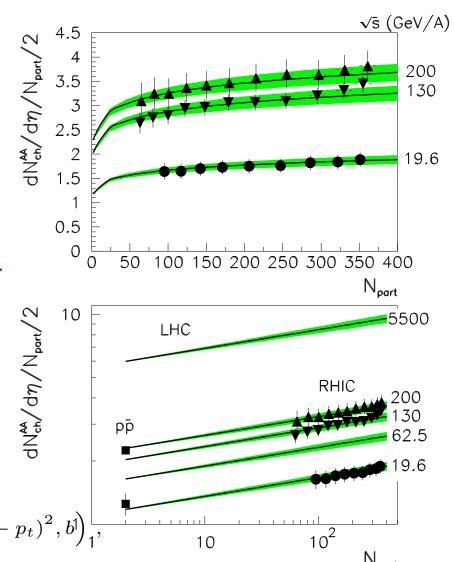
$$\frac{1}{N_{\text{part}}} \frac{dN^{AA}}{d\eta} \bigg|_{\eta \sim 0} = N_0 \sqrt{s}^{\lambda} N_{\text{part}}^{\frac{1-\delta}{3\delta}}.$$



Exercise: Check this formula. Use

$$\frac{dN_g^{AB}}{dydp_t^2d^2b} \propto \frac{\alpha_S}{p_t^2} \int d^2k\phi_A(y,k^2,b)\phi_B\left(y,(k-p_t)^2,b\right) \frac{1}{1}, \qquad 10 \qquad 10^2$$

[see Phys. Rev. Lett 94 (2005) 022002]

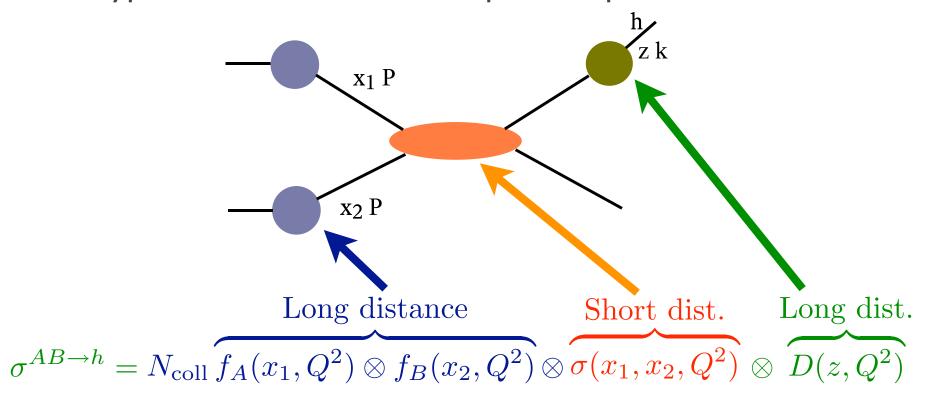


[More in Wit Busza's talks]

Characterizing the final state: Hard Probes

Hard probes

- \Rightarrow Remember, asymptotic freedom $\alpha_S(Q^2) \to 0$ for $Q^2 \to \infty$
- \Rightarrow A typical hard cross section expands in powers of $\alpha_S(Q^2)$



Long and short distance separation: factorization

Extension of the medium modifies the long distance parts

Hard probes in heavy-ion collisions

- \Rightarrow SPS $\sqrt{s} = 20$ GeV ($Q \sim 1$ GeV) \longrightarrow marginal access to HP
- \Rightarrow RHIC $\sqrt{s}=200$ GeV ($Q\sim$ 10 GeV) \longrightarrow access to HP
- \Rightarrow LHC $\sqrt{s} = 5500$ GeV ($Q \gtrsim 100$ GeV) \longrightarrow HP and QCD evolution

$$\sigma^{pp o h} = f_p(x_1,Q^2) \otimes f_p(x_2,Q^2) \otimes \underbrace{\sigma(x_1,x_2,Q^2)}_{\mathsf{RHIC}} \otimes D(z,Q^2) + \left(\frac{1}{Q^2}\right)^n$$

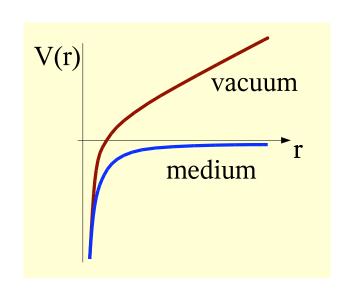
- \Rightarrow QCD \longrightarrow field theory \longrightarrow quantum corrections (evolution equations)
- $\Rightarrow Q^2 \gg 1 \implies$ short distances
 - But we want to study extended objects \Longrightarrow QCD-evolution in long-distance parts $f_p(x,Q^2)$ and $D(z,Q^2)$

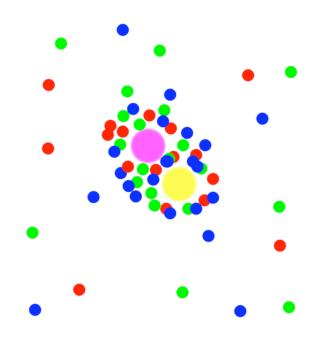
A 'simple' example, J/Ψ suppression

 \Rightarrow A J/Ψ is a $c\bar{c}$ bound state.

$$\sigma^{hh\to J/\Psi} = f_i(x_1, Q^2) \otimes f_j(x_2, Q^2) \otimes \sigma^{ij\to[c\bar{c}]}(x_1, x_2, Q^2) \langle \mathcal{O}([c\bar{c}] \to J/\Psi) \rangle$$

- The potential is screened by the medium
 - The long-distance part is modified $\langle \mathcal{O}([c\bar{c}] \to J/\Psi) \rangle \to 0$
- \Rightarrow The J/Ψ production is suppressed [Matsui, Satz 1986]



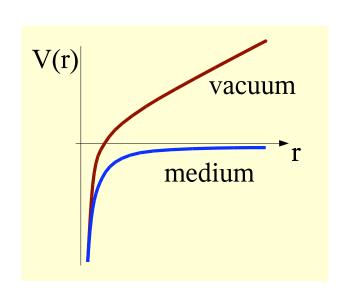


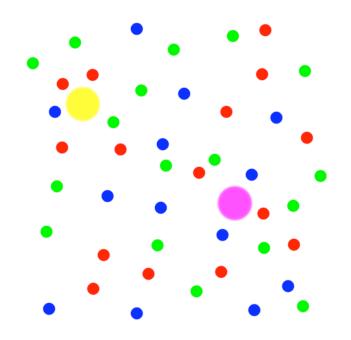
A 'simple' example, J/Ψ suppression

 \Rightarrow A J/Ψ is a $c\bar{c}$ bound state.

$$\sigma^{hh\to J/\Psi} = f_i(x_1, Q^2) \otimes f_j(x_2, Q^2) \otimes \sigma^{ij\to[c\bar{c}]}(x_1, x_2, Q^2) \langle \mathcal{O}([c\bar{c}] \to J/\Psi) \rangle$$

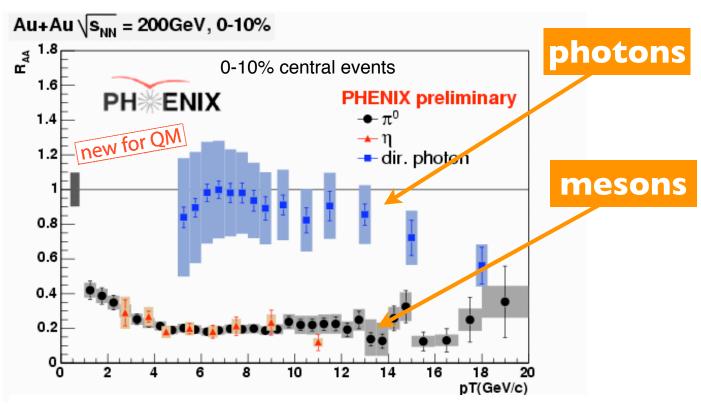
- The potential is screened by the medium
 - The long-distance part is modified $\langle \mathcal{O}([c\bar{c}] \to J/\Psi) \rangle \to 0$
- \Rightarrow The J/Ψ production is suppressed [Matsui, Satz 1986]





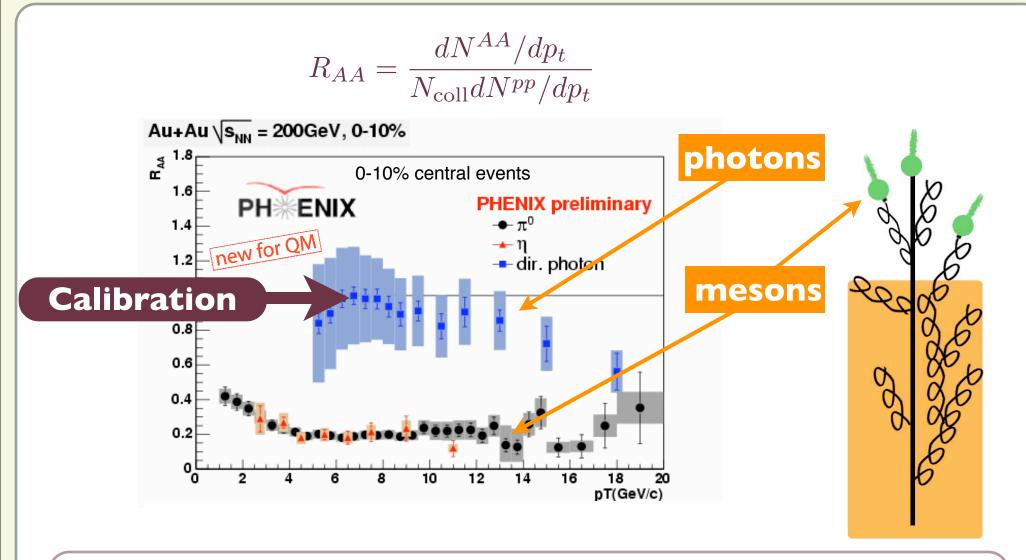
Effects on high- p_t particles

$$R_{AA} = \frac{dN^{AA}/dp_t}{N_{\text{coll}}dN^{pp}/dp_t}$$



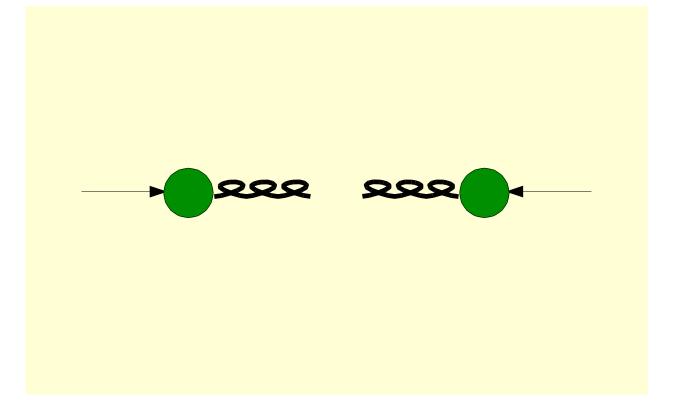
Photons don't interact (no effect) quarks and gluons do (suppression)

Effects on high- p_t particles

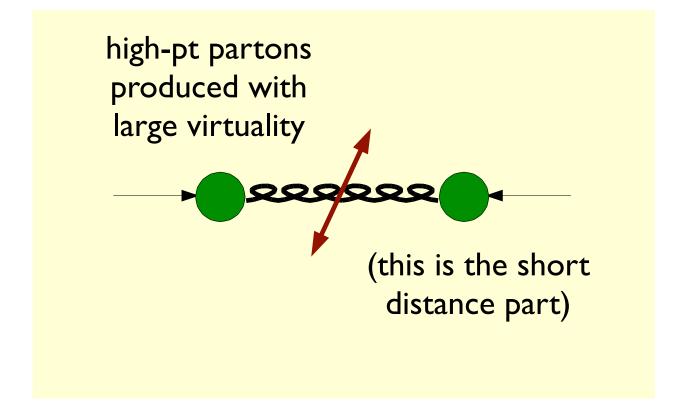


Photons don't interact (no effect) quarks and gluons do (suppression)

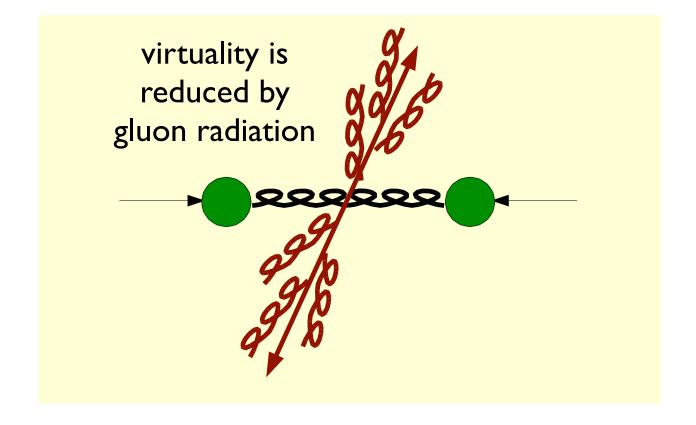
What is a jet (naively)



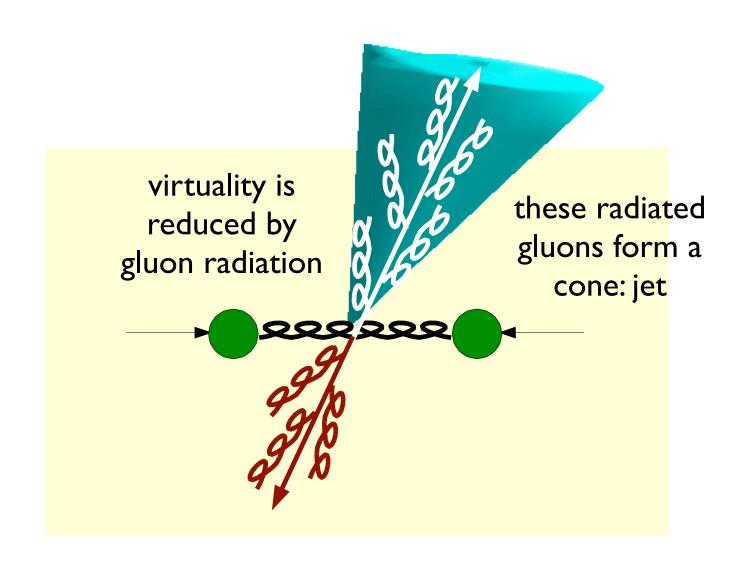
What is a jet (naively)



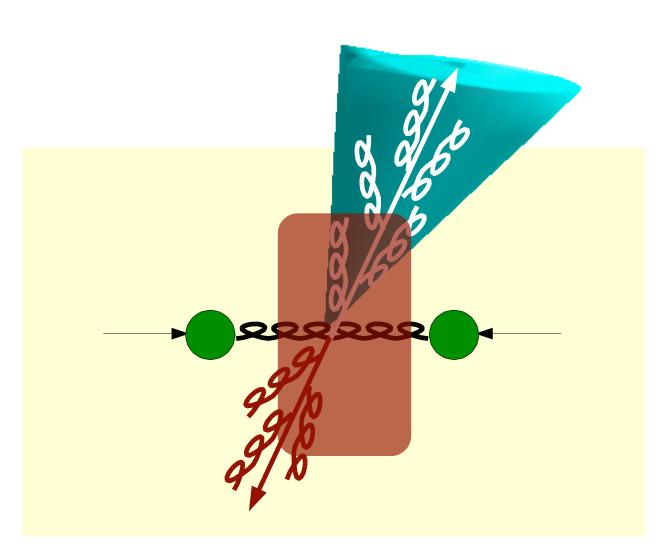
What is a jet (naively)



What is a jet (naively)

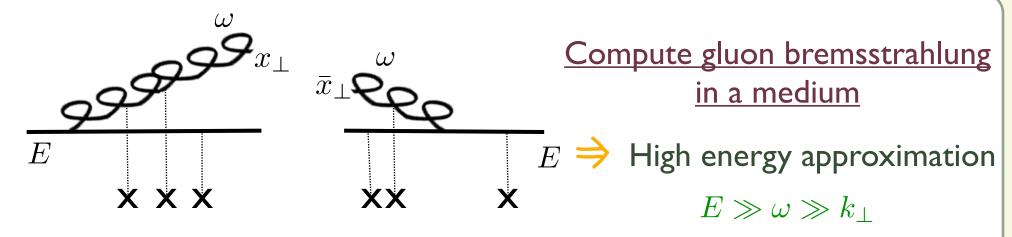


Jet quenching

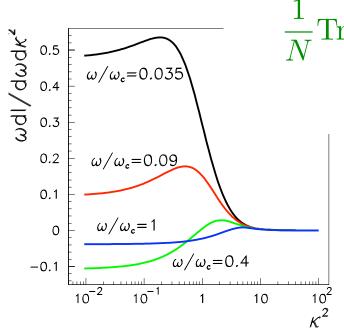


What happens when this evolution takes place in the medium created in the collision??

Medium-induced gluon radiation



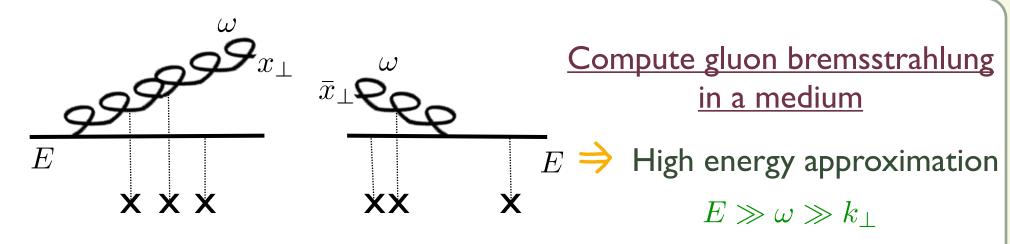
> Same formalism as initial state but Wilson lines for gluons



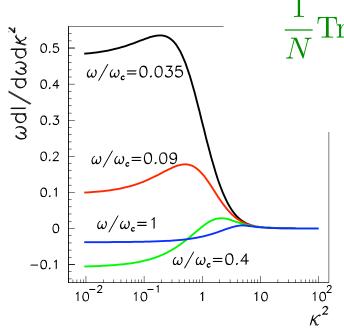
$$\frac{1}{N} \operatorname{Tr} \left\langle W^A(\mathbf{x}_{\perp}) W^{A\dagger}(\bar{\mathbf{x}}_{\perp}) \right\rangle \approx \exp \left\{ -\frac{1}{4} \hat{q} L(\mathbf{x}_{\perp} - \bar{\mathbf{x}}_{\perp})^2 \right\}$$

ightharpoonup Jet broadening $\langle k_t
angle \sim \hat{q} L$

Medium-induced gluon radiation



> Same formalism as initial state but Wilson lines for gluons



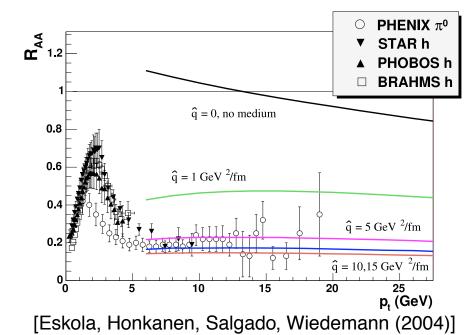
$$\frac{1}{N} \operatorname{Tr} \left\langle W^{A}(\mathbf{x}_{\perp}) W^{A\dagger}(\bar{\mathbf{x}}_{\perp}) \right\rangle \approx \exp \left\{ -\frac{1}{4} \hat{q} \mathbf{L} (\mathbf{x}_{\perp} - \bar{\mathbf{x}}_{\perp})^{2} \right\}$$

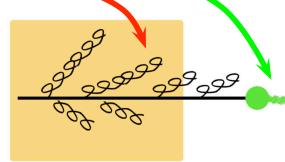
transport coefficient

- > Two main predictions
 - ightharpoonup Energy loss $\Delta E \sim lpha_s \hat{q} L^2$
 - ightharpoonup Jet broadening $\langle k_t \rangle \sim \hat{q} L$

Description of the suppression

$$d\sigma_{(\text{med})}^{AA \to h+X} = \sum_{f} d\sigma_{(\text{vac})}^{AA \to f+X} \otimes \boxed{P_f(\Delta E, L, \hat{q})} \otimes D_{f \to h}^{(\text{vac})}(z, \mu_F^2).$$





- Multiple emission:
 Poisson distribution
- \Rightarrow Hadronization in vacuum at high- p_t

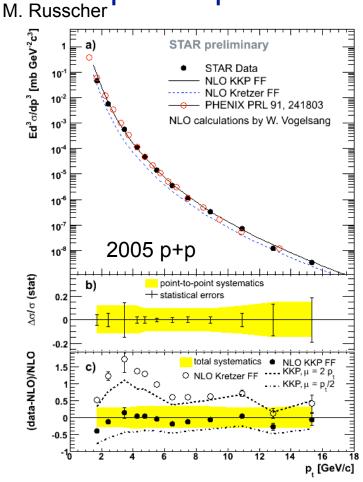
→ Data favors a large time-averaged transport coefficient

$$\hat{q} \sim 5 \dots 15 \frac{GeV^2}{fm}$$

[Gyulassy, Levai, Vitev 2002; Arleo 2002; Dainese, Loizides, Paic 2004; Wang, Wang 2005; Drees, Feng, Jia 2005; Turbide, Gale, Jeon, Moore 2005...]

Calibration of the probes

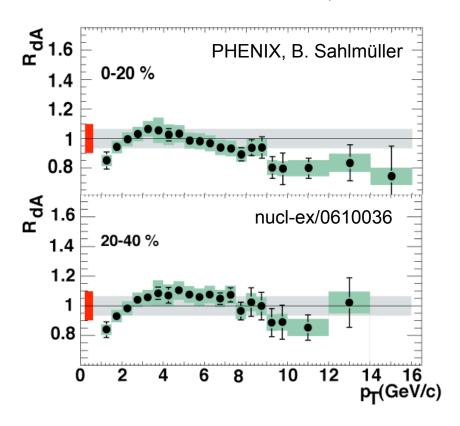
proton-proton



STAR gearing up γ , π^0 in p+p, d+Au

Good agreement with NLO pQCD and PHENIX

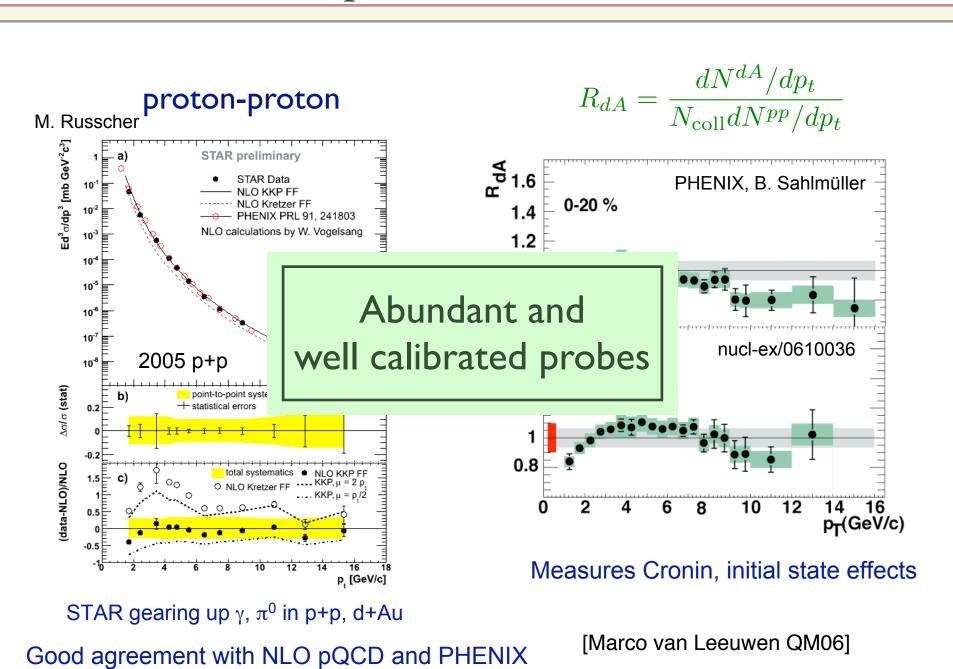
$$R_{dA} = \frac{dN^{dA}/dp_t}{N_{\text{coll}}dN^{pp}/dp_t}$$



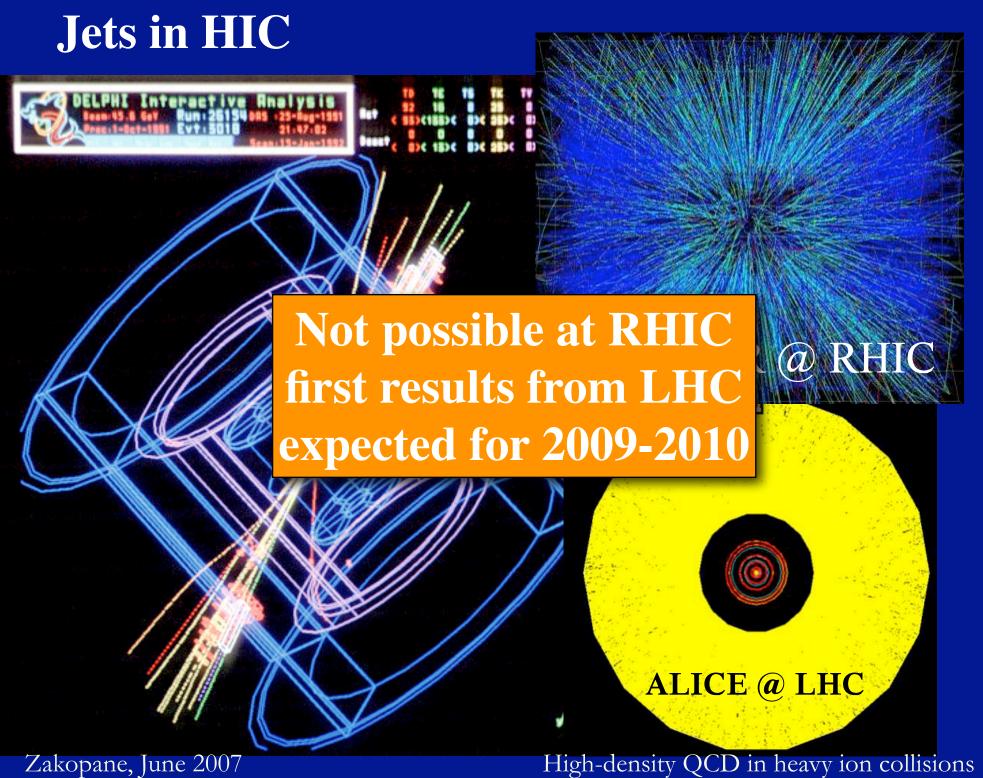
Measures Cronin, initial state effects

[Marco van Leeuwen QM06]

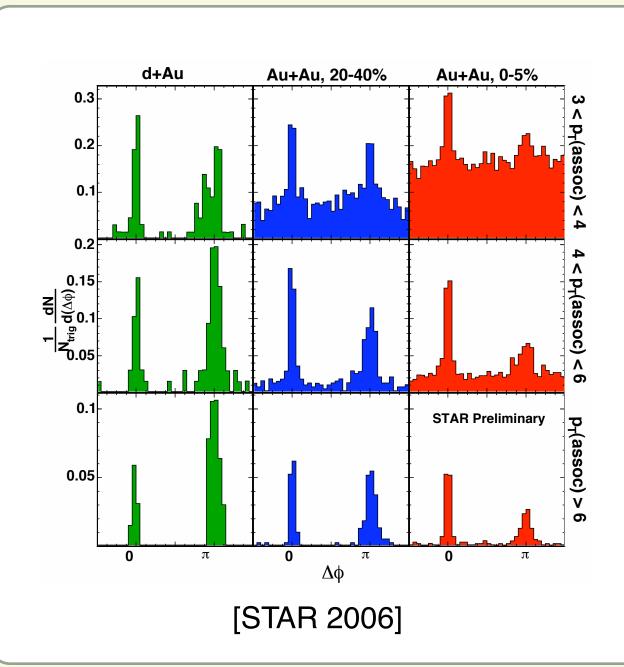
Calibration of the probes



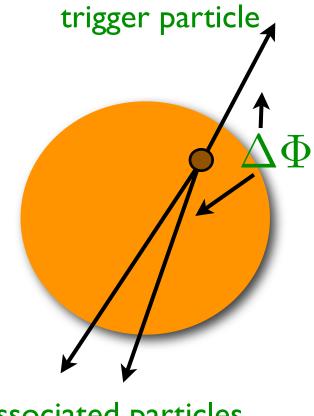
Jets in HIC STAR @ RHIC ALICE @ LHC Zakopane, June 2007



RHIC: two particle correlations



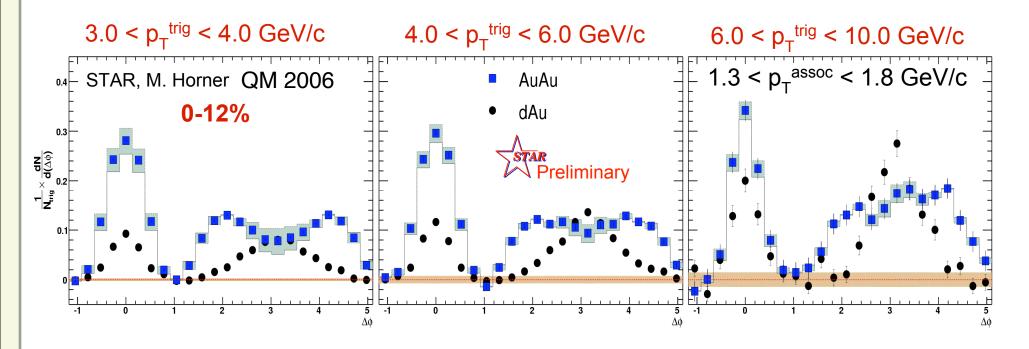
Transverse plane



associated particles

Removing the cut-off at RHIC

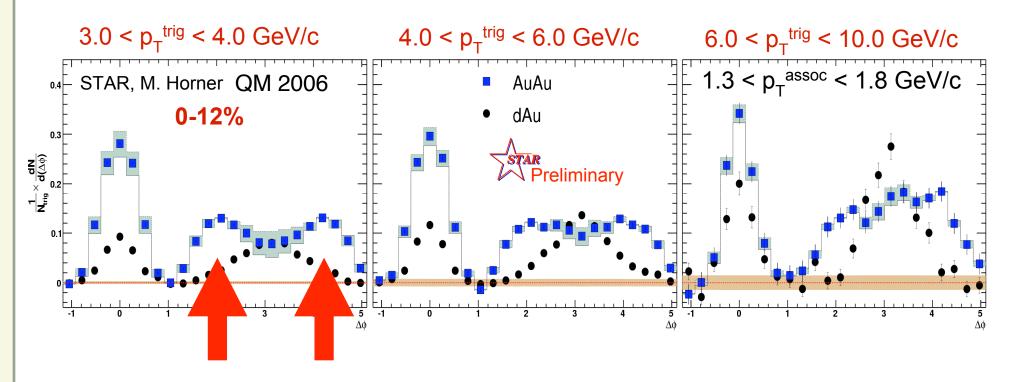
[Similar results for PHENIX and also SPS (Ceres)]



- > Nontrivial angular dependences in the away-side
 - Large broadening
 - ightharpoonup Two-peaks when $p_t^{\mathrm{trigg}} \sim p_t^{\mathrm{assoc}}$

Removing the cut-off at RHIC

[Similar results for PHENIX and also SPS (Ceres)]



- > Nontrivial angular dependences in the away-side
 - Large broadening
 - Two-peaks when $p_t^{\mathrm{trigg}} \sim p_t^{\mathrm{assoc}}$

Two opposite assumptions:

- All energy deposited in the medium +hydrodynamical evolution
- Recoil-less medium-induced radiation

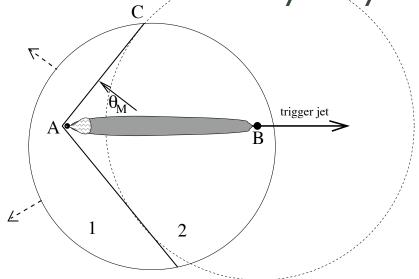
Two opposite assumptions:

- All energy deposited in the medium +hydrodynamical evolution
- Recoil-less medium-induced radiation

A way to understand the energy deposition in the medium

Interpretations...

Shock waves in hydrodynamical medium

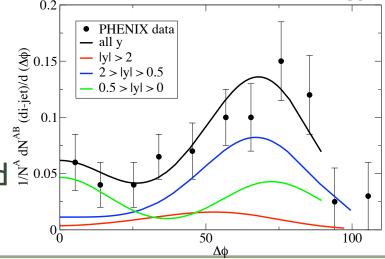


A hydrodynamical medium produces shock waves IF the energy is

deposited fast enough

[Casalderrey-Solana, Shuryak, Teaney; Stoeker; Muller, Renk, Ruppert; Manuel, Mannarelli ...]

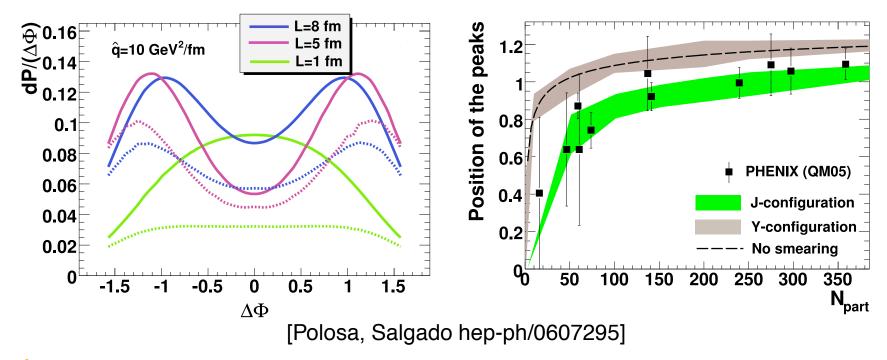
Also Cherenkov radiation proposed (\$\frac{\frac{1}{2}}{2} 0.05 \]
[Dremin; Majumder, Wang]



Jet shapes in opaque media

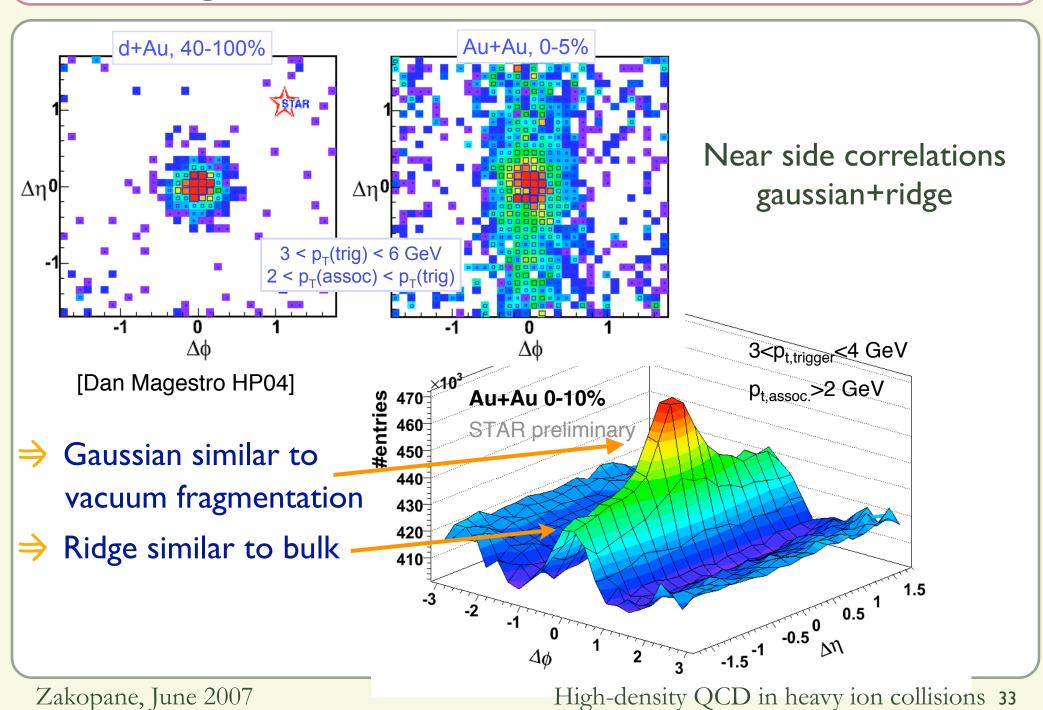
The probability of only one splitting

$$d\mathcal{P} = dz \, d\theta \, \frac{\alpha_s C_R}{8\pi} \, E \, L \, \sin\theta \, \cos\theta \exp\left\{-\frac{\alpha_s C_R}{16\pi} \, E \, L \, \cos^2\theta\right\}$$

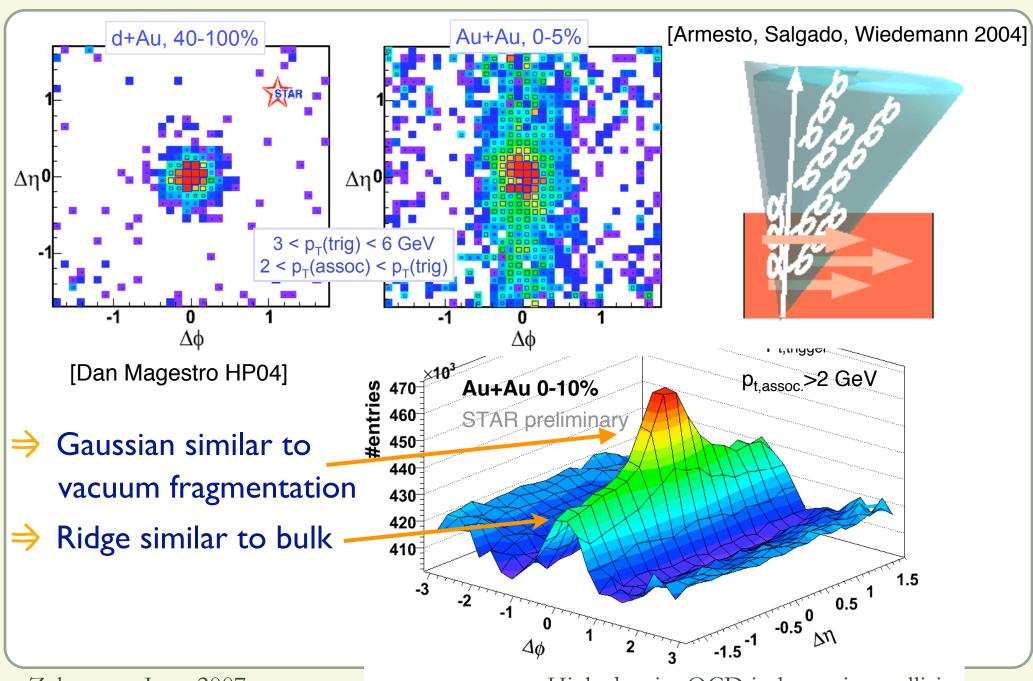


A perturbative mechanism, the medium-induced gluon radiation, is able to reproduce the observed 2-peak structure in the away side jet.

The 'ridge'



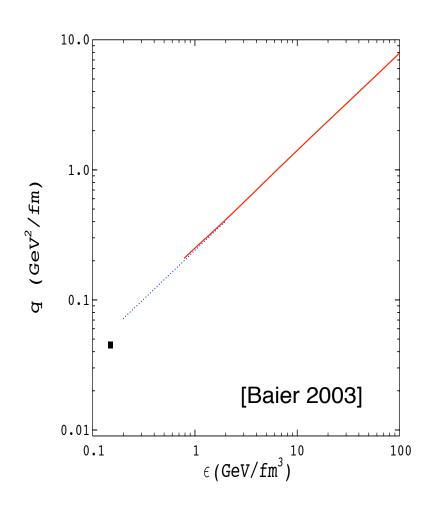
The 'ridge'



Zakopane, June 2007

High-density QCD in heavy ion collisions 33

Interpretation of the value of \hat{q}



> Transport coefficient for an ideal quark-gluon gas

$$\hat{q}_{\text{ideal gas}} \simeq \frac{72}{\pi} \xi(3) \alpha_s^2 T^3 \rightleftharpoons 2\epsilon^{3/4}$$

[Baier and Schiff 2006]

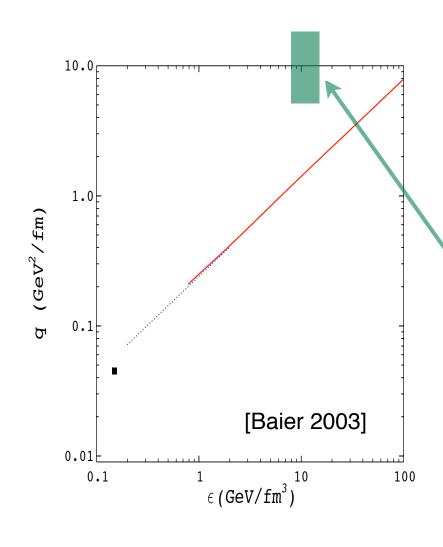
Fits to the data

$$\hat{q} > 5$$
 $\hat{q}_{\mathrm{ideal~gas}}$ [Eskola et al. 2004]

$$\hat{q} \simeq 4.2~\hat{q}_{\mathrm{ideal~gas}}$$
 [Renk et al. 2007]

- Geometry plays a crucial role
- → Model of the medium? sQGP?

Interpretation of the value of \hat{q}



> Transport coefficient for an ideal quark-gluon gas

$$\hat{q}_{\text{ideal gas}} \simeq \frac{72}{\pi} \xi(3) \alpha_s^2 T^3 \neq 2\epsilon^{3/4}$$

[Baier and Schiff 2006]

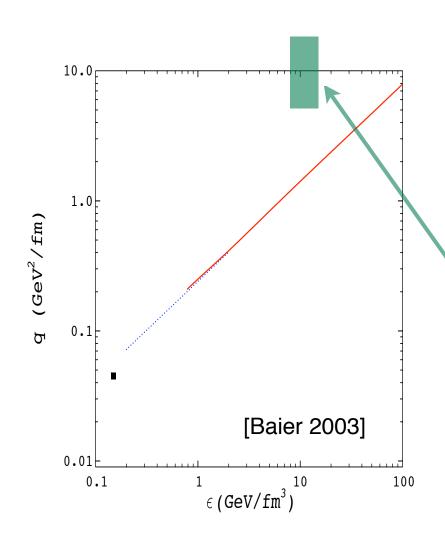
Fits to the data

$$\hat{q} > 5$$
 $\hat{q}_{
m ideal~gas}$ [Eskola et al. 2004] $\hat{q} \simeq 4.2$ $\hat{q}_{
m ideal~gas}$ [Renk et al. 2007]

$$\hat{q} \simeq 4.2 \; \hat{q}_{\text{ideal gas}}$$

- Geometry plays a crucial role
- → Model of the medium? sQGP?

Interpretation of the value of \hat{q}



> Transport coefficient for an ideal quark-gluon gas

$$\hat{q}_{\text{ideal gas}} \simeq \frac{72}{\pi} \xi(3) \alpha_s^2 T^3 \neq 2\epsilon^{3/4}$$

[Baier and Schiff 2006]

Fits to the data

$$\hat{q} > 5$$
 $\hat{q}_{
m ideal~gas}$ [Eskola et al. 2004] $\hat{q} \simeq 4.2$ $\hat{q}_{
m ideal~gas}$ [Renk et al. 2007]

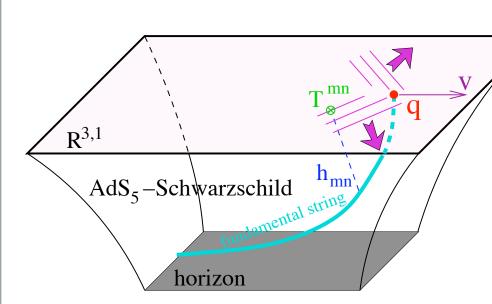
$$\hat{q} \simeq 4.2 \; \hat{q}_{\text{ideal gas}}$$

- Geometry plays a crucial role
- → Model of the medium? sQGP?

What is the order of magnitude of the NLO correction?

Some new developments... The String Theory connection

The AdS/CFT correspondence



Define a metric in 4+1 dimensions with a black hole

$$ds^{2} = fdt^{2} + \frac{r^{2}}{R^{2}}(dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2}) + \frac{1}{f}dr^{2}$$

$$f\equiv rac{r^2}{R^2}\left(1-rac{r_0^4}{r^4}
ight)$$
 black hole horizon at $r=r_0$

 \Rightarrow Dual to a thermal $\mathcal{N}=4$ super YM theory at finite temperature

$$T = \frac{r_0}{\pi R^2}$$
 (Hawking temperature)

Ex. compute the Wilson loop = compute the action for the string

$$\langle W^F(\mathcal{C}) \rangle = e^{-S(\mathcal{C})}$$

$$S = \frac{1}{2\pi\alpha'} \int d\sigma d\tau \sqrt{\det g_{\alpha\beta}}$$

The observables

Applied to the jet quenching parameter:

$$\langle W^A(\mathcal{C}) \rangle \simeq \exp\left[-\frac{1}{4\sqrt{2}} \hat{q} r^2 L_- \right]$$

$$\hat{q} = 4.5, 10.6, 20.7 \text{ GeV}^2/\text{fm}$$

 $T = 300, 400, 500 \text{ MeV}$

[Liu, Rajagopalan, Wiedemann; Armesto, Edelstein, Mas...2006]

→ The viscosity-to-entropy ratio

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

$$\frac{\eta}{s} = \frac{1}{4\pi}$$
 $\eta \propto \text{area of horizon}$
 $s \propto \text{area of horizon}$

Universal lower bound?

[Kovtun, Son, Starinets 2003]

→ The hydrodynamic behavior

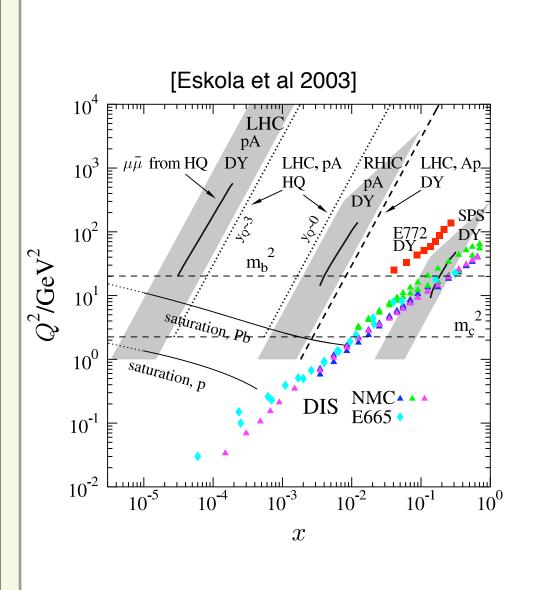
Bjorken hydrodynamics recovered (and more)

[Heller, Surowka: seminars; Janik, Peschanski 2006; Kovchegov, Taliotis 2007...]

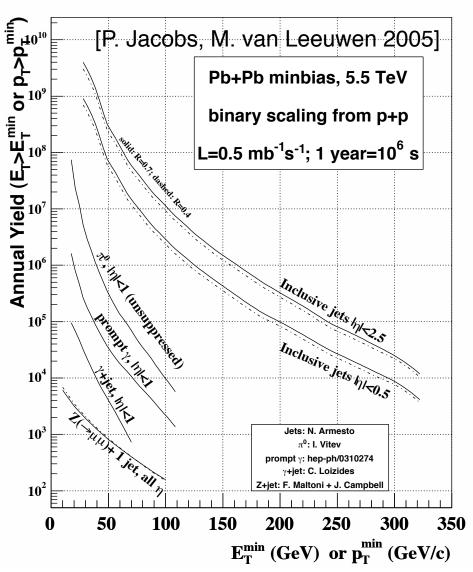
Shock waves; heavy quark energy loss; bound states....

[Gubser; Herzog, Karch, Kovtun, Kozcaz, Yaffe; Casalderrey-Solana, Teaney.... 2006]

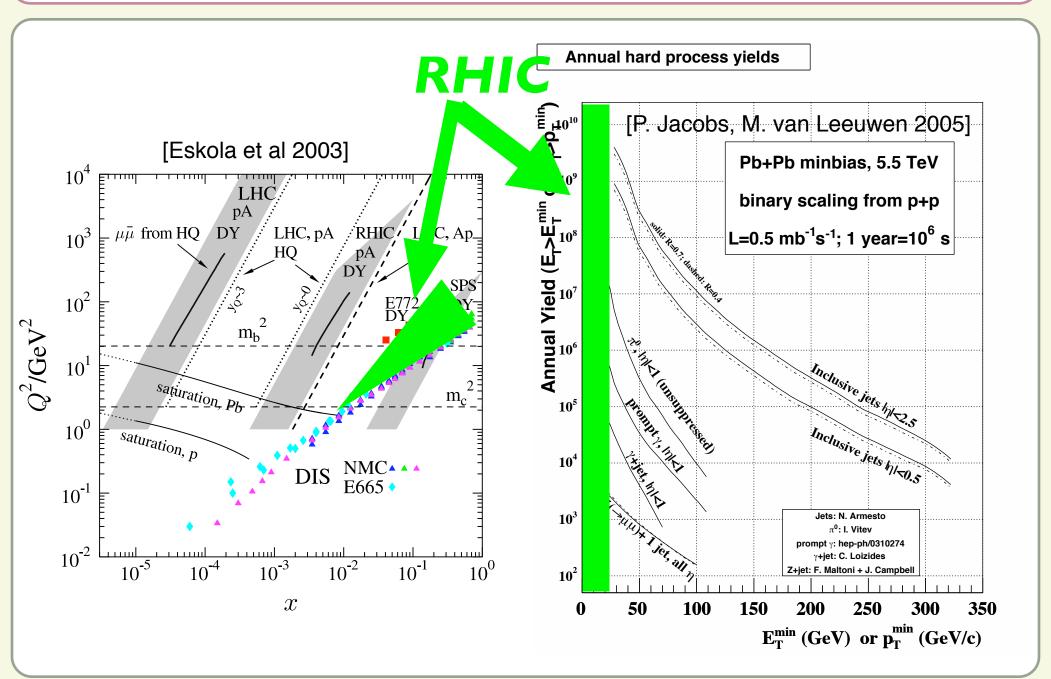
New regimes at the LHC



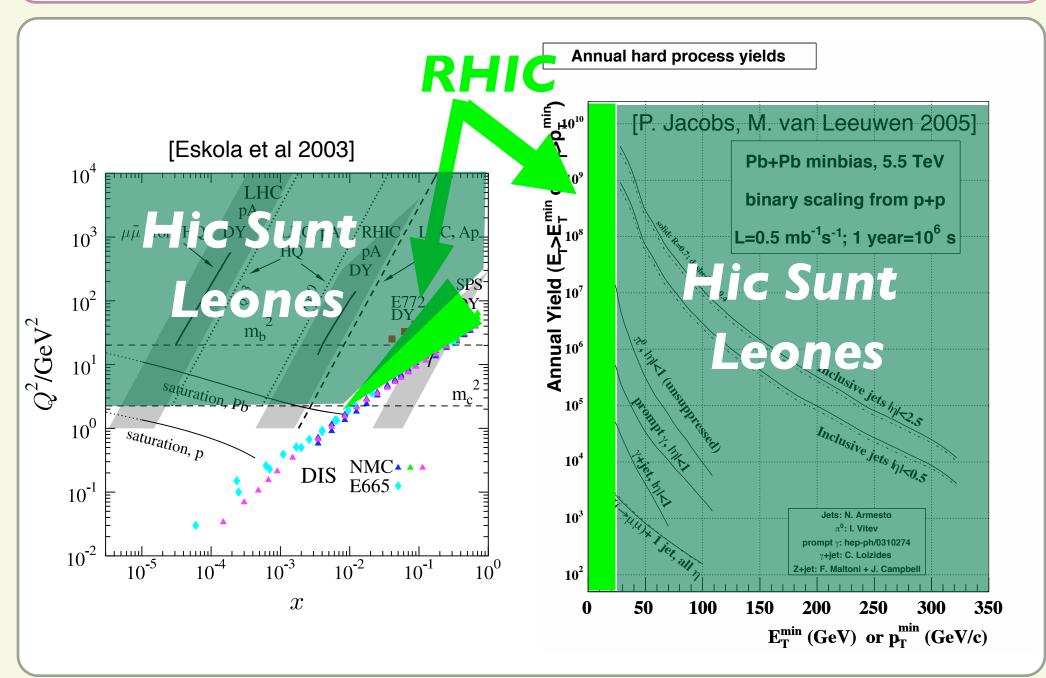
Annual hard process yields



New regimes at the LHC



New regimes at the LHC



Summary

- HIC to study collective properties of fundamental interactions
- Initial state probably dominated by strong color fields
 - Semiclassical approach
 - Hints from experimental data definite checks at the LHC
- Hard Probes ideal tools to characterize the medium
 - | Jet quenching: Medium modification of jet structures
 - Interplay between hydrodynamical behavior and jet development
- Different fields are contributing to these developments
 - String-theory computations (try to) face experimental data
- → LHC will explore completely new regimes of QCD.